J. Mater. Sci. Technol. ›› 2021, Vol. 83: 239-247.DOI: 10.1016/j.jmst.2020.12.055
• Research Article • Previous Articles Next Articles
Lieji Yanga, Tianwei Dengc, Zirui Jiad, Xiaodi Zhoub, Hualiang Lva,b,*(), Yutao Zhua, Juncen Liua, Zhihong Yanga,*(
)
Received:
2020-09-03
Revised:
2020-12-15
Accepted:
2020-12-16
Published:
2021-01-30
Online:
2021-01-30
Contact:
Hualiang Lv,Zhihong Yang
About author:
yangzhihong@nuaa.edu.cn (Z. Yang).Lieji Yang, Tianwei Deng, Zirui Jia, Xiaodi Zhou, Hualiang Lv, Yutao Zhu, Juncen Liu, Zhihong Yang. Hierarchical porous hollow graphitized carbon@MoS2 with wideband EM dissipation capability[J]. J. Mater. Sci. Technol., 2021, 83: 239-247.
Fig. 1. Analysis of morphology-evolution: (a) Schematic illustration of preparation procedure of PHGC@MoS2; (b?i) FE-SEM images of HGC@MoS2, PHGC-1@MoS2, PHGC-3@MoS2, PHGC-5@MoS2.
Fig. 2. Interior structure characterization of HGC, PHGC-3, and PHGC-3@MoS2: (a?f) The typically TEM images of HGC, PHGC-3, and PHGC-3@MoS2 with di? ;erent views; (g) The EDS spectrum of PHGC-3@MoS2 composites; (h) The element mapping of C, O, S, Mo elements.
Fig. 3. The chemical composition analysis of samples: (a, b) XRD patterns and Raman spectra of HGC@MoS2, PHGC-1@MoS2, PHGC-3@MoS2, and PHGC-5@MoS2 samples; (c?f) high-resolution X-ray photoelectron energy (XPS) of HGC@MoS2 and PHGC-3@MoS2 samples.
Fig. 4. Analysis of EM absorption performance: (a-d) The 2D color-mappings of reflection loss of HGC@MoS2, PHGC-1@MoS2, PHGC-3@MoS2 and PHGC-5@MoS2 samples; (e-h) The re?ection loss curves of HGC@MoS2, PHGC-1@MoS2, PHGC-3@MoS2 and PHGC-5@MoS2 samples under a range of 1.6-2.0 mm.
Fig. 5. Analysis of dielectric parameters: (a, b) The real and imaginary part of permittivity and (c) tangent loss (δE=ε"/ε') ratios of HGC@MoS2, PHGC-1@MoS2, PHGC-3@MoS2, and PHGC-5@MoS2 samples; (d) The Cole-Cole polarization curves; Of note, the frequency region are ranged in 10?18.0 GHz. (e) The proposed dipole polarization mechanism for HGC@MoS2, PHGC-1@MoS2, PHGC-3@MoS2, and PHC5@MoS2 samples.
Fig. 6. Effect of shell content on performance: (a) The schematic illustration of HGC with controlled shell; (b?i) The typical SEM images of different sizes PHGC-3@MoS2-1, PHGC-3@MoS2-2, PHGC-3@MoS2-3, PHGC-3@MoS2-4.
Fig. 7. Analysis of EM absorption performance for the shell evolution PHGC-3@MoS2: (a?c) The real/imaginary part of permittivity, and the tangent δE of porous HGC with PHGC-3@MoS2-1, PHGC-3@MoS2-2, PHGC-3@MoS2-3, PHGC-3@MoS2-4; (d?g) The 2D color-mapping of reflection loss and effective absorption band width of PHGC-3@MoS2-1, PHGC-3@MoS2-2, PHGC-3@MoS2-3, PHGC-3@MoS2-4. (h, i) The minimum re?ection loss value and fE images of PHGC-3@MoS2-1, PHGC-3@MoS2-2, PHGC-3@MoS2-3, PHGC-3@MoS2-4.
