J. Mater. Sci. Technol. ›› 2021, Vol. 87: 258-268.DOI: 10.1016/j.jmst.2021.02.017
• Research Article • Previous Articles Next Articles
Chunguang Shena, Chenchong Wanga, Pedro E.J.Rivera-Díaz-del-Castillob,*(), Dake Xua, Qian Zhanga, Chi Zhangc, Wei Xua,*(
)
Received:
2020-10-29
Revised:
2021-02-05
Accepted:
2021-02-06
Published:
2021-10-10
Online:
2021-03-19
Contact:
Pedro E.J.Rivera-Díaz-del-Castillo,Wei Xu
About author:
xuwei@ral.neu.edu.cn (W. Xu).Chunguang Shen, Chenchong Wang, Pedro E.J.Rivera-Díaz-del-Castillo, Dake Xu, Qian Zhang, Chi Zhang, Wei Xu. Discovery of marageing steels: machine learning vs. physical metallurgical modelling[J]. J. Mater. Sci. Technol., 2021, 87: 258-268.
C | Cr | Ni | Mo | Al | Mn | Cu | V | Ti | Co | Tage | tage | Hv | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
D1 | Min | 0.002 | 11.90 | 1.50 | 2.0 | — | — | — | — | 0 | 11.4 | 300 | 3.16 | 264 |
Max | 0.09 | 15.0 | 6.0 | 5.3 | 0.2 | 20.0 | 600 | 4.00 | 510 | |||||
Mean | 0.03 | 12.6 | 4.4 | 4.4 | 0.1 | 13.0 | 498 | 3.7 | 435 | |||||
Std | 0.03 | 1.2 | 1.0 | 0.9 | 0.1 | 2.5 | 60 | 0.4 | 55 | |||||
D2 | Min | 0 | 0 | 1.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 300 | 0.01 | 264 |
Max | 0.09 | 15.0 | 18.9 | 5.3 | 1.3 | 12 | 3.3 | 0.02 | 1.9 | 20 | 600 | 500 | 641 | |
Mean | 0.02 | 6.1 | 5.1 | 2.5 | 0.6 | 4.0 | 0.1 | 0 | 0.4 | 5.8 | 484 | 23.5 | 433 | |
Std | 0.02 | 6.3 | 3.8 | 2.0 | 0.5 | 4.6 | 0.5 | 0 | 0.5 | 6.7 | 50 | 55.3 | 74 |
Table 1 The inputs (compositions and ageing condition) and output (hardness, Hv) associated to each dataset. Tage and tage represent ageing temperature and ageing time, respectively.
C | Cr | Ni | Mo | Al | Mn | Cu | V | Ti | Co | Tage | tage | Hv | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
D1 | Min | 0.002 | 11.90 | 1.50 | 2.0 | — | — | — | — | 0 | 11.4 | 300 | 3.16 | 264 |
Max | 0.09 | 15.0 | 6.0 | 5.3 | 0.2 | 20.0 | 600 | 4.00 | 510 | |||||
Mean | 0.03 | 12.6 | 4.4 | 4.4 | 0.1 | 13.0 | 498 | 3.7 | 435 | |||||
Std | 0.03 | 1.2 | 1.0 | 0.9 | 0.1 | 2.5 | 60 | 0.4 | 55 | |||||
D2 | Min | 0 | 0 | 1.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 300 | 0.01 | 264 |
Max | 0.09 | 15.0 | 18.9 | 5.3 | 1.3 | 12 | 3.3 | 0.02 | 1.9 | 20 | 600 | 500 | 641 | |
Mean | 0.02 | 6.1 | 5.1 | 2.5 | 0.6 | 4.0 | 0.1 | 0 | 0.4 | 5.8 | 484 | 23.5 | 433 | |
Std | 0.02 | 6.3 | 3.8 | 2.0 | 0.5 | 4.6 | 0.5 | 0 | 0.5 | 6.7 | 50 | 55.3 | 74 |
Fig. 1. Prediction of results in the literature: (a) predicted hardness vs. experimental hardness; (b) the ratio of MAE value to mean hardness, i.e., R value.
Fig. 3. Prediction results for the new dataset, i.e., R-phase, using PM models with the maximal prediction accuracy: (a) GA-GRR model and (b) GA-WMOS model. The prediction results of testing set using ML models: (c) RFR and (d) SVR.
Fig. 4. Prediction results for a complex dataset containing various marageing steels via PM models: (a) GA-GRR model; (b) GA-WMOS model; The prediction results of testing set using ML models: (c) RFR model; (d) SVR model.
Fig. 6. Prediction results of the PM model constructed by each alloy system: (a) GA-GRR model and (b) GA-WMOS model. The spatial distribution of PM parameters for the (c) GA-GRR model and (d) GA-WMOS model as a result of applying the t-SNE algorithm. The decreased MAE value when modeling for each alloy system compared to that when modeling for the whole R-phase dataset: (e) GA-GRR model, (f) GA-WMOS model.
[1] |
D.H. Ping, M. Ohnuma, Y. Hirakawa, Y. Kadoya, K. Hono, Mater. Sci. Eng. A 394 (2005) 285-295.
