J. Mater. Sci. Technol. ›› 2022, Vol. 98: 33-43.DOI: 10.1016/j.jmst.2021.05.011
• Research Article • Previous Articles Next Articles
Lei Jianga, Changsheng Wanga, Huadong Fua,b,c,*(
), Jie Shena, Zhihao Zhanga,b,c, Jianxin Xiea,b,c,*(
)
Received:2021-03-15
Revised:2021-03-15
Accepted:2021-03-15
Published:2022-01-30
Online:2022-01-25
Contact:
Huadong Fu,Jianxin Xie
About author:jxxie@mater.ustb.edu.cn (J. Xie).Lei Jiang, Changsheng Wang, Huadong Fu, Jie Shen, Zhihao Zhang, Jianxin Xie. Discovery of aluminum alloys with ultra-strength and high-toughness via a property-oriented design strategy[J]. J. Mater. Sci. Technol., 2022, 98: 33-43.
| Alloy compositions (wt.%) | UTS | δ | KIC | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Zn | Mg | Cu | Mn | Cr | Zr | Ti | Fe | Si | Ni | RE | (MPa) | (%) | (MPa·m1/2) |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 308 | 3.7 | 15.5 |
| - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 11.6 | 7.50 | 6.65 | 1.08 | 0.39 | 0.40 | 0.40 | 0.74 | 0.79 | 0.40 | 0.30 | 782 | 25 | 55.1 |
Table 1 The range of alloy compositions and properties in the data set of high-strength and high-toughness aluminum alloys.
| Alloy compositions (wt.%) | UTS | δ | KIC | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Zn | Mg | Cu | Mn | Cr | Zr | Ti | Fe | Si | Ni | RE | (MPa) | (%) | (MPa·m1/2) |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 308 | 3.7 | 15.5 |
| - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 11.6 | 7.50 | 6.65 | 1.08 | 0.39 | 0.40 | 0.40 | 0.74 | 0.79 | 0.40 | 0.30 | 782 | 25 | 55.1 |
Fig. 2. Training results of two neural network models composition to property model (C2P): (a) UTS, (b) δ, (c) KIC; property to composition model (P2C): (d) Zn, (e) Mg, (f) Cu.
| Number | Alloy composition (wt.%) | UTS | δ | KIC | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Zn | Mg | Cu | Mn | Cr | Zr | Ti | (MPa) | (%) | (MPa·m1/2) | |
| A1 | 7.82 | 2.43 | 1.73 | 0.04 | 0.08 | 0.14 | 0.06 | 679.1 | 10.6 | 35.0 |
| A2 | 8.24 | 2.42 | 1.71 | 0.05 | 0.09 | 0.12 | 0.07 | 696.5 | 10.4 | 35.0 |
| A3 | 8.10 | 2.43 | 1.65 | 0.05 | 0.08 | 0.12 | 0.05 | 693.3 | 10.2 | 34.4 |
| A4 | 8.18 | 2.43 | 1.70 | 0.06 | 0.11 | 0.12 | 0.06 | 703.1 | 9.9 | 34.1 |
| A5 | 8.10 | 2.41 | 1.68 | 0.05 | 0.07 | 0.13 | 0.08 | 697.2 | 10.3 | 34.4 |
Table 2 Design composition and predicted performance with target properties of 700 MPa, 10%, and 35 MPa·m1/2.
| Number | Alloy composition (wt.%) | UTS | δ | KIC | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Zn | Mg | Cu | Mn | Cr | Zr | Ti | (MPa) | (%) | (MPa·m1/2) | |
| A1 | 7.82 | 2.43 | 1.73 | 0.04 | 0.08 | 0.14 | 0.06 | 679.1 | 10.6 | 35.0 |
| A2 | 8.24 | 2.42 | 1.71 | 0.05 | 0.09 | 0.12 | 0.07 | 696.5 | 10.4 | 35.0 |
| A3 | 8.10 | 2.43 | 1.65 | 0.05 | 0.08 | 0.12 | 0.05 | 693.3 | 10.2 | 34.4 |
| A4 | 8.18 | 2.43 | 1.70 | 0.06 | 0.11 | 0.12 | 0.06 | 703.1 | 9.9 | 34.1 |
| A5 | 8.10 | 2.41 | 1.68 | 0.05 | 0.07 | 0.13 | 0.08 | 697.2 | 10.3 | 34.4 |
| Number | Alloy composition (wt.%) | UTS | δ | KIC | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Zn | Mg | Cu | Mn | Cr | Zr | Ti | (MPa) | (%) | (MPa·m1/2) | |
| B1 | 8.73 | 2.33 | 1.75 | 0.07 | 0.11 | 0.16 | 0.06 | 725.3 | 8.9 | 33.4 |
| B2 | 8.86 | 2.31 | 1.84 | 0.09 | 0.12 | 0.15 | 0.04 | 731.2 | 8.6 | 33.0 |
| B3 | 8.55 | 2.32 | 1.78 | 0.09 | 0.14 | 0.14 | 0.05 | 729.2 | 8.8 | 33.1 |
| B4 | 8.74 | 2.31 | 1.80 | 0.08 | 0.13 | 0.14 | 0.06 | 730.2 | 8.7 | 33.4 |
| B5 | 8.77 | 2.30 | 1.74 | 0.10 | 0.12 | 0.13 | 0.07 | 727.5 | 9.1 | 33.3 |
Table 3 Design composition and predicted performance with target properties of 730 MPa, 9%, and 34 MPa·m1/2.
