J. Mater. Sci. Technol. ›› 2021, Vol. 83: 248-255.DOI: 10.1016/j.jmst.2020.11.074
• Research Article • Previous Articles Next Articles
L.T. Zhanga, Y.J. Duana, T. Wadab, H. Katob, J.M. Pelletierc, D. Crespod, E. Pinedad, J.C. Qiaoa,*()
Received:
2020-09-28
Revised:
2020-11-26
Accepted:
2020-11-28
Published:
2021-01-27
Online:
2021-01-27
Contact:
J.C. Qiao
About author:
* E-mail address: qjczy@nwpu.edu.cn (J.C. Qiao).L.T. Zhang, Y.J. Duan, T. Wada, H. Kato, J.M. Pelletier, D. Crespo, E. Pineda, J.C. Qiao. Dynamic mechanical relaxation behavior of Zr35Hf17.5Ti5.5Al12.5Co7.5Ni12Cu10 high entropy bulk metallic glass[J]. J. Mater. Sci. Technol., 2021, 83: 248-255.
Fig. 1. DSC curve of Zr35Hf17.5Ti5.5Al12.5Co7.5Ni12Cu10 high entropy bulk metallic glass (heating rate is 3 K/min). Inset is the XRD pattern of Zr35Hf17.5Ti5.5Al12.5Co7.5Ni12Cu10 high entropy bulk metallic glass.
Fig. 2. (a)Temperature dependence of the normalized storage modulus and the loss modulus of Zr35Hf17.5Ti5.5Al12.5Co7.5Ni12Cu10 high entropy bulk metallic glass. (b)The normalized loss mudulus E”/E”max in typical MGs as a function of the normalized temperature T/Tα. E”max is the maximum of the loss modulus. Tα is the peak temperature of the main α relaxation.
Fig. 3. Temperature dependence of the normalized loss modulus of Zr35Hf17.5Ti5.5Al12.5Co7.5Ni12Cu10 high entropy bulk metallic glass with different driving frequencies (0.05, 0.1, 0.3 and 0.5 Hz). The heating rate is 3 K/min. Inset shows lnf as a function of 1000/Tα.
Metallic glasses | Tg (K) | Eα (eV) | Refs. |
---|---|---|---|
Ce70Al10Cu20 | 366 | 2.03 | [ |
Zn38Mg12Ca32Yb18 | 395 | 2.71 | [ |
La65Al14(Cu5/6Ag1/6)11(Cu1/2Ni1/2)10 | 414 | 3.24 | [ |
Mg65Cu25Y10 | 425 | 2.97 | [ |
La30Ce30Al15Co25 | 430 | 3.61 | [ |
La55Al25Ni20 | 479 | 3.77 | [ |
Pd40Ni40P20 | 597 | 5.95 | [ |
Zr41.2Ti13.8Cu12.5Ni10Be22.5 | 613 | 5.13 | [ |
Zr65Cu15Al10Ni10 | 652 | 3.9 | [ |
Zr55Cu30Al10Ni5 | 678 | 4.73 | [ |
(Zr55Cu30Ni5Al10)99Fe1 | 684 | 4.97 | [ |
Zr49Cu46Al5 | 694 | 6.22 | [ |
Zr35Hf17.5Ti5.5Al12.5Co7.5Ni12Cu10 | 695 | 6.1 | The current work |
Cu46Zr45Al7Y2 | 698 | 5.56 | [ |
Zr47.5Cu 47.5Al5 | 702 | 6.3 | [ |
Cu49Hf42Al9 | 765 | 7.08 | The current work |
Table 1 Activation energy of the main α relaxation in typical MGs obtained by DMA technique.
