J. Mater. Sci. Technol. ›› 2021, Vol. 85: 129-140.DOI: 10.1016/j.jmst.2020.12.062
• Research Article • Previous Articles Next Articles
Ye Lianga,b, Wei Yana,c,*(), Xianbo Shia,c, Yanfen Lia,c, Quanqiang Shia,c, Wei Wanga,c, Yiyin Shana,c, Ke Yanga,c,*(
)
Received:
2020-09-23
Revised:
2020-11-23
Accepted:
2020-12-31
Published:
2021-09-20
Online:
2021-02-08
Contact:
Wei Yan,Ke Yang
About author:
kyang@imr.ac.cn (K. Yang).Ye Liang, Wei Yan, Xianbo Shi, Yanfen Li, Quanqiang Shi, Wei Wang, Yiyin Shan, Ke Yang. On Laves phase in a 9Cr3W3CoB martensitic heat resistant steel when aged at high temperatures[J]. J. Mater. Sci. Technol., 2021, 85: 129-140.
C | Si | Mn | P | S | Cr | W | Co |
---|---|---|---|---|---|---|---|
0.11 | 0.27 | 0.46 | 0.006 | 0.004 | 9.02 | 2.99 | 3.05 |
V | Nb | N | B | Ti | Ni | Al | Cu |
0.19 | 0.073 | 0.006 | 0.015 | <0.005 | 0.028 | <0.02 | 0.88 |
Table 1 Chemical composition of experimental 9Cr3W3CoB steel (wt%).
C | Si | Mn | P | S | Cr | W | Co |
---|---|---|---|---|---|---|---|
0.11 | 0.27 | 0.46 | 0.006 | 0.004 | 9.02 | 2.99 | 3.05 |
V | Nb | N | B | Ti | Ni | Al | Cu |
0.19 | 0.073 | 0.006 | 0.015 | <0.005 | 0.028 | <0.02 | 0.88 |
Fig. 2. Microstructures of as-received (a) and as-treated (b) 9Cr3W3CoB steel, microstructure of 9Cr3W3CoB steel aging at 700 °C for 1000 h (c); EDS spectra, and chemical composition of M3B2 boride marked by green circle (d), EDS spectra, SAED pattern and chemical composition of M23C6 carbides marked by blue circle (e), and Laves phase marked by orange circle (f).
Fig. 6. Area fraction (a), Mean equivalent diameter (b) and number density (c) of Laves phase precipitates in 9Cr3W3CoB steel after aging at 750 and 800 °C.
Fig. 10. SEM image (a) and TEM image (b) of bulk M23C6 carbides with Laves phase inside; SEM image (c) and TEM image (d) of Laves phase with M23C6 carbides inside in 9Cr3W3CoB steel during aging at 750 °C (Orange circle denotes Laves phase enwrapped by M23C6 carbides, blue circle denotes M23C6 carbides enwrapped by Laves phase).
Fig. 11. SEM image (a) and TEM image (b) of bulk Laves phase with M23C6 carbides inside in 9Cr3 W3CoB steel during aging at 800 °C (Blue circle denotes M23C6 carbides enwrapped by Laves phase).
Fig. 13. Competition growth of precipitates during aging at 750 °C for 100 h (a), 600 h (c), 3000 h (e); 800 °C for 100 h (b), 600 h (d), 3000 h (f) (The upper half of each picture is the image with low magnification, the upper half of each picture is the image with high magnification).
Aging time | 0 h | 100 h | 600 h | 3000 h |
---|---|---|---|---|
750 °C | 4.43 | 4.69 | 4.44 | 4.42 |
800 °C | 4.43 | 3.46 | 3.15 | 2.32 |
Table 2 Variation of area fraction of M23C6 carbides during aging at 750 and 800 °C.
Aging time | 0 h | 100 h | 600 h | 3000 h |
---|---|---|---|---|
750 °C | 4.43 | 4.69 | 4.44 | 4.42 |
800 °C | 4.43 | 3.46 | 3.15 | 2.32 |
Fig. 14. Schematic summary of Laves phase nucleation and growth: dissolution of W-rich inclusion (a), segregation of W to the boundary (b), nulceation of Laves phase in close vicinity to M23C6 carbides (c), and growth of Laves phase by swallowing M23C6 carbides (d).
[1] |
F. Abe, Sci. Technol. Adv. Mater. 9 (2008), 013002.
DOI URL |
[2] |
P. Yan, Z.D. Liu, H.S. Bao, Y.Q. Weng, W. Liu, Mater. Sci. Eng. A 588 (2013) 22-28.
DOI URL |
[3] |
X.S. Zhou, C.X. Liu, L.M. Yu, Y.C. Liu, H.J. Li, J. Mater. Sci. Technol. 31 (2015) 235-242.