| Number | Alloy composition (wt.%) | UTS | δ | KIC | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Zn | Mg | Cu | Mn | Cr | Zr | Ti | (MPa) | (%) | (MPa·m1/2) | |
| B1 | 8.73 | 2.33 | 1.75 | 0.07 | 0.11 | 0.16 | 0.06 | 725.3 | 8.9 | 33.4 |
| B2 | 8.86 | 2.31 | 1.84 | 0.09 | 0.12 | 0.15 | 0.04 | 731.2 | 8.6 | 33.0 |
| B3 | 8.55 | 2.32 | 1.78 | 0.09 | 0.14 | 0.14 | 0.05 | 729.2 | 8.8 | 33.1 |
| B4 | 8.74 | 2.31 | 1.80 | 0.08 | 0.13 | 0.14 | 0.06 | 730.2 | 8.7 | 33.4 |
| B5 | 8.77 | 2.30 | 1.74 | 0.10 | 0.12 | 0.13 | 0.07 | 727.5 | 9.1 | 33.3 |
| Number | Alloy composition (wt.%) | UTS | δ | KIC | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Zn | Mg | Cu | Mn | Cr | Zr | Ti | (MPa) | (%) | (MPa·m1/2) | |
| C1 | 9.10 | 2.26 | 1.91 | 0.08 | 0.12 | 0.16 | 0.04 | 741.3 | 8.4 | 32.4 |
| C2 | 9.20 | 2.28 | 1.89 | 0.09 | 0.14 | 0.15 | 0.06 | 749.3 | 8.2 | 32.5 |
| C3 | 9.23 | 2.26 | 1.83 | 0.11 | 0.12 | 0.17 | 0.05 | 751.8 | 8.1 | 31.9 |
| C4 | 8.96 | 2.28 | 1.84 | 0.10 | 0.11 | 0.16 | 0.06 | 737.4 | 8.6 | 32.5 |
| C5 | 9.10 | 2.26 | 1.92 | 0.09 | 0.13 | 0.15 | 0.07 | 744.2 | 8.3 | 32.3 |
Table 4 Design composition and predicted performance with target properties of 750 MPa, 8%, and 33 MPa·m1/2.
| Number | Alloy composition (wt.%) | UTS | δ | KIC | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Zn | Mg | Cu | Mn | Cr | Zr | Ti | (MPa) | (%) | (MPa·m1/2) | |
| C1 | 9.10 | 2.26 | 1.91 | 0.08 | 0.12 | 0.16 | 0.04 | 741.3 | 8.4 | 32.4 |
| C2 | 9.20 | 2.28 | 1.89 | 0.09 | 0.14 | 0.15 | 0.06 | 749.3 | 8.2 | 32.5 |
| C3 | 9.23 | 2.26 | 1.83 | 0.11 | 0.12 | 0.17 | 0.05 | 751.8 | 8.1 | 31.9 |
| C4 | 8.96 | 2.28 | 1.84 | 0.10 | 0.11 | 0.16 | 0.06 | 737.4 | 8.6 | 32.5 |
| C5 | 9.10 | 2.26 | 1.92 | 0.09 | 0.13 | 0.15 | 0.07 | 744.2 | 8.3 | 32.3 |
| Experimental alloys | Zn | Mg | Cu | Mn | Cr | Zr | Ti | Fe | Si |
|---|---|---|---|---|---|---|---|---|---|
| E1 | 8.28 | 2.38 | 1.73 | 0.048 | 0.10 | 0.10 | 0.067 | 0.016 | 0.010 |
| E2 | 8.90 | 2.29 | 1.76 | 0.100 | 0.14 | 0.10 | 0.066 | 0.019 | 0.014 |
| E3 | 9.14 | 2.18 | 1.80 | 0.090 | 0.17 | 0.14 | 0.064 | 0.018 | 0.014 |
Table 5 Measured composition of three experimental alloys.