Filler | Matrix | Filler loading (wt.%) | RLmin (dB) | fE (GHz) | Range (GHz) | Ref. |
---|---|---|---|---|---|---|
CoS2@MoS2/ rGO | wax | 20 | -58 (2.4 mm) | 6.2 (2.4 mm) | 11.8-18.0 | [ |
NS/U-NCNTs | wax | 30 | -39 (3.5 mm) | 5.4 (2.5 mm) | 12.6-18.0 | [ |
MoS2/PVDF | wax | 25 | -26 (2.5 mm) | 3.4 (2.5 mm) | 9.9-13.3 | [ |
MoS2/RGO | wax | 10 | -50 (2.3 mm) | 5.7 (2.0 mm) | 12.3-18.0 | [ |
Fe3C/Fe3O4 | wax | 15 | -26.7 (3.15 mm) | N/A (3.15 mm) | N/A | [ |
HPMC-1.0 | wax | 15 | -52 (2.0 mm) | 5.0 (2.0 mm) | 13.0-18.0 | [ |
TiO2@Fe3O4@PPy | wax | 50 | -61 (3.2 mm) | 6.0 (2.2 mm) | 12.0-18.0 | [ |
CoNi-P/C-400 | wax | 15 | -39 (1.5 mm) | 4.5 (2.1 mm) | 13.5-18.0 | [ |
NiCo-NPC-600 | wax | 30 | -35 (1.8 mm) | 5.0 (1.8 mm) | 12.0-17.0 | [ |
MnO2@Fe | wax | 50 | -17.8 (2.0 mm) | N/A | 10.0-14.0 | [ |
Pure MoS2 | wax | 50 | -10 (5.0 mm) | 0.1 (5.0 mm) | 17.9-18.0 | This work |
PHGC-3@MoS2 | wax | 50 | -40 (1.9 mm) | 6.2 (2.0 mm) | 11.8-18.0 | This work |
PHGC-3@MoS2-3 | wax | 50 | -46 (1.9 mm) | 6.6 (2.0 mm) | 11.4-18.0 | This work |
Table 1 The EM wave absorption performance of PHGC-3@MoS2 and PHGC-3@MoS2-3 absorbers compared with other similar carbon composites.
Filler | Matrix | Filler loading (wt.%) | RLmin (dB) | fE (GHz) | Range (GHz) | Ref. |
---|---|---|---|---|---|---|
CoS2@MoS2/ rGO | wax | 20 | -58 (2.4 mm) | 6.2 (2.4 mm) | 11.8-18.0 | [ |
NS/U-NCNTs | wax | 30 | -39 (3.5 mm) | 5.4 (2.5 mm) | 12.6-18.0 | [ |
MoS2/PVDF | wax | 25 | -26 (2.5 mm) | 3.4 (2.5 mm) | 9.9-13.3 | [ |
MoS2/RGO | wax | 10 | -50 (2.3 mm) | 5.7 (2.0 mm) | 12.3-18.0 | [ |
Fe3C/Fe3O4 | wax | 15 | -26.7 (3.15 mm) | N/A (3.15 mm) | N/A | [ |
HPMC-1.0 | wax | 15 | -52 (2.0 mm) | 5.0 (2.0 mm) | 13.0-18.0 | [ |
TiO2@Fe3O4@PPy | wax | 50 | -61 (3.2 mm) | 6.0 (2.2 mm) | 12.0-18.0 | [ |
CoNi-P/C-400 | wax | 15 | -39 (1.5 mm) | 4.5 (2.1 mm) | 13.5-18.0 | [ |
NiCo-NPC-600 | wax | 30 | -35 (1.8 mm) | 5.0 (1.8 mm) | 12.0-17.0 | [ |
MnO2@Fe | wax | 50 | -17.8 (2.0 mm) | N/A | 10.0-14.0 | [ |
Pure MoS2 | wax | 50 | -10 (5.0 mm) | 0.1 (5.0 mm) | 17.9-18.0 | This work |
PHGC-3@MoS2 | wax | 50 | -40 (1.9 mm) | 6.2 (2.0 mm) | 11.8-18.0 | This work |
PHGC-3@MoS2-3 | wax | 50 | -46 (1.9 mm) | 6.6 (2.0 mm) | 11.4-18.0 | This work |
[1] |
T.Q. Hou, Z.R. Jia, A.L. Feng, Z.H. Zhou, X.H. Liu, H. Lv, G. Wu, J. Mater. Sci. Technol. 68 (2021) 61-69.