Metallic glasses | Tg (K) | Eα (eV) | Refs. |
---|---|---|---|
Ce70Al10Cu20 | 366 | 2.03 | [ |
Zn38Mg12Ca32Yb18 | 395 | 2.71 | [ |
La65Al14(Cu5/6Ag1/6)11(Cu1/2Ni1/2)10 | 414 | 3.24 | [ |
Mg65Cu25Y10 | 425 | 2.97 | [ |
La30Ce30Al15Co25 | 430 | 3.61 | [ |
La55Al25Ni20 | 479 | 3.77 | [ |
Pd40Ni40P20 | 597 | 5.95 | [ |
Zr41.2Ti13.8Cu12.5Ni10Be22.5 | 613 | 5.13 | [ |
Zr65Cu15Al10Ni10 | 652 | 3.9 | [ |
Zr55Cu30Al10Ni5 | 678 | 4.73 | [ |
(Zr55Cu30Ni5Al10)99Fe1 | 684 | 4.97 | [ |
Zr49Cu46Al5 | 694 | 6.22 | [ |
Zr35Hf17.5Ti5.5Al12.5Co7.5Ni12Cu10 | 695 | 6.1 | The current work |
Cu46Zr45Al7Y2 | 698 | 5.56 | [ |
Zr47.5Cu 47.5Al5 | 702 | 6.3 | [ |
Cu49Hf42Al9 | 765 | 7.08 | The current work |
Fig. 5. Dependence of the normalized storage E'/Eu (a) and the loss modulus E”/Eu (b) on frequency at different temperatures of Zr35Hf17.5Ti5.5Al12.5Co7.5Ni12Cu10 high entropy bulk metallic glass. (c) Master curve of the normalized storage modulus E'/Eu and the loss modulus E”/Eu with the frequency. The reference temperature is 700 K.
Fig. 6. (a) The loss factor tanδ varies with the driving frequency at various temperature of Zr35Hf17.5Ti5.5Al12.5Co7.5Ni12Cu10 high entropy bulk metallic glass. Solid lines are the best fits by the Eq. (3). (b) Evolution of the correlation factor χ and loss factor tanδ with temperature of Zr35Hf17.5Ti5.5Al12.5Co7.5Ni12Cu10 high entropy bulk metallic glass. (c) Evolution of the correlation factor χ with the normalized temperature in typical MGs.
Fig. 7. Evolution of the storage modulus E'/Eu (a) and loss factor tanδ (b) with the aging time at different aging temperatures of Zr35Hf17.5Ti5.5Al12.5Co7.5Ni12Cu10 high entropy bulk metallic glass. The aging temperatures are 623, 638, 653 and 668 K, respectively. The solid lines are fitted by the Eq. (4).
Fig. 8. Double logarithm of the loss factor tanδ versus the logarithm of the aging time at different aging temperatures for Zr35Hf17.5Ti5.5Al12.5Co7.5Ni12Cu10 high entropy bulk metallic glass.
Fig. 9. Temperature dependence of normalized activation energy spectra P(Eapp) of Zr35Hf17.5Ti5.5Al12.5Co7.5Ni12Cu10 high entropy bulk metallic glass.
Fig. 10. Evolution of the loss factor tanδ with temperature of Zr35Hf17.5Ti5.5Al12.5Co7.5Ni12Cu10 high entropy bulk metallic glass at different states: as-cast state and the samples were annealed at different temperatures, i.e., 623, 638, 653 and 668 K, for 12 h.
[1] |
J.C. Qiao, J.M. Pelletier, J. Mater. Sci. Technol. 30 (2014) 523-545.
DOI |
[2] |
W.H. Wang, Prog. Mater. Sci. 106 (2019), 100561.
DOI URL |
[3] |
Y.J. Huang, Z.L. Ning, Z. Shen, W.Z. Liang, H.C. Sun, J.F. Sun, J. Mater. Sci. Technol. 33 (2017) 1153-1158.
DOI URL |
[4] |
B.A. Sun, W.H. Wang, Prog. Mater. Sci. 74 (2015) 211-307.
DOI URL |
[5] |
X.Q. Gao, K. Zhao, H.B. Ke, D.W. Ding, W.H. Wang, H.Y. Bai, J. Non-Crystalline Solids 357 (2011) 3557-3560.
DOI URL |
[6] |
Z. Yong, T.T. Zuo, T. Zhi, M.C. Gao, K.A. Dahmen, P.K. Liaw, P.L. Zhao, Prog. Mater. Sci. 61 (2014) 1-93.
DOI URL |
[7] |
H. Ding, Y. Shao, P. Gong, J. Li, K. Yao, Mater. Lett. 125 (2014) 151-153.
DOI URL |
[8] |
A. Takeuchi, N. Chen, T. Wada, Y. Yokoyama, H. Kato, A. Inoue, J.W. Yeh, Intermetallics 19 (2011) 1546-1554.
DOI URL |
[9] |
H. Li, X. Xie, K. Zhao, Y. Wang, Y. Zheng, W. Wang, L. Qin, Acta Biomater. 9 (2013) 8561-8573.
DOI PMID |
[10] |
J.W. Yeh, JOM 65 (2013) 1759-1771.