| Experimental alloys | Zn | Mg | Cu | Mn | Cr | Zr | Ti | Fe | Si |
|---|---|---|---|---|---|---|---|---|---|
| E1 | 8.28 | 2.38 | 1.73 | 0.048 | 0.10 | 0.10 | 0.067 | 0.016 | 0.010 |
| E2 | 8.90 | 2.29 | 1.76 | 0.100 | 0.14 | 0.10 | 0.066 | 0.019 | 0.014 |
| E3 | 9.14 | 2.18 | 1.80 | 0.090 | 0.17 | 0.14 | 0.064 | 0.018 | 0.014 |
| Experimental alloys | UTS (MPa) | δ (%) | KIC (MPa·m1/2) | |
|---|---|---|---|---|
| E1 | Prediction | 697.5 | 10.3 | 34.4 |
| Experiment | 707.5 ± 6.2 | 9.5 ± 0.4 | 33.9 ± 0.5 | |
| E2 | Prediction | 735.8 | 8.5 | 32.7 |
| Experiment | 726.5 ± 5.0 | 9.0 ± 0.1 | 33.2 ± 0.1 | |
| E3 | Prediction | 746.7 | 8.1 | 31.8 |
| Experiment | 736.5 ± 2.8 | 7.8 ± 0.1 | 32.2 ± 0.2 |
Table 6 Comparison of measured and predicted properties of experimental alloys.
| Experimental alloys | UTS (MPa) | δ (%) | KIC (MPa·m1/2) | |
|---|---|---|---|---|
| E1 | Prediction | 697.5 | 10.3 | 34.4 |
| Experiment | 707.5 ± 6.2 | 9.5 ± 0.4 | 33.9 ± 0.5 | |
| E2 | Prediction | 735.8 | 8.5 | 32.7 |
| Experiment | 726.5 ± 5.0 | 9.0 ± 0.1 | 33.2 ± 0.1 | |
| E3 | Prediction | 746.7 | 8.1 | 31.8 |
| Experiment | 736.5 ± 2.8 | 7.8 ± 0.1 | 32.2 ± 0.2 |
Fig. 4. Microstructure images of aluminum alloys with ultra-strength and high-toughness aluminum alloy: SEM images, (a) E1 alloy, (c) E2 alloy, (e) E3 alloy; EBSD images, (b) E1 alloy, (d) E2 alloy, (f) E3 alloy.
| Number | Al | Mg | Zn | Cu | Fe | Identified phase [ |
|---|---|---|---|---|---|---|
| a | 39.48 | 29.66 | 17.16 | 13.60 | 0 | σ |
| b | 82.22 | 0.80 | 1.42 | 10.76 | 4.80 | Al7Cu2Fe |
| c | 39.66 | 20.82 | 16.36 | 13.16 | 0 | σ |
| d | 81.06 | 1.16 | 0 | 12.25 | 5.53 | Al7Cu2Fe |
| e | 40.17 | 31.51 | 16.09 | 12.23 | 0 | σ |
| f | 83.25 | 1.04 | 1.65 | 9.64 | 4.42 | Al7Cu2Fe |
| g | 40.27 | 30.43 | 16.32 | 12.98 | 0 | σ |
Table 7 Composition of micron particles (at.%).
| Number | Al | Mg | Zn | Cu | Fe | Identified phase [ |
|---|---|---|---|---|---|---|
| a | 39.48 | 29.66 | 17.16 | 13.60 | 0 | σ |
| b | 82.22 | 0.80 | 1.42 | 10.76 | 4.80 | Al7Cu2Fe |
| c | 39.66 | 20.82 | 16.36 | 13.16 | 0 | σ |
| d | 81.06 | 1.16 | 0 | 12.25 | 5.53 | Al7Cu2Fe |
| e | 40.17 | 31.51 | 16.09 | 12.23 | 0 | σ |
| f | 83.25 | 1.04 | 1.65 | 9.64 | 4.42 | Al7Cu2Fe |
| g | 40.27 | 30.43 | 16.32 | 12.98 | 0 | σ |
| Experimental alloys | fp (%) | D (μm) | d (μm) | σys (MPa) |
|---|---|---|---|---|
| E1 | 0.013 | 3.4 | 7.2 | 672 |
| E2 | 0.027 | 4.0 | 6.5 | 682 |
| E3 | 0.045 | 4.5 | 5.8 | 699 |
Table 8 The statistical information of microstructure and property.