DOI URL |
[2] | H.L. Lv, Z.H. Yang, B. Liu, G.L. Wu, Z.C. Lou, B. Fei, R.B. Wu, A flexible electromagnetic wave-electricity harvester, Nat. Commun. 12 (2021) 834. |
[3] |
Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan, W. She, Y. Yang, R. Che, Adv. Mater. 28 (2016) 486-490.
DOI URL |
[4] |
H. Lv, Z. Yang, H. Xu, L. Wang, R. Wu, Adv. Funct. Mater. 30 (2020), 1907251.
DOI URL |
[5] |
X. Liang, G. Ji, H. Zhang, Y. Du, ACS Appl. Mater. Interfaces 7 (2015) 9776-9783.
DOI URL |
[6] |
X. Zhou, B. Wang, Z. Jia, X. Zhang, X. Liu, K. Wang, B. Xu, G. Wu, J. Colloid Interface Sci. 582 (2021) 515-525.
DOI URL |
[7] |
G. Ji, W. Liu, H.Q. Zhang, Y.W. Du, J. Mater. Chem. C 3 (2015) 10232-10241.
DOI URL |
[8] |
X. Wang, F. Pan, Z. Xiang, Q.W. Zeng, K. Pei, R.C. Che, W. Lu, Carbon 157 (2020) 130-139.
DOI URL |
[9] |
H. Wang, Y.Y. Dai, W.J. Gong, D.Y. Geng, S. Ma, D. Li, W. Liu, Z.D. Zhang, Appl. Phys. Lett. 102 (2013), 223113.
DOI URL |
[10] |
H. Li, S.S. Bao, T.M. Li, Y.Q. Huang, J.Y. Chen, H. Zhao, Z.Y. Jiang, Q. Kuang, Z.X. Xie, ACS Appl. Mater. Interfaces 10 (2018) 28839-28849.
DOI URL |
[11] |
Y. Cheng, J.M. Cao, Y. Li, Z.Y. Li, H.Q. Zhao, G.B. Ji, Y.W. Du, ACS Sustain. Chem. Eng. 6 (2018) 1427-1435.
DOI URL |
[12] |
R. Wang, E.Q. Yang, X.S. Qi, X. Ren, S.J. Deng, C.Y. Deng, W. Zhong, Appl. Surf. Sci. 516 (2020), 146159.
DOI URL |
[13] |
T. Wu, Y. Liu, X. Zeng, T.T. Cui, Y.T. Zhao, Y.N. Li, G.X. Tong, ACS Appl. Mater. Interfaces 8 (2016) 7370-7380.
DOI URL |
[14] |
Z.C. Wu, D.G. Tan, K. Tian, W. Hu, J.J. Wang, M.X. Su, L. Li, J. Phys. Chem. C 121 (2017) 15784-15792.
DOI URL |
[15] |
Y. Guo, Z. Yang, Y. Cheng, L.Y.P. Wang, B.S. Zhang, Y. Zhao, Z.C.J. Xu, G. Ji, J. Mater. Chem. C 5 (2017) 491-512.
DOI URL |
[16] |
L.J. Yang, M. Li, Y. Zhang, J.C. Liu, Z.H. Yang, Chem. Eng. J. 392 (2020), 123666.
DOI URL |
[17] |
X.H. Liang, Y. Cheng, H. Zhang, D.M. Tang, B.S. Zhang, G.B. Ji, Y. Du, ACS Appl. Mater. Interfaces 7 (2015) 4744-4750.
DOI URL |
[18] |
X.B. Qiu, Y.W. Huang, Z.Z. Nie, B.B. Ma, Y.W. Tan, Z.J. Wu, N. Zhang, X.Q. Xie, Nanoscale 12 (2020) 1109-1117.
