J. Mater. Sci. Technol. ›› 2021, Vol. 87: 269-279.DOI: 10.1016/j.jmst.2021.03.001
• Research Article • Previous Articles
J. Lia,b,d,1, C. Xua,b,c,1, G. Zhenga,b,c, W.J. Daia,b,c, C.C. Bua,b,c, G. Chena,b,c,*()
Received:
2020-03-28
Revised:
2020-03-30
Accepted:
2020-05-24
Published:
2021-10-10
Online:
2021-03-18
Contact:
G. Chen
About author:
* E-mail address: gchen@njust.edu.cn (G. Chen).J. Li, C. Xu, G. Zheng, W.J. Dai, C.C. Bu, G. Chen. On the microstructural origin of premature failure of creep strength enhanced martensitic steels[J]. J. Mater. Sci. Technol., 2021, 87: 269-279.
Element | C | Cr | Ni | Mn | Si | V | Nb | W | Mo | P | S | Al | B | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Content | 0.13 | 9.08 | 0.06 | 0.49 | 0.19 | 0.20 | 0.07 | 1.70 | 0.34 | 0.011 | 0.002 | 0.008 | 0.004 | Bal. |
Table 1 Chemical composition (wt.%) of the investigated steel.
Element | C | Cr | Ni | Mn | Si | V | Nb | W | Mo | P | S | Al | B | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Content | 0.13 | 9.08 | 0.06 | 0.49 | 0.19 | 0.20 | 0.07 | 1.70 | 0.34 | 0.011 | 0.002 | 0.008 | 0.004 | Bal. |
LM constant, C | R2 | RMSE | |
---|---|---|---|
Region 1 | 34.3 | 0.9954 | 8.87 |
Region 2 | 27.1 | 0.9986 | 0.31 |
Region 3 | 17.2 | 0.9955 | 1.92 |
Table 2 Fitted values achieved from multi-step LMP method.
LM constant, C | R2 | RMSE | |
---|---|---|---|
Region 1 | 34.3 | 0.9954 | 8.87 |
Region 2 | 27.1 | 0.9986 | 0.31 |
Region 3 | 17.2 | 0.9955 | 1.92 |
Fig. 3. Microstructure of the tempered sample: (a) SEM micrograph, (b) TEM micrograph of an unrecrystallized region showing the distribution of carbides on lath boundaries. (c) TEM micrograph of a fully recrystallized region with carbides locating along equiaxed grain boundaries. (d) Another fully recrystallized region with rod shaped carbides distributing in the matrix.
Fig. 4. Illustration of lattice of Fe matrix and M23C6 carbides observed from different directions: (a) and (b) along [$\bar{1}$10]Fe direction and (c) from [001]Fe direction. The blue spheres represent Cr atoms in M23C6, red spheres represent Fe atoms, the enlarged spheres represent the atoms on the top layer.
Fig. 5. Microstructure of the samples crept at 625℃ for different time: (a-c) SEM micrograph of samples crept for 340 h, 4,470 h and 10,700 h, respectively, (d-f) TEM micrograph of samples crept for 340 h, 4,470 h and 10,700 h, respectively.
Fig. 6. EBSD boundary map superimposed on inverse pole figure, (a) crept for 4,470 h, (b) crept for 10,700 h. The colors represent different orientations as illustrated in the standard triangle legend. Silver and black lines show the boundaries with misorientation angles between 2° and 15°, and larger than 15°, respectively.
Fig. 7. Histogram of the relative frequencies of misorientation angles. The misorientations belonging to KS or NW relationships are marked in the figure.
Fig. 8. Size distribution of M23C6 carbides: (a) as received, (b) crept for 340 h, (c) crept for 4,470 h, (d) crept for 10,700 h. The major axis and minor axis are plotted separately in each state.
Material state | Number density (μm-2) | Median size (nm) | Average size (nm) |
---|---|---|---|
As received | 4.41 ± 2.20 | 88.85 | 108.42 ± 46.67 |
Crept for 340 h | 3.85 ± 1.74 | 100.50 | 129.12 ± 52.76 |
Crept for 4,470 h | 3.63 ± 1.67 | 121.35 | 168.57 ± 70.5 |
Crept for 10,700 h | 1.86 ± 0.46 | 144.50 | 188.39 ± 97.49 |
Table 3 Summary of number density and particle size of M23C6 carbides. Error bars represent standard deviation of the mean.