| Experimental alloys | fp (%) | D (μm) | d (μm) | σys (MPa) |
|---|---|---|---|---|
| E1 | 0.013 | 3.4 | 7.2 | 672 |
| E2 | 0.027 | 4.0 | 6.5 | 682 |
| E3 | 0.045 | 4.5 | 5.8 | 699 |
Fig. 5. Typical TEM pictures of large-size precipitates in experimental alloys: (a) Bright field image; Selected area electron diffraction analysis: (b) Al6Mn, (c) Al3Zr, (d) Al18Cr2Mg3.
Fig. 6. TEM images of small precipita test in experimental alloys: Morphological distribution of small precipitates: (a1) E1 alloy, (b1) E2 alloy, (c1) E3 alloy; The size statistics of η′ phase and GP zones: (a2) E1 alloy, (b2) E2 alloy, (c2) E3 alloy; Morphology distribution of precipitates at grain boundaries: (a3) E1 alloy, (b3) E2 alloy, and (c3) E3 alloy.
| Symbols | Physical meaning | Values | Unit |
|---|---|---|---|
| b | Burgers vector | 0.286 | nm |
| Ky | Hall-Petch coefficient | 0.12 | MPa·m1/2 |
| G | Shear modulus | 26.9 | GPa |
| υ | Poisson ratio | 0.34 | — |
| σ0 | Ultimate tensile strength of single crystal pure aluminum | 60 | MPa |
| M | Taylor factor | 3.06 | — |
Table 9 The physical meanings and values of different symbols in the analysis of the strength and toughness mechanism of aluminum alloys with ultra-strength and high-toughness [2,4,34,35].
| Symbols | Physical meaning | Values | Unit |
|---|---|---|---|
| b | Burgers vector | 0.286 | nm |
| Ky | Hall-Petch coefficient | 0.12 | MPa·m1/2 |
| G | Shear modulus | 26.9 | GPa |
| υ | Poisson ratio | 0.34 | — |
| σ0 | Ultimate tensile strength of single crystal pure aluminum | 60 | MPa |
| M | Taylor factor | 3.06 | — |
| Experimental alloys | L (nm) | f (%) | λ (nm) |
|---|---|---|---|
| E1 | 4.8 | 6.6 | 19.2 |
| E2 | 5.0 | 7.0 | 19.2 |
| E3 | 5.1 | 7.5 | 18.6 |
Table 10. Statistical values of main variables in precipitation hardening.
| Experimental alloys | L (nm) | f (%) | λ (nm) |
|---|---|---|---|
| E1 | 4.8 | 6.6 | 19.2 |
| E2 | 5.0 | 7.0 | 19.2 |
| E3 | 5.1 | 7.5 | 18.6 |
| Experimental alloys | ΔσP (MPa) | ΔσSS (MPa) | ΔσGB (MPa) | σTotal (MPa) |
|---|---|---|---|---|
| E1 | 636 | 38 | 45 | 779 |
| E2 | 644 | 33 | 47 | 784 |
| E3 | 669 | 28 | 50 | 807 |
Table 11. The contributions of three hardening mechanisms to ultimate tensile strength.
| Experimental alloys | ΔσP (MPa) | ΔσSS (MPa) | ΔσGB (MPa) | σTotal (MPa) |
|---|---|---|---|---|
| E1 | 636 | 38 | 45 | 779 |
| E2 | 644 | 33 | 47 | 784 |
| E3 | 669 | 28 | 50 | 807 |
| Elements | A [ | E1 | E2 | E3 | |||
|---|---|---|---|---|---|---|---|
| c0 (wt.%) | CY (MPa) | c0 (wt.%) | CY (MPa) | c0 (wt.%) | CY (MPa) | ||
| Zn | 3.085 | 2.4 | 5.5 | 2.2 | 5.2 | 1.8 | 4.6 |
| Mg | 20.48 | 1.1 | 21.8 | 0.83 | 18.1 | 0.59 | 14.4 |
| Cu | 12.42 | 0.77 | 10.4 | 0.66 | 9.6 | 0.60 | 8.8 |
Table 12. Contribution of the main solid-solution atoms in the experimental alloys (C0: concentration of solute atoms, CY: contribution of each element to solid-solution hardening).