DOI URL |
[11] |
R. Wei, J. Tao, H. Sun, C. Chen, G.W. Sun, F.S. Li, Mater. Lett. 197 (2017) 87-89.
DOI URL |
[12] | T. Wada, J. Jiang, K. Yubuta, H. Kato, A. Takeuchi, Materialia 7 (2019), 100372. |
[13] | W.H. Wang, Prog. Phys. 33 (2013) 177-351. |
[14] |
J.C. Qiao, Q. Wang, J.M. Pelletier, H. Kato, R. Casalini, D. Crespo, E. Pineda, Y. Yao, Y. Yang, Prog. Mater. Sci. 104 (2019) 250-329.
DOI |
[15] |
C.A. Angell, K.L. Ngai, G.B. McKenna, P.F. McMillan, S.W. Martin, J. Appl. Phys. 88 (2000) 3113-3157.
DOI URL |
[16] |
H.B. Yu, W.H. Wang, H.Y. Bai, K. Samwer, Nat. Sci. Rev. 1 (2014) 429-461.
DOI URL |
[17] |
M. Yang, X.J. Liu, Y. Wu, H. Wang, S.H. Jiang, X.Z. Wang, Z.P. Lv, Sci. Sin. Phys. Mech. Astron. 50 (2020), 067003.
DOI URL |
[18] |
J.C. Qiao, J.M. Pelletier, N. Li, Y. Yao, J. Iron Steel Res. Int. 23 (2016) 19-23.
DOI URL |
[19] |
W. Jiang, B. Zhang, J. Appl. Phys. 127 (2020), 115104.
DOI URL |
[20] |
P. Gong, S. Zhao, H. Ding, K. Yao, X. Wang, J. Mater. Res. 30 (2015) 2772-2782.
DOI URL |
[21] |
Q. Zhou, Y. Du, W. Han, Y. Ren, H. Zhai, H. Wang, Scr. Mater. 164 (2019) 121-125.
DOI URL |
[22] |
E. Pineda, P. Bruna, B. Ruta, M. Gonzalez-Silveira, D. Crespo, Acta Mater. 61 (2013) 3002-3011.
DOI URL |
[23] |
T.G. Nieh, J. Wadsworth, Scr. Mater. 54 (2006) 387-392.
DOI URL |
[24] | Y. Kawamura, T. Nakamura, H. Kato, H. Mano, A. Inoue, Mater. Sci. Eng. A 304 (2001) 674-678. |
[25] |
G.P. Johari, M. Goldstein, J. Chem. Phys. 53 (1970) 2372-2388.
DOI URL |
[26] | K. Ngai, Relaxation and Diffusion in Complex Systems, Springer Science & Business Media, 2011. |
[27] |
Q. Wang, J. Liu, Y. Ye, T. Liu, S. Wang, C. Liu, J. Lu, Y. Yang, Mater. Today 20 (2017) 293-300.
DOI URL |
[28] |
W.H. Wang, Prog. Mater. Sci. 57 (2012) 487-656.
DOI URL |
[29] |
R. Bohmer, K.L. Ngai, C.A. Angell, D.J. Plazek, J. Chem. Phys. 99 (1993) 4201-4209.
DOI URL |
[30] | Q. Hao, W.Y. Jia, J.C. Qiao, J. Non-Crystalline Solids 546 (2020), 120266. |
[31] |
J.C. Qiao, J.M. Pelletier, H.C. Kou, X. Zhou, Intermetallics 28 (2012) 128-137.
DOI URL |
[32] |
Y.H. Liu, D. Wang, K. Nakajima, W. Zhang, A. Hirata, T. Nishi, A. Inoue, M.W. Chen, Phys. Rev. Lett. 106 (2011), 125504.
PMID |
[33] |
H. Wagner, D. Bedorf, S. Küchemann, M. Schwabe, B. Zhang, W. Arnold, K. Samwer, Nat. Mater. 10 (2011) 439-442.
DOI URL |
[34] |
W.H. Wang, Sci. Sin. Phys. Mech. Astron. 44 (2014) 396-405.
DOI URL |
[35] | V.A. Khonik, Chin Phys. B 26 (2017) 20-31. |
[36] | Q. Hao, J.C. Qiao, E. Goncharova, G. Afonin, M.N. Liu, Y.T. Cheng, V. Khonik, Chin. Phys. B 29 (2020), 086402. |
[37] |
J. Perez, Solid State Ion. 39 (1990) 69-79.
DOI URL |
[38] |
T. Egami, Prog. Mater. Sci. 56 (2011) 637-653.
DOI URL |
[39] |
J.M. Pelletier, D.V. Louzguine-Luzgin, S. Li, A. Inoue, Acta Mater. 59 (2011) 2797-2806.