DOI URL |
[4] | L.X. Yang, Multi-scale Characterization of Cu and Correlation Study on Composition-Structure-Properties of Ultra Supercritical Heat Resistant Steel G115, Ph. D Thesis, Central Iron and Steel Research Institute, Beijing, 2017. |
[5] |
K. Sawada, M. Takeda, K. Maruyama, R. Ishii, M. Yamada, Y. Nagae, R. Komine, Mater. Sci. Eng. A 267 (1999) 19-25.
DOI URL |
[6] |
O. Prat, J. Garcia, D. Rojas, G. Sauthoff, G. Inden, Intermetallics 32 (2013) 362-372.
DOI URL |
[7] | Y. Hosoi, N. Wade, S. Kunimitsu, T. Urita, J. Nucl. Mater. 141 (1986) 461-467. |
[8] |
N. Saini, R.S. Mulik, M.M. Mahapatra, Mater. Sci. Eng. A 716 (2018) 179-188.
DOI URL |
[9] | P. Hu, W. Yan, W. Sha, W. Wang, Y.Y. Shan, K. Yang, J. Mater. Sci. Technol. 27 (2011) 344-351. |
[10] |
M.I. Isik, A. Kostka, G. Eggeler, Acta Mater. 81 (2014) 230-240.
DOI URL |
[11] |
A. Aghajani, C. Somsen, G. Eggeler, Acta Mater. 57 (2009) 5093-5106.
DOI URL |
[12] | F. Abe, H. Araki, T. Noda, Mater. Trans. A 22 (1991) 2225-2235. |
[13] |
Q. Li, Metall. Mater. Trans. A 37 (2006) 89-97.
DOI URL |
[14] | Q.G. Zhou, Shenyang, 2014. |
[15] |
W.L. Zhong, W. Wang, X. Yang, W.S. Li, W. Yan, W. Sha, W. Wang, Y.Y. Shan, K. Yang, Mater. Sci. Eng. A 639 (2015) 252-258.
DOI URL |
[16] |
S.I. Komazaki, S. Kishi, T. Shoji, H. Chiba, K. Suzuki, J. Soc. Mater. Sci. Jpn. 52 (2003) 42-49.
DOI URL |
[17] |
H.R. Cui, F. Sun, K. Chen, L.T. Zhang, R.C. Wan, A.D. Shan, J.S. Wu, Mater. Sci. Eng. A 527 (2010) 7505-7509.
DOI URL |
[18] |
F. Abe, Metall. Mater. Trans. A 36 (2005) 321-332.
DOI URL |
[19] | J. Hald, Int. J. Press. Vess. Pip.. 85 (2008) 30-37. |
[20] |
L. Korcakova, J. Hald, M.A.J. Somers, Mater. Charact. 47 (2001) 111-117.
DOI URL |
[21] |
I. Fedorova, A. Belyakov, P. Kozlov, V. Skorobogatykh, I. Shenkova, R. Kaibyshev, Mater. Sci. Eng. A 615 (2014) 153-163.
DOI URL |
[22] | X. Yang, Microstructure Aging, Property Degradation and Residual Creep Life Evaluation of High-chromium Martensitic Heat-resistant Steel, Ph. D Thesis, Yanshan University, Qinghuangdao, 2017. |
[23] | L. Helis, Y. Toda, T. Hara, H. Miyazaki, F. Abe, Mater. Sci. Eng.A 510-511 (2009) 88-94. |
[24] |
Q. Lu, W. Xu, V.D.Z. Sybrand, Metall. Mater. Trans. A 45 (2014) 6067-6074.
DOI URL |
[25] |
O. Prat, J. Garcia, D. Rojas, C. Carrasco, G. Inden, Acta Mater. 58 (2010) 6142-6153.
DOI URL |
[26] | P. Hu, W. Yan, W. Sha, W. Wang, Z.L. Guo, Y.Y. Shan, K. Yang, Front. Mater. Sci. 3 (2009) 434. |
[27] |
A. Aghajani, F. Richter, C. Somsen, S.G. Fries, I. Steinbach, G. Eggeler, Scr. Mater. 61 (2009) 1068-1071.
DOI URL |
[28] |
M.L. Lsik, A. Kostka, V.A. Yardley, K.G. Pradeep, M.J. Duarte, P.P. Choi, D. Raabe, G. Eggeler, Acta Mater. 90 (2015) 94-104.
DOI URL |
[29] | Q.L. Yong, The Second Phases in Steel and Iron Material, Metallurgical Industry Press, Beijing, 2006. |
[30] |
S. Takemoto, H. Nitta, Y. Lijima, Y. Yamazaki, Philos. Mag. 87 (2007) 1619-1629.
DOI URL |
[31] | Y.N. Yu, Principles of Metallography, Metallurgical Industry Press, Beijing, 2013. |
[32] |
P.W. Voorhees, J. Stat. Phys. 38 (1985) 231-252.