DOI URL |
[2] | K. Liu, Y.Y. Shan, Z.Y. Yang, J.X. Liang, L. Lu, K. Yang, J. Mater. Sci. Technol. 23 (2007) 312-318. |
[3] |
L.D. Wang, L. Liu, C.X. Ao, X.J. Liu, C.L. Chen, M.K. Kang, J. Mater. Sci. Technol. 16 (2000) 491-494.
DOI URL |
[4] |
Y. He, K. Yang, W. Sha, Metall. Mater. Trans. A 36 (2005) 2273-2287.
DOI URL |
[5] |
M. Kapoor, D. Isheim, G. Ghosh, S. Vaynman, M.E. Fine, Y.W. Chung, Acta Mater. 73 (2014) 56-74.
DOI URL |
[6] |
J.L. Tian, M. Babar Shahzad, W. Wang, L. Yin, Z.H. Jiang, K. Yang, J. Mater. Sci. Technol. 34 (2018) 1671-1675.
DOI URL |
[7] |
S. Morito, J. Nishikawa, T. Maki, ISIJ Int. 43 (2003) 1475-1477.
DOI URL |
[8] |
C. Liu, Q.Q. Shi, W. Yan, C.G. Shen, K. Yang, Y.Y. Shan, M.C. Zhao, J. Mater. Sci. Technol. 35 (2019) 266-274.
DOI URL |
[9] |
Q. Lu, S. van der Zwaag, W. Xu, J. Mater. Sci. Technol. 33 (2017) 1577-1581.
DOI |
[10] |
G.B. Olson, Science 288 (2000) 993.
DOI URL |
[11] |
G.B. Olson, Acta Mater. 61 (2013) 771-781.
DOI URL |
[12] |
G.B. Olson, Scr. Mater. 70 (2014) 1-2.
DOI URL |
[13] | J. Friedel, Dislocations, Pergamon, New York, 1964. |
[14] |
R.O. Scattergood, D.J. Bacon, Philos. Mag. 31 (1975) 179-198.
DOI URL |
[15] |
R.L. Fleischer, Acta Metall. 11 (1963) 203-209.
DOI URL |
[16] |
S. Morito, H. Yoshida, T. Maki, X. Huang, Mater. Sci. Eng. A 438-440 (2006) 237-240.
DOI URL |
[17] |
O. Bouaziz, Adv. Eng. Mater. 14 (2012) 759-761.
DOI URL |
[18] |
J.S. Wang, M.D. Mulholland, G.B. Olson, D.N. Seidman, Acta Mater. 61 (2013) 4939-4952.
DOI URL |
[19] |
E.I. Galindo-Nava, W.M. Rainforth, P.E.J. Rivera-Diaz-del-Castillo, Acta Mater. 117 (2016) 270-285.
DOI URL |
[20] |
C.C. Wang, C. Zhang, Z.G. Yang, J. Su, Y.Q. Weng, Mater. Sci. Eng. A 669 (2016) 312-317.
DOI URL |
[21] |
T. Zhou, J. Faleskog, R.P. Babu, J. Odqvist, H. Yu, P. Hedström, Mater. Sci. Eng. A 745 (2019) 420-428.
DOI URL |
[22] |
Y.-J. Wu, L. Fang, Y. Xu, npj Comput. Mater. 5 (2019) 56.
DOI URL |
[23] | L. Ward, A. Agrawal, A. Choudhary, C. Wolverton, npj Comput.Mater. 2 (2016) 16028. |
[24] |
Y.F. Wen, C.Z. Cai, X.H. Liu, J.F. Pei, X.J. Zhu, T.T. Xiao, Corros. Sci. 51 (2009) 349-355.
DOI URL |
[25] |
S. Pattanayak, S. Dey, S. Chatterjee, S.G. Chowdhury, S. Datta, Comput. Mater. Sci. 104 (2015) 60-68.
DOI URL |
[26] |
S.H. Lu, Q.H. Zhou, Y.X. Ouyang, Y.L. Guo, Q. Li, J.L. Wang, Nat. Commun. 9 (2018) 3405.
DOI URL |
[27] |
C.C. Wang, C.G. Shen, Q. Cui, C. Zhang, W. Xu, J. Nucl. Mater. 529 (2020), 151823.
DOI URL |
[28] |
Z. Xiong, Y.X. Cui, Z.H. Liu, Y. Zhao, M. Hu, J.J. Hu, Comput. Mater. Sci. 171 (2020), 109203.
DOI URL |
[29] | Y. Zhang, C. Ling, npj Comput.Mater. 4 (2018) 25. |
[30] |
C.G. Shen, C.C. Wang, X. Wei, Y. Li, S. van der Zwaag, W. Xu, Acta Mater. 179 (2019) 201-214.
DOI URL |
[31] |
C. Wen, Y. Zhang, C.X. Wang, D.Z. Xue, Y. Bai, S. Antonov, L.H. Dai, T. Lookman, Y.J. Su, Acta Mater. 170 (2019) 109-117.