DOI URL |
[40] |
J.C. Qiao, J.M. Pelletier, C. Esnouf, Y.H. Liu, H. Kato, J. Alloys Compd. 607 (2014) 139-149.
DOI URL |
[41] |
J.C. Qiao, Y. Yao, J.M. Pelletier, L.M. Keer, Int. J. Plasticity 82 (2016) 62-75.
DOI URL |
[42] | I.M. Hodge, Ence 267 (1995) 1945-1947. |
[43] |
D. Cangialosi, V.M. Boucher, A. Alegria, J. Colmenero, Soft Matter 9 (2013) 8619-8630.
DOI URL |
[44] |
S.V. Khonik, A.V. Granato, D.M. Joncich, A. Pompe, V.A. Khonik, Phys. Rev. Lett. 100 (2008), 065501.
DOI URL |
[45] |
T. Zhang, F. Ye, Y. Wang, J. Lin, Metall. Mater. Trans. A 39 (2008) 1953-1957.
DOI URL |
[46] |
J. Ye, J. Lu, C. Liu, Q. Wang, Y. Yang, Nat. Mater. 9 (2010) 619-623.
DOI PMID |
[47] | J. Ding, Y. Cheng, H. Sheng, M. Asta, R.O. Ritchie, E. Ma, Nat. Commun. 7 (2016) 1-10. |
[48] |
J.C. Qiao, J.M. Pelletier, Intermetallics 28 (2012) 40-44.
DOI URL |
[49] |
P. Zhang, J.J. Maldonis, Z. Liu, J. Schroers, P.M. Voyles, Nat. Commun. 9 (2018) 1-7.
DOI URL |
[50] |
M. Atzmon, J. Appl. Phys. 123 (2018), 065103.
DOI URL |
[51] |
M. Ian, G. Hodge, S. Huvard, Macromolecules 16 (1983) 371-375.
DOI URL |
[52] |
X.B. Wu, L.J. Guo, C.S. Liu, J. Appl. Phys. 115 (2014), 223506.
DOI URL |
[53] |
J.C. Ye, J. Lu, C.T. Liu, Q. Wang, Y. Yang, Nat. Mater. 9 (2010) 619-623.
DOI PMID |
[54] |
M.R.J. Gibbs, J.E. Evetts, J.A. Leake, J. Mater. Sci. 18 (1983) 278-288.
DOI URL |
[55] |
W. Dmowski, T. Iwashita, C.P. Chuang, J. Aimer, T. Egami, Phys. Rev. Lett. 105 (2010), 205502.
PMID |
[56] |
W. Jiao, P. Wen, H.L. Peng, H.Y. Bai, B.A. Sun, W.H. Wang, Appl. Phys. Lett. 102 (2013), 101903.
DOI URL |
[57] | J.L. Gu, H.W. Luan, S.F. Zhao, H.T. Bu, K.F. Yao, Mater. Sci. Eng. A 786 (2020), 139417. |
[58] |
J.C. Qiao, Y.H. Chen, R. Casalini, J.M. Pelletier, Y. Yao, J. Mater. Sci. Technol. 35 (2019) 982-986.
DOI |
[59] |
W.H. Wang, J. Appl. Phys. 110 (2011), 053521.
DOI URL |
[60] |
J.C. Qiao, R. Casalini, J.M. Pelletier, Y. Yao, J. Non-Crystalline Solids 447 (2016) 85-90.
DOI URL |
[61] |
J.C. Qiao, Y.X. Chen, J.M. Pelletier, H. Kato, D. Crespo, Y. Yao, V.A. Khonik, Mater. Sci. Eng. A 719 (2018) 164-170.
DOI URL |
[62] |
J.C. Qiao, J. Cong, Q. Wang, J.M. Pelletier, J. Alloys Compd. 749 (2018) 262-267.
DOI URL |
[1] | J.C. Qiao, Y.H. Chen, R. Casalini, J.M. Pelletier, Y. Yao. Main α relaxation and slow β relaxation processes in a La30Ce30Al15Co25 metallic glass [J]. J. Mater. Sci. Technol., 2019, 35(6): 982-986. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||