DOI URL |
[19] |
S.Z. Zheng, L.J. Zheng, Z.Y. Zhu, J. Chen, J.L. Kang, Z.L. Huang, D.C. Yang, Nano-Micro Lett. 10 (2018) 62.
DOI URL |
[20] |
M. Saraf, K. Natarajan, S.M. Mobin, ACS Appl. Mater. Interfaces 10 (2018) 16588-16595.
DOI URL |
[21] |
Y. Guo, Z. Yang, T.C. Guo, H.J. Wu, G. Liu, L.Y. Wang, R.B. Wu, ACS Sustain. Chem. Eng. 6 (2018) 1539-1544.
DOI URL |
[22] |
L.J. Yang, X.D. Zhou, Z.R. Jia, H.L. Lv, Y.T. Zhu, J.C. Liu, Z.H. Liu, Carbon 167 (2020) 843-851.
DOI URL |
[23] |
Z.G. Gao, Z.R. Jia, K.K. Wang, X.H.Liu.L. Bi, G. Wu, Chem. Eng. J. 402 (2020), 125951.
DOI URL |
[24] |
Z. Lou, R. Li, P. Wang, Y. Zhang, B. Chen, C.X. Huang, C.C. Wang, H. Han, Y.J. Li, Chem. Eng. J. 391 (2020), 123571.
DOI URL |
[25] |
W.Q. Chen, P.S. Xiao, H.H. Chen, H.T. Zhang, Q.C. Zhang, Y.S. Chen, Adv. Mater. 31 (2019), 1802403.
DOI URL |
[26] |
H.L. Xu, X.W. Yin, M. Zhu, M.K. Han, Z.X. Hou, X.L. Li, L.T. Zhang, L.F. Cheng, ACS Appl. Mater. Interfaces 9 (2017) 6332-6341.
DOI URL |
[27] |
J.H. Luo, K. Zhang, M.L. Cheng, M.M. Gu, X.K. Sun, Chem. Eng. J. 380 (2020), 122625.
DOI URL |
[28] |
H.Y. Wu, X. Zhang, Q.H. Wu, Y. Han, X.Y. Wu, P.L. Ji, M. Zhou, G.W. Diao, M. Chen, Chem. Commun. 56 (2020) 141-144.
DOI URL |
[29] |
H. Wang, H.H. Guo, Y.Y. Dai, D.Y. Geng, Z. Han, D. Li, T. Yang, S. Ma, W. Liu, Z.D. Zhang, Appl. Phys. Lett. 101 (2012), 083116.
DOI URL |
[30] |
H. Sun, R. Che, X. You, Y. Jiang, Z. Yang, J. Deng, L. Qiu, H. Peng, Adv. Mater. 26 (2014) 8120-8125.
DOI URL |
[31] | Y. Li, Z. Jia, L. Wang, X. Guo, B. Zhao, R. Zhang, Compos. Part B 196 (2020), 108122. |
[32] |
H. Lv, Z. Yang, S.J.H. Ong, C. Wei, H.B. Liao, S.B. Xi, Y.H. Du, G. Ji, Z.C.J. Xu, Adv. Funct. Mater. 29 (2019), 1900163.
DOI URL |
[33] |
L. Wang, X.T. Shi, J.L. Zhang, Y.L. Zhang, J.W. Gu, J. Mater. Sci. Technol. 52 (2020) 119-126.
DOI |
[34] |
W.Y. Li, Z.Y. Zhang, W.J. Zhang, S.Z. Zou, ACS Omega 2 (2017) 5087-5094.
DOI URL |
[35] |
X.Y. Qian, G.J. Zhu, K. Wang, F.Z. Zhang, K. Liang, L. Luo, J.P. Yang, Chem. Eng. J. 381 (2020), 122651.