| Elements | A [ | E1 | E2 | E3 | |||
|---|---|---|---|---|---|---|---|
| c0 (wt.%) | CY (MPa) | c0 (wt.%) | CY (MPa) | c0 (wt.%) | CY (MPa) | ||
| Zn | 3.085 | 2.4 | 5.5 | 2.2 | 5.2 | 1.8 | 4.6 |
| Mg | 20.48 | 1.1 | 21.8 | 0.83 | 18.1 | 0.59 | 14.4 |
| Cu | 12.42 | 0.77 | 10.4 | 0.66 | 9.6 | 0.60 | 8.8 |
| Experimental alloys | E1 | E2 | E3 |
|---|---|---|---|
| KIC (MPa·m1/2) (Calculation) | 33.3 | 32.1 | 31.7 |
| KIC (MPa·m1/2) (Experiment) | 33.9 | 33.2 | 31.8 |
Table 13. Calculation of the fracture toughness (KIC) of the novel aluminum alloy with ultra-strength and high-toughness.
| Experimental alloys | E1 | E2 | E3 |
|---|---|---|---|
| KIC (MPa·m1/2) (Calculation) | 33.3 | 32.1 | 31.7 |
| KIC (MPa·m1/2) (Experiment) | 33.9 | 33.2 | 31.8 |
Fig. 7. Comparison of comprehensive properties between the novel ultra-strength and high-toughness aluminum alloys and the existing high-strength and high-toughness aluminum alloy [6,[44], [45], [46], [47], [48], [49], [50], [51], [52], [53]]: (a) UTS and δ, (b) UTS and KIC.
| [1] | F.F. Sun, G.R. Liu, Q.Y. Li, E.Z. Liu, C.N. He, C.S. Shi, N.Q. Zhao, Mater. Sci Technol. 33 (2017) 1015-1022. |
| [2] |
K.K. Ma, H.M. Wen, T. Hu, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia, J.M. Schoenung, Acta Mater. 62 (2014) 141-155.
DOI URL |
| [3] | D.A. Lukasak, R.M. Hart, Adv. Mater. Process. 10 (1991) 46-49. |
| [4] |
M. Dixit, R.S. Mishra, K.K. Sankaran, Mater. Sci. Eng. A 478 (2008) 163-172.
DOI URL |
| [5] | W.H. Sun, Y.A. Zhang, X.W. Li, Z.H. Li, F. Wang, H.W. Liu, B.Q. Xiong. J. Aeronaut. Mater. 32 (2012) 35-41. |
| [6] |
T. Dursun, C. Soutis, Mater. Des. 56 (2014) 862-871.
DOI URL |
| [7] |
E.A. Starke, J.T. Staley, Prog. Aerosp. Sci. 32 (1996) 131-172.
DOI URL |
| [8] | B. Liu, C.Q. Peng, R.C. Wang, X.F. Wang, T.T. Li, Chin. J. Nonferrous Met. 20 (2010) 1705-1711. |
| [9] |
B. Liu, L. Qian, L. Xie, M. Wang, L. Zhou, Mater. Des. 96 (2016) 217-223.
DOI URL |
| [10] |
Y. Zou, X.D. Wu, S.B. Tang, Q.Q. Zhu, H. Song, M.X. Guo, L.F. Cao. J. Mater. Sci. Technol. 85 (2021) 106-117.
DOI URL |
| [11] |
W.X. Shu, L.G. Hou, C. Zhang, F. Zhang, J.C. Liu, J.T. Liu, L.Z. Zhuang, J.S. Zhang, Mater. Sci. Eng. A 657 (2016) 269-283.
DOI URL |
| [12] |
D.D. Zhao, O.M. Løvvik, K. Marthinsen, Y.J. Li, Acta Mater. 145 (2018) 235-246.
DOI URL |
| [13] |
X.B. Yang, J.H. Chen, G.H. Zhang, L.P. Huang, T.W. Fan, Y. Ding, X.W. Yu. J. Mater. Sci. Technol. 34 (2018) 1719-1729.
DOI |
| [14] |
Y.D. He, X.M. Zhang, Z.Q. Cao, Rare Met. Mater. Eng. 39 (2010) 1135-1140.