Material state | Number density (μm-2) | Median size (nm) | Average size (nm) |
---|---|---|---|
As received | 4.41 ± 2.20 | 88.85 | 108.42 ± 46.67 |
Crept for 340 h | 3.85 ± 1.74 | 100.50 | 129.12 ± 52.76 |
Crept for 4,470 h | 3.63 ± 1.67 | 121.35 | 168.57 ± 70.5 |
Crept for 10,700 h | 1.86 ± 0.46 | 144.50 | 188.39 ± 97.49 |
d for fitting | K (10-30 m3/s) | d0 (nm) | R2 | RRMSE |
---|---|---|---|---|
Median size | 0.0572 | 94.04 | 0.9853 | 0.1007 |
Average size | 0.1340 | 122.90 | 0.9126 | 0.1887 |
Table 4 Summary of parameters obtained from fitting of Eq. (4).
d for fitting | K (10-30 m3/s) | d0 (nm) | R2 | RRMSE |
---|---|---|---|---|
Median size | 0.0572 | 94.04 | 0.9853 | 0.1007 |
Average size | 0.1340 | 122.90 | 0.9126 | 0.1887 |
V | Cr | Mn | Fe | Mo | W | |
---|---|---|---|---|---|---|
wt. % | 0.39 | 8.54 | 0.82 | 50.99 | 6.39 | 32.88 |
at. % | 0.56 | 12.21 | 1.11 | 67.87 | 4.95 | 13.30 |
Table 5 Chemical composition of Laves phase in Fig. 11measured by EDS.
V | Cr | Mn | Fe | Mo | W | |
---|---|---|---|---|---|---|
wt. % | 0.39 | 8.54 | 0.82 | 50.99 | 6.39 | 32.88 |
at. % | 0.56 | 12.21 | 1.11 | 67.87 | 4.95 | 13.30 |
Fig. 12. Illustration of the recovery of martensite and evolution of precipitates, where black dots represent M23C6 carbides, red lines represent recrystallized grain boundaries, black lines represent martensite lath boundaries, blue dots represent Laves phase.
Material state | σprecipitate (MPa) |
---|---|
As received | 81.9 |
Crept for 4,470 h | 74.3 |
Crept for 10,700 h | 53.2 |
Table 6 Summary of internal stress caused by precipitates.
Material state | σprecipitate (MPa) |
---|---|
As received | 81.9 |
Crept for 4,470 h | 74.3 |
Crept for 10,700 h | 53.2 |
Material state | Effective grain size (μm) | σsubgrain (MPa) |
---|---|---|
As received | 0.32 | 60.9 |
Crept for 4,470 h | 0.41 | 47.6 |
Crept for 10,700 h | 0.85 | 22.9 |
Table 7 Summary of effective grain size and internal stress caused by subgrain boundaries.
Material state | Effective grain size (μm) | σsubgrain (MPa) |
---|---|---|
As received | 0.32 | 60.9 |
Crept for 4,470 h | 0.41 | 47.6 |
Crept for 10,700 h | 0.85 | 22.9 |
Material state | ρ (m-2) | σdislocation (MPa) |
---|---|---|
As received | 6.02 × 1013 | 30.0 |
Crept for 4,470 h | 5.03 × 1013 | 28.0 |
Crept for 10,700 h | 3.04 × 1013 | 22.0 |
Table 8 Summary of dislocation density and internal stress caused by mobile dislocations.
Material state | ρ (m-2) | σdislocation (MPa) |
---|---|---|
As received | 6.02 × 1013 | 30.0 |
Crept for 4,470 h | 5.03 × 1013 | 28.0 |
Crept for 10,700 h | 3.04 × 1013 | 22.0 |
Fig. 13. Contributions of microstructural features to the internal stress. σprecipitate: internal stress due to precipitates, σsubgrain: internal stress due to subgrain boundaries, σdislocation: internal stress due to mobile dislocations.
[1] |
Q.Z. Gao, Y.C. Liu, X.J. Di, L.M. Yu, Z.S. Yan, Z.X. Qiao, Nucl. Eng. Des. 256 (2013) 148-152.
DOI URL |
[2] |
V. Knežević, J. Balun, G. Sauthoff, G. Inden, A. Schneider, Mater. Sci. Eng. A 477 (2008) 334-343.
DOI URL |
[3] |
T. Karthikeyan, M.K. Dash, Ravikirana, R. Mythili, S. Panneer Selvi, A. Moitra, S. Saroja, J. Nucl. Mater. 494 (2017) 260-277.
DOI URL |
[4] |
Y.Z. Shen, H. Liu, Z.X. Shang, Z.Q. Xu, J. Nucl. Mater. 465 (2015) 373-382.
DOI URL |
[5] | R. Viswanathan, J. Nutting, Proceedings to the Advanced Heat Resistant Steels for Power Generation, April 27-29, San Sebastian, Spain, 1998. |
[6] | F.T. Furillo, S. Purushothaman, J.K. Tien, Scr. Metall. Mater. 11 (6) (1977) 493-496. |
[7] |
J.S. Lee, H.G. Armaki, K. Maruyama, T. Muraki, H. Asahi, Mater. Sci. Eng. A 428 (2006) 270-275.