DOI URL |
[32] |
Z. Ren, F. Oviedo, M. Thway, S.I.P. Tian, Y. Wang, H. Xue, J. Dario Perea, M. Layurova, T. Heumueller, E. Birgersson, A.G. Aberle, C.J. Brabec, R. Stangl, Q. Li, S. Sun, F. Lin, I.M. Peters, T. Buonassisi, npj Comput. Mater. 6 (2020) 9.
DOI URL |
[33] |
D. Shin, Y. Yamamoto, M.P. Brady, S. Lee, J.A. Haynes, Acta Mater. 168 (2019) 321-330.
DOI |
[34] | R.H. Ouyang, S. Curtarolo, E. Ahmetcik, M. Scheffler, L.M. Ghiringhelli, Phys. Rev. Mater. 2 (2018), 083802. |
[35] | V.X. Lima Filho, I.F. Barros, H.F.Gd. Abreu, Mater. Res. 20 (2017) 10-14. |
[36] | W. Garrison, The Effects of Retained Austenite on the Tensile Properties and Toughness of Ultra-High Strength Martensitic Precipitation Hardened Stainless Steels, United States, 1998. |
[37] |
G.C. Linderman, M. Rachh, J.G. Hoskins, S. Steinerberger, Y. Kluger, Nat. Methods 16 (2019) 243-245.
DOI PMID |
[38] |
A.J. Smola, B. Schölkopf, Stat. Comput. 14 (2004) 199-222.
DOI URL |
[39] | C.-C. Chang, C.-J. Lin, ACM Trans. Intell. Syst. Technol. 2 (2011) 1-27. |
[40] |
L. Breiman, Mach. Learn. 45 (2001) 5-32.
DOI URL |
[41] |
H.Y. Hussin, V. Zumpano, P. Reichenbach, S. Sterlacchini, M. Micu, C. van Westen, D. Balteanu, Geomorphology 253 (2016) 508-523.
DOI URL |
[42] |
J. Hjort, M. Marmion, Geomorphology 102 (2008) 341-350.
DOI URL |
[43] |
G.L.W. Perry, M.E. Dickson, J. Geophys. Res.-Earth Surf. 123 (2018) 2954-2970.
DOI URL |
[44] | M. Pavlou, G. Ambler, S.R. Seaman, O. Guttmann, P. Elliott, M. King, R.Z. Omar, BMJ-Brit. Med. J. 351 (2015) h3868. |
[45] |
H. Yamada, C. Liu, S. Wu, Y. Koyama, S. Ju, J. Shiomi, J. Morikawa, R. Yoshida, ACS Cent. Sci. 5 (2019) 1717-1730.
DOI URL |
[46] |
E.D. Cubuk, A.D. Sendek, E.J. Reed, J. Chem. Phys. 150 (2019), 214701.
DOI PMID |
[47] |
H. Oda, S. Kiyohara, K. Tsuda, T. Mizoguchi, J. Phys. Soc. Jpn. 86 (2017), 123601.
DOI URL |
[1] | Jia Li, Baobin Xie, Qihong Fang, Bin Liu, Yong Liu, Peter K. Liaw. High-throughput simulation combined machine learning search for optimum elemental composition in medium entropy alloy [J]. J. Mater. Sci. Technol., 2021, 68(0): 70-75. |
[2] | Yongfei Juan, Yongbing Dai, Yang Yang, Jiao Zhang. Accelerating materials discovery using machine learning [J]. J. Mater. Sci. Technol., 2021, 79(0): 178-190. |
[3] | Tao Zheng, Xiaobing Hu, Feng He, Qingfeng Wu, Bin Han, Chen Da, Junjie Li, Zhijun Wang, Jincheng Wang, Ji-jung Kai, Zhenhai Xia, C.T. Liu. Tailoring nanoprecipitates for ultra-strong high-entropy alloys via machine learning and prestrain aging [J]. J. Mater. Sci. Technol., 2021, 69(0): 156-167. |
[4] | X.C. Li, J.X. Zhao, J.H. Cong, R.D.K. Misra, X.M. Wang, X.L Wang, C.J. Shang. Machine learning guided automatic recognition of crystal boundaries in bainitic/martensitic alloy and relationship between boundary types and ductile-to-brittle transition behavior [J]. J. Mater. Sci. Technol., 2021, 84(0): 49-58. |
[5] | Fu-Zhi Dai, Yinjie Sun, Bo Wen, Huimin Xiang, Yanchun Zhou. Temperature Dependent Thermal and Elastic Properties of High Entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2: Molecular Dynamics Simulation by Deep Learning Potential [J]. J. Mater. Sci. Technol., 2021, 72(0): 8-15. |
[6] | Fu-Zhi Dai, Bo Wen, Yinjie Sun, Huimin Xiang, Yanchun Zhou. Theoretical prediction on thermal and mechanical properties of high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C by deep learning potential [J]. J. Mater. Sci. Technol., 2020, 43(0): 168-174. |
[7] | Yingli Liu, Chen Niu, Zhuo Wang, Yong Gan, Yan Zhu, Shuhong Sun, Tao Shen. Machine learning in materials genome initiative: A review [J]. J. Mater. Sci. Technol., 2020, 57(0): 113-122. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||