DOI URL |
[36] | H.Q. Zhao, Y. Chen, W. Liu, L.J. Yang, B.S. Zhang, L.Y.P. Wang, G.B. Ji, Z.C.J. Xu, Nano-Micro Lett. 11 (2019) 24. |
[37] |
H. Lv, Z.H. Yang, P.L.Y. Wang, G. Ji, J.Z. Song, L.R. Zheng, H.B. Zeng, Z.C.J. Xu, Adv. Mater. 30 (2018), 1706343.
DOI URL |
[38] |
R.C. Che, L.M. Peng, X.F. Duan, Q. Chen, X.H. Liang, Adv. Mater. 16 (2004) 401-405.
DOI URL |
[39] |
H.X. Zhang, C. Shi, Z.R. Jia, X.H. Liu, B.H. Xu, D.D. Zhang, G. Wu, J. Colloid Interface Sci. 584 (2021) 382-394.
DOI URL |
[40] |
H. Chen, B. Zhao, Z.F. Zhao, Z.F. Zhao, H.M. Xiang, F.Z. Dai, J.C. Liu, Y.C. Zhou, J. Mater. Sci. Technol. 47 (2020) 216-222.
DOI URL |
[41] |
M. Wu, A.K. Darboe, X.S. Qi, R. Xie, S.J. Qin, C.Y. Deng, G. Wu, W. Zhong, J. Mater. Chem. C 8 (2020) 11936-11949.
DOI URL |
[42] |
H. Lv, H.Q. Zhang, J. Zhao, G. Ji, Y.W. Du, Nano Res. 9 (2016) 1813-1822.
DOI URL |
[43] |
Y. Guo, G. Wu, G. Ji, Y. Zhao, Z.C.J. Xu, ACS Appl. Mater. Interfaces 9 (2017) 5660-5668.
DOI URL |
[44] |
H.Q. Zhang, G. Ji, Z.C.J. Xu, ACS Appl. Mater. Interfaces 8 (2016) 6529-6538.
DOI URL |
[45] | Z. Jia, X.F. Zhou, G.Z. Nie, Compos. Part A 128 (2020), 105687. |
[46] |
Z.C. Lou, R. Li, J. Liu, Q. Wang, Y. Zhang, Y.J. Li, J. Alloys. Compd. 854 (2021), 157286.
DOI URL |
[47] |
T. Zhu, W. Shen, W.Y. Wang, Y.F. Song, W. Wang, Chem. Eng. J. 378 (2019), 122159.
DOI URL |
[48] |
L.L. Liu, S. Zhang, F. Yan, C.Y. Li, C.L. Zhu, X.T. Zhang, Y.J. Chen, ACS Appl. Mater. Interfaces 10 (2018) 14108-14115.
DOI URL |
[49] |
X.J. Zhang, S. Li, S.W. Wang, Z.J. Yin, J.Q. Zhu, A.P. Guo, G.S. Wang, P.G. Yin, L. Guo, J. Phys. Chem. C 120 (2016) 22019-22027.
DOI URL |
[50] |
Y.F. Wang, D.L. Chen, X. Yin, P. Xu, F. Wu, M. He, ACS Appl. Mater. Interfaces 7 (2015) 26226-26234.
DOI URL |
[51] |
Z. Lou, C.L. Yuan, Y. Zhang, Y.J. Li, J.B. Cai, L.T. Yang, W.K. Wang, H. Han, J. Zou, J. Alloys. Compd. 775 (2019) 800-809.
DOI URL |
[52] |
H.Q. Zhao, Y. Cheng, H.L. Lv, G.B. Ji, Y.W. Du, Carbon 142 (2019) 245-253.
DOI URL |
[53] | B. Zhao, L. Yang, Q.W. Zeng, L. Wang, J. Ding, R. Zhang, R.C. Che, Small 16 (2020), 2003502. |
[54] |
J. Yan, Y. Huang, C. Chen, X.D. Liu, H. Liu, Carbon 152 (2019) 545-555.
DOI URL |
[55] |
J. Xiong, Z. Xiang, J. Zhao, L.Z. Yu, E.B. Cui, B.W. Deng, Z.C. Liu, R. Liu, W. Lu, Carbon 154 (2019) 391-401.
DOI URL |
[56] |
G. Ji, X.H. Liang, H.Q. Zhang, Y. Du, J. Mater. Chem. C 3 (2015) 5056-5064.
DOI URL |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||