DOI URL |
[8] |
V. Gray, M. Whittaker, Mater. Sci. Eng. A 632 (2015) 96-102.
DOI URL |
[9] |
H.G. Han, J.J. Shen, J.X. Xie, Sci. Rep. 8 (2018) 15411.
DOI URL |
[10] |
H.K. Danielsen, P.E.D. Nunzio, J. Hald, Metall. Mater. Trans. A 44 (5) (2013) 2445-2452.
DOI URL |
[11] |
K. Sawada, M. Tabuchi, H. Hongo, T. Watanabe, K. Kimura, Mater. Charact. 59 (9) (2008) 1161-1167.
DOI URL |
[12] |
K. Sawada, K. Kubo, F. Abe, Mater. Sci. Technol. 19 (6) (2003) 732-738.
DOI URL |
[13] | V. Vodarek, A. Strang, J. Phys. Iv. 112 (2003) 445-448. |
[14] |
R. Agamennone, W. Blum, C. Gupta, Acta Mater. 54 (11) (2006) 3003-3014.
DOI URL |
[15] | H.G. Armaki, R.P. Chen, K. Maruyama, Metall. Mater. Trans. A 42A (2011) 3084-3094. |
[16] |
A. Kostka, K.G. Tak, R.J. Hellmig, Y. Estrin, G. Eggeler, Acta Mater. 55 (2007) 539-550.
DOI URL |
[17] |
A. Aghajani, C. Somsen, G. Eggeler, Acta Mater. 57 (17) (2009) 5093-5106.
DOI URL |
[18] |
A. Fedoseeva, N. Dudova, R. Kaibyshev, J. Mater. Sci. 52 (2017) 2974-2988.
DOI URL |
[19] |
H.G. Armaki, R.P. Chen, K. Maruyama, M. Igarashi, J. Nucl. Mater. 433 (2013) 23-29.
DOI URL |
[20] |
H.G. Armaki, R.P. Chen, K. Maruyama, M. Igarashi, Mater. Sci. Eng. A 527 (24-25) (2010) 6581-6588.
DOI URL |
[21] |
H.G. Armaki, R.P. Chen, K.S. Kano, K. Maruyama, Y. Hasegawa, M. Igarashi, J. Nucl. Mater. 416 (3) (2011) 273-279.
DOI URL |
[22] |
C.G. Panait, W. Bendick, A. Fuchsmann, A.F. Gourgues-Lorenzon, J. Besson, Int. J. Pres. Ves. Pip. 87 (2010) 326-335.
DOI URL |
[23] |
N. Saini, R.S. Mulik, M.M. Mahapatra, Mater. Sci. Eng. A 716 (2018) 179-188.
DOI URL |
[24] | J. Hald, Steel Res. Int. 67 (9) (1996) 369-374. |
[25] |
J. Hald, Int. J. Pres. Ves. Pip. 85 (1-2) (2008) 30-37.
DOI URL |
[26] |
V.V. Krivenyuk, Strength Mater. 38 (6) (2006) 586-594.
DOI URL |
[27] |
K. Maruyama, H.G. Armaki, K. Yoshimi, Int. J. Pres. Ves. Pip. 84 (3) (2007) 171-176.
DOI URL |
[28] |
M. Godec, D.A. Skobir Balantič, Sci. Rep. 6 (2016) 29734.
DOI PMID |
[29] | D.A. Porter, K.E. Easterling, Phase Transformation in Metals and Alloys, third ed., 2009, pp. 154-158, London. |
[30] | A.L. Bowman, G.P. Arnold, E.K. Storms, N.G. Nereson, Crystallogr. B 28 (1972) 3102-3103. |
[31] |
H.U. Hong, B.S. Rho, S.W. Nam, Mater. Sci. Eng. A 318 (2001) 285-292.
DOI URL |
[32] |
Z.F. Xu, Z.M. Ding, B. Liang, Metall. Mater. Trans. A 49 (9) (2018) 836-841.
DOI URL |
[33] | S.H. Lee, H.S. Na, K.W. Lee, Y. Choe, C.Y. Kang, Metals 8 (3) (2018). |
[34] |
H. Kitahara, R. Ueji, N. Tsuji, Y. Minamino, Acta Mater. 54 (5) (2006) 1279-1288.
DOI URL |
[35] |
H. Kitahara, R. Ueji, M. Ueda, N. Ysuji, Y. Minamino, Mater. Charact. 54 (4-5) (2005) 378-386.
DOI URL |
[36] |
E. Bouyne, H.M. Flower, T.C. Lindley, A. Pineau, Scripta Mater. 39 (3) (1998) 295-300.
DOI URL |
[37] |
E. Cerri, E. Evangelista, S. Spigarelli, P. Bianchi, Mater. Sci. Eng. A 245 (2) (1998) 285-292.
DOI URL |
[38] |
I.M. Lifshitz, V.V. Slyozov, J. Phys. Chem. Solids 19 (1) (1961) 35-50.
