J. Mater. Sci. Technol. ›› 2022, Vol. 98: 26-32.DOI: 10.1016/j.jmst.2021.04.047
• Research Article • Previous Articles Next Articles
MinJe Kanga,b, GillSang Hanc, InSun Choa,b,*(
)
Received:2020-12-27
Revised:2021-03-22
Accepted:2021-04-24
Published:2022-01-30
Online:2022-01-25
Contact:
InSun Cho
About author:*E-mail address: insuncho@ajou.ac.kr (I.S. Cho).MinJe Kang, GillSang Han, InSun Cho. Photophysical, optical, and photocatalytic hydrogen production properties of layered-type BaNb2-xTaxP2O11 (x = 0, 0.5, 1.0, 1.5, and 2.0) compounds[J]. J. Mater. Sci. Technol., 2022, 98: 26-32.
Fig. 1. Crystal structure and lattice parameter variation of BaNb2-xTaxP2O11 (x = 0, 0.5, 1.0, 1.5, and 2.0) compounds. (a) Layered crystal structure (rhombohedral) of BaNb2P2O11. (b) XRD patterns. Calculated lattice parameters of a-axis (c) and c-axis (d).
Fig. 5. Light absorption properties and bandgap. (a) UV-Vis diffuse reflectance spectra. Tauc plot for (b) Indirect and (c) direct bandgap determination. (d) Bandgap values.
Fig. 6. Band edge positions. (a) Mott-Schottky plot measured in 1 M KOH (pH 13.5) and (b) Band edge positions of BNT0, BNT10, BNT20, and anatase TiO2.
Fig. 7. Photocatalytic activity under UV light illumination. (a) Without co-catalyst loading (photocatalyst only). (b) With 1 wt.% NiOx co-catalyst loading. (c) Control of NiOx loading amount on the BNT20. (d) Three-cycle measurements of the photocatalytic hydrogen production using 1.0 wt.% NiOx loaded BNT20.
| [1] |
P.V. Kamat, J. Bisquert. J. Phys. Chem. C. 117 (2013) 14873-14875.
DOI URL |
| [2] |
T.S. Teets, D.G. Nocera, Chem. Commun. 47 (2011) 9268-9274.
DOI URL |
| [3] |
D. Bahnemann, Sol. Energy 77 (2004) 445-459.
DOI URL |
| [4] |
X. Chen, S. Shen, L. Guo, S.S. Mao, Chem. Rev. 110 (2010) 6503-6570.
DOI URL |
| [5] |
H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, X. Wang, Chem. Soc. Rev. 43 (2014) 5234-5244.
DOI URL |
| [6] | K. Maeda, J. Photochem, Photobiol. C Photochem. Rev. 12 (2011) 237-268. |
| [7] |
C. Fu, X. Wu, J. Yang, Adv. Mater. 30 (2018) 1802106.
DOI URL |
| [8] |
M. Ni, M.K.H. Leung, D. Y. C.Leung, K. Sumathy, Renew. Sustain. Energy Rev. 11 (2007) 401-425.
DOI URL |
| [9] |
J. Tang, J.R. Durrant, D.R. Klug. J. Am. Chem. Soc. 130 (2008) 13885-13891.
DOI URL |
| [10] |
T. Puangpetch, T. Sreethawong, S. Yoshikawa, S. Chavadej, J. Mol. Catal. A Chem. 312 (2009) 97-106.
DOI URL |
| [11] | X. Chen, T. Yu, X. Fan, H. Zhang, Z. Li, J. Ye, Z. Zou, Appl. Surf. Sci. 253 (2007) 8500-8506. |
| [12] |
G. Li, T. Kako, D. Wang, Z. Zou, J. Ye, J. Phys. Chem. Solids 69 (2008) 2487-2491.
DOI URL |
| [13] |
I.-.S. Cho, S. Lee, J.H. Noh, D.W. Kim, D.K. Lee, H.S. Jung, D.-.W. Kim, K.S. Hong, J. Mater. Chem. 20 (2010) 3979-3983.
DOI URL |
| [14] |
S. Park, H.J. Song, C.W. Lee, S.W. Hwang, I.S. Cho, ACS Appl. Mater. Interfaces 7 (2015) 21860-21867.
DOI URL |
| [15] |
Y. Miseki, H. Kato, A. Kudo, Chem. Lett. 35 (2006) 1052-1053.
DOI URL |
| [16] |
Z. Wang, Y. Inoue, T. Hisatomi, R. Ishikawa, Q. Wang, T. Takata, S. Chen, N. Shi-bata, Y. Ikuhara, K. Domen, Nat. Catal. 1 (2018) 756-763.