DOI URL |
[1] | Tao Zheng, Xiaobing Hu, Feng He, Qingfeng Wu, Bin Han, Chen Da, Junjie Li, Zhijun Wang, Jincheng Wang, Ji-jung Kai, Zhenhai Xia, C.T. Liu. Tailoring nanoprecipitates for ultra-strong high-entropy alloys via machine learning and prestrain aging [J]. J. Mater. Sci. Technol., 2021, 69(0): 156-167. |
[2] | Di Wan, Yan Ma, Binhan Sun, Seyed Mohammad Javad Razavi, Dong Wang, Xu Lu, Wenwen Song. Evaluation of hydrogen effect on the fatigue crack growth behavior of medium-Mn steels via in-situ hydrogen plasma charging in an environmental scanning electron microscope [J]. J. Mater. Sci. Technol., 2021, 85(0): 30-43. |
[3] | Kunlei Hou, Min Wang, Meiqiong Ou, Haoze Li, Xianchao Hao, Yingche Ma, Kui Liu. Effects of microstructure evolution on the deformation mechanisms and tensile properties of a new Ni-base superalloy during aging at 800 °C [J]. J. Mater. Sci. Technol., 2021, 68(0): 40-52. |
[4] | L.T. Zhang, Y.J. Duan, T. Wada, H. Kato, J.M. Pelletier, D. Crespo, E. Pineda, J.C. Qiao. Dynamic mechanical relaxation behavior of Zr35Hf17.5Ti5.5Al12.5Co7.5Ni12Cu10 high entropy bulk metallic glass [J]. J. Mater. Sci. Technol., 2021, 83(0): 248-255. |
[5] | Yang Wang, Shun Zhang, Ruizhi Wu, Nodir Turakhodjaev, Legan Hou, Jinghuai Zhang, Sergey Betsofen. Coarsening kinetics and strengthening mechanisms of core-shell nanoscale precipitates in Al-Li-Yb-Er-Sc-Zr alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 197-203. |
[6] | Shengshen Gu, Aleksei N. Marianov, Haimei Xu, Yijiao Jiang. Effect of TiO2 support on immobilization of cobalt porphyrin for electrochemical CO2 reduction [J]. J. Mater. Sci. Technol., 2021, 80(0): 20-27. |
[7] | Yuliang Zhao, Weiwen Zhang, Dongfu Song, Bo Lin, Fanghua Shen, Donghai Zheng, ChunXiao Xie, Zhenzhong Sun, Yanan Fu, Runxia Li. Nucleation and growth of Fe-rich phases in Al-5Ti-1B modified Al-Fe alloys investigated using synchrotron X-ray imaging and electron microscopy [J]. J. Mater. Sci. Technol., 2021, 80(0): 84-99. |
[8] | Pan Liu, Lulu Hu, Qinhao Zhang, Cuiping Yang, Zuosi Yu, Jianqing Zhang, Jiming Hu, Fahe Cao. Effect of aging treatment on microstructure and corrosion behavior of Al-Zn-Mg aluminum alloy in aqueous solutions with different aggressive ions [J]. J. Mater. Sci. Technol., 2021, 64(0): 85-98. |
[9] | Wenshen Wang, Fenfen Li, Shibo Li, Yi Hu, Mengran Xu, Yuanyuan Zhang, Muhammad Imran Khan, Shaozhen Wang, Min Wu, Weiping Ding, Bensheng Qiu. M2 macrophage-targeted iron oxide nanoparticles for magnetic resonance image-guided magnetic hyperthermia therapy [J]. J. Mater. Sci. Technol., 2021, 81(0): 77-87. |
[10] | Jie Xu, Xuan Kong, Minghui Chen, Qunchang Wang, Fuhui Wang. High-entropy FeNiCoCr alloys with improved mechanical and tribological properties by tailoring composition and controlling oxidation [J]. J. Mater. Sci. Technol., 2021, 82(0): 207-213. |
[11] | Milad Ghayoor, Saereh Mirzababaei, Anumat Sittiho, Indrajit Charit, Brian K. Paul, Somayeh Pasebani. Thermal stability of additively manufactured austenitic 304L ODS alloy [J]. J. Mater. Sci. Technol., 2021, 83(0): 208-218. |
[12] | Ye Yuan, Zhong Ji, Genghua Yan, Zhuowei Li, Jinliang Li, Min Kuang, Bangqi Jiang, Longlong Zeng, Likun Pan, Wenjie Mai. TiO2 electron transport bilayer for all-inorganic perovskite photodetectors with remarkably improved UV stability toward imaging applications [J]. J. Mater. Sci. Technol., 2021, 75(0): 39-47. |
[13] | Meng Sun, Anatoly Balagurov, Ivan Bobrikov, Xianping Wang, Wen Wen, Igor S. Golovin, Qianfeng Fang. High damping in Fe-Ga-La alloys: Phenomenological model for magneto-mechanical hysteresis damping and experiment [J]. J. Mater. Sci. Technol., 2021, 72(0): 69-80. |
[14] | Xiaoxiao Li, Meiqiong Ou, Min Wang, Xiangdong Zha, Yingche Ma, Kui Liu. Microstructure evolution and stress rupture properties of K4750 alloys with various B contents during long-term aging [J]. J. Mater. Sci. Technol., 2021, 73(0): 108-115. |
[15] | Lin Gao, Kai Li, Song Ni, Yong Du, Min Song. The growth mechanisms of θ′ precipitate phase in an Al-Cu alloy during aging treatment [J]. J. Mater. Sci. Technol., 2021, 61(0): 25-32. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||