DOI URL |
[39] |
V. Dudko, A. Belyakov, R. Kaibyshev, Trans. Indian Inst. Metals 69 (2) (2015) 1-5.
DOI URL |
[40] |
G.M. Sim, J.C. Ahn, S.C. Hong, K.J. Lee, K.S. Lee, Mater. Sci. Eng. A 396 (1-2) (2005) 159-165.
DOI URL |
[41] |
U.F. Kocks, Mater. Sci. Eng. A 317 (1-2) (2001) 181-187.
DOI URL |
[42] |
E. Nes, K. Marthinsen, B. Holmedal, Mater. Sci. Tech. 20 (11) (2004) 1377-1382.
DOI URL |
[43] |
D.N. Seidman, E.A. Marquis, D.C. Dunand, Acta Mater. 50 (16) (2002) 4021-4035.
DOI URL |
[44] |
C.B. Fuller, D.N. Seidman, D.C. Dunand, Acta Mater. 51 (16) (2003) 4803-4814.
DOI URL |
[45] |
H. Chilukuru, K. Durst, S. Wadekar, M. Schwienheer, Mater. Sci. Eng. A 510-511 (2009) 81-87.
DOI URL |
[46] |
K.C. Russell, L.M. Brown, Acta Metall. 20 (7) (1972) 969-974.
DOI URL |
[47] | M.J. Roberts, Metall. Mater. Trans. B 1 (12) (1970) 3287-3294. |
[48] |
T. Swarr, G. Krauss, Metall. Mater. Trans. A 7 (1) (1976) 41-48.
DOI URL |
[49] |
S. Rajasekhara, P.J. Ferreira, L.P. Karjalainen, A. Kyröläinen, Metall. Mater Trans. A 38 (6) (2007) 1202-1210.
DOI URL |
[50] |
C.Y. Zhang, Q.F. Wang, J.X. Ren, R.X. Li, M.Z. Wang, F.C. Zhang, K.M. S, Mater. Sci. Eng. A 534 (2012) 339-346.
DOI URL |
[51] |
H. Magnusson, R. Sandström, Metall. Mater. Trans. A 38 (9) (2007) 2033-2039.
DOI URL |
[52] | A.D. Gianfrancesco, S. Matera, O. Tassa, Int. J. Metall. 98 (2001) 117-123. |
[53] |
Q. Liu, D.J. Jensen, N. Hansen, Acta Mater. 46 (16) (1998) 5819-5838.
DOI URL |
[54] |
G. Dini, R. Ueji, A. Najafizadeh, S.M. Monir-Vaghefi, Mater. Sci. Eng. A 527 (10-11) (2010) 2759-2763.
DOI URL |
[55] |
S.J. Zinkle, Radiat. Eff. 148 (1-4) (1999) 447-477.
DOI URL |
[56] |
G.E. Lucas, G.R. Odette, H. Matsui, J. Nucl. Mater. 367-370 (part-B) (2007) 1549-1556.
DOI URL |
[57] |
J. Blach, L. Falat, P. Ševc, Eng. Fail. Anal. 16 (5) (2009) 1397-1403.
DOI URL |
[1] | Meng Sun, Anatoly Balagurov, Ivan Bobrikov, Xianping Wang, Wen Wen, Igor S. Golovin, Qianfeng Fang. High damping in Fe-Ga-La alloys: Phenomenological model for magneto-mechanical hysteresis damping and experiment [J]. J. Mater. Sci. Technol., 2021, 72(0): 69-80. |
[2] | Ye Liang, Wei Yan, Xianbo Shi, Yanfen Li, Quanqiang Shi, Wei Wang, Yiyin Shan, Ke Yang. On Laves phase in a 9Cr3W3CoB martensitic heat resistant steel when aged at high temperatures [J]. J. Mater. Sci. Technol., 2021, 85(0): 129-140. |
[3] | Lifeng Zhang, Shangyi Ma, Weizhen Wang, Zhiqing Yang, Hengqiang Ye. Atomic structure and enhanced thermostability of a new structure MgYZn4 formed by ordered substitution of Y for Mg in MgZn2 in a Mg-Zn-Y alloy [J]. J. Mater. Sci. Technol., 2019, 35(9): 2058-2063. |
[4] | Gang Qin, Shu Wang, Ruirun Chen, Xue Gong, Liang Wang, Yanqing Su, Jingjie Guo, Hengzhi Fu. Microstructures and mechanical properties of Nb-alloyed CoCrCuFeNi high-entropy alloys [J]. J. Mater. Sci. Technol., 2018, 34(2): 365-369. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||