DOI URL |
| [17] |
K. Maeda, D. Lu, K. Domen, Chem. Eur. J. 19 (2013) 4 986-4 991.
DOI URL |
| [18] |
Y. Wang, Y. Kang, H. Zhu, G. Liu, J.T.S. Irvine, X. Xu, Adv. Sci. 8 (2021) 2003343.
DOI URL |
| [19] |
Y. Wang, S. Wei, X. Xu, Appl. Catal. B Environ. 263 (2020) 118315.
DOI URL |
| [20] |
Y. Inoue, Energy Environ. Sci. 2 (2009) 364-386.
DOI URL |
| [21] |
X. Guan, L. Guo, Acs Catal 4 (2014) 3020-3026.
DOI URL |
| [22] |
B. Pan, Y. Wang, Y. Liang, S. Luo, W. Su, X. Wang, Int. J. Hydrog. Energy 39 (2014) 13527-13533.
DOI URL |
| [23] | E.V. Murashova, V.K. Trunov, Y.A. Velikodnyi, J Russ., Inorg. Chem. 31 (1986) 951-952. |
| [24] |
D. Thomas, K.T. Rethika, M.T. Sebastian. J. Mater. Sci. Mater. Electron. 23 (2012) 1268-1271.
DOI URL |
| [25] |
I.-.S. Cho, J.S. Lee, S.-.T. Bae, J.-.R. Kim, K.S. Hong, J. Electroceramics 23 (2009) 154-158.
DOI URL |
| [26] | I.S. Cho, D.W. Kim, D.H. Kim, S.S. Shin, T.H. Noh, D.W. Kim, K.S. Hong, Eur. J. Inorg. Chem. (2011) 2206- 2210 2011. |
| [27] | L. Lutterotti, M. Bortolotti, G. Ischia, I.H.R. Lonardelli, Wenk Z Kristallogr Suppl 26 (2007) 125-130. |
| [28] |
I.S. Cho, M. Logar, C.H. Lee, L. Cai, F.B. Prinz, X. Zheng, Nano Lett 14 (2014) 24-31.
DOI URL |
| [1] | Chao Xie, Xingtong Lu, Yi Liang, Huahan Chen, Li Wang, Chunyan Wu, Di Wu, Wenhua Yang, Linbao Luo. Patterned growth of β-Ga2O3 thin films for solar-blind deep-ultraviolet photodetectors array and optical imaging application [J]. J. Mater. Sci. Technol., 2021, 72(0): 189-196. |
| [2] | Meng Zu, Xiaosong Zhou, Shengsen Zhang, Shangshu Qian, Dong-Sheng Li, Xianhu Liu, Shanqing Zhang. Sustainable engineering of TiO2-based advanced oxidation technologies: From photocatalyst to application devices [J]. J. Mater. Sci. Technol., 2021, 78(0): 202-222. |
| [3] | Mengting Cao, Fengli Yang, Quan Zhang, Juhua Zhang, Lu Zhang, Lingfeng Li, Xiaohao Wang, Wei-Lin Dai. Facile construction of highly efficient MOF-based Pd@UiO-66-NH2@ZnIn2S4 flower-like nanocomposites for visible-light-driven photocatalytic hydrogen production [J]. J. Mater. Sci. Technol., 2021, 76(0): 189-199. |
| [4] | Chang Feng, Zhuoyuan Chen, Jiangping Jing, Mengmeng Sun, Jing Tian, Guiying Lu, Li Ma, Xiangbo Li, Jian Hou. Significantly enhanced photocatalytic hydrogen production performance of g-C3N4/CNTs/CdZnS with carbon nanotubes as the electron mediators [J]. J. Mater. Sci. Technol., 2021, 80(0): 75-83. |
| [5] | Kim Yong-Il, Kim Ki-Bok, Kim Miso. Characterization of lattice parameters gradient of Cu(In1-xGax)Se2 absorbing layer in thin-film solar cell by glancing incidence X-ray diffraction technique [J]. J. Mater. Sci. Technol., 2020, 51(0): 193-201. |
| [6] | Yuting Gao, Feng Chen, Zhe Chen, Hongfei Shi. NixCo1-xS as an effective noble metal-free cocatalyst for enhanced photocatalytic activity of g-C3N4 [J]. J. Mater. Sci. Technol., 2020, 56(0): 227-235. |
| [7] | Tingmin Di, Liuyang Zhang, Bei Cheng, Jiaguo Yu, Jiajie Fan. CdS nanosheets decorated with Ni@graphene core-shell cocatalyst for superior photocatalytic H2 production [J]. J. Mater. Sci. Technol., 2020, 56(0): 170-178. |
| [8] | Shusheng Pan, Wei Lu, Zhaoqin Chu, Guanghai Li. Deep Ultraviolet Emission from Water-Soluble SnO2 Quantum Dots Grown via a Facile “Top-Down” Strategy [J]. J. Mater. Sci. Technol., 2015, 31(6): 670-673. |
| [9] | Sushil Kumar, M.A. Majeed Khan. Morphological, Optical and DC Conduction Properties of a-GaSe Semiconductor Nanoparticle Thin Films [J]. J. Mater. Sci. Technol., 2013, 29(12): 1151-1155. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