DOI URL |
| [15] | P. Liu, L.L. Hu, Q.H. Zhang, C.P. Yang, Z.S. Yu, J.Q. Zhang, J.M. Hu, F.H. Cao, Mater. Sci Technol. 64 (2021) 85-98. |
| [16] |
Y.L. Wu, C.G. Li, F.H. Froes, A. Alvarez, Metall. Mater. Trans. A 30 (1999) 1017-1024.
DOI URL |
| [17] |
Z.M. Li, H.C. Jiang, Y.L. Wang, D. Zhang, D.S. Yan, L.J. Rong. J. Mater. Sci. Technol. 34 (2018) 1172-1179.
DOI URL |
| [18] | R. Ramprasad, R. Batra, G. Pilania, A. Mannodi-Kanakkithodi, C. Kim, NPJ Com- put. Mater. 3 (2017) 1-13. |
| [19] |
P. Raccuglia, K.C. Elbert, P.D.F. Adler, C. Falk, M.B. Wenny, A. Mollo, M. Zeller, S.A. Friedler, J. Schrier, A.J. Norquist, Nature 533 (2016) 73-76.
DOI URL |
| [20] |
D.Z. Xue, P.V. Balachandran, J. Hogden, J. Theiler, D.Q. Xue, T. Lookmana, Nat. Commun. 7 (2016) 11241.
DOI URL |
| [21] |
R. Yuan, Z. Liu, P.V. Balachandran, D. Xue, Y. Zhou, X. Ding, J. Sun, D.Z. Xue, T. Lookman, Adv Mater. 30 (2018) 1702884.
DOI URL |
| [22] |
C. Wen, Y. Zhang, C.X. Wang, D.Z. Xue, Y. Bai, S. Antonov, L.H. Dai, T. Lookman, Y.J. Su, Acta Mater. 170 (2019) 109-117.
DOI URL |
| [23] |
C. Xu, Z. Horita, T.G. Langdon, Acta Mater. 56 (2008) 5168-5176.
DOI URL |
| [24] |
W.W. Sun, Y.M. Zhu, R. Marceau, L.Y. Wang, Q. Zhang, X. Gao, C. Hutchinson, Science 363 (2019) 972-975.
DOI URL |
| [25] |
T. Marlaud, A. Deschamps, F. Bley, W. Lefebvre, B. Baroux, Acta Mater. 58 (2010) 4 814-4 826.
DOI URL |
| [26] |
A.K. Qin, V.L. Huang, P.N. Suganthan, IEEE. Trans. Evol. Comput. 13 (2009) 398-417.
DOI URL |
| [27] |
C.S. Wang, H.D. Fu, L. Jiang, D.Z. Xue, J.X. Xie, NPJ Comput. Mater. 5 (2019) 87.
DOI URL |
| [28] |
P.V. Liddicoat, X.Z. Liao, Y.H. Zhao, Y.T. Zhu, M.Y. Murashkin, E.J. Lavernia, Nat. Commun. 1 (2010) 63.
DOI PMID |
| [29] | A.D. Bucchianico, John Wiley & Sons, 2014. |
| [30] | A. Alloys, Inc, 2006. |
| [31] |
G.T. Hahn, A.R. Rosenfield, Metall. Trans. A 6 (1975) 653-668.
DOI URL |
| [32] |
H. She, D. Shu, A.P. Dong, J. Wang, B.D. Sun, H.C. Lai. J. Mater. Sci. Technol. 35 (2019) 2570-2581.
DOI URL |
| [33] |
C.M. Allen, K.A.Q. O’Reilly, B. Cantor, P.V. Evans, Prog. Mater. Sci. 43 (1998) 89-170.
DOI URL |
| [34] |
D.N. Seidman, E.A. Marquis, D.C. Dunand, Acta Mater. 50 (2002) 4021-4035.
DOI URL |
| [35] |
J.H. Wu, W.Y. Tsai, J.C. Huang, C.H. Hsieh, G.R. Huang, Mater. Sci. Eng. A 662 (2016) 296-302.
DOI URL |
| [36] |
E. Hornbogen, E.A. Starke, Acta Metall. 41 (1993) 1-16.
DOI URL |
| [37] |
A.J. Ardell, Precipitation hardening, Metall. Mater. Trans. A 16 (1985) 2131-2165.
DOI URL |
| [38] | H.R. Shercliff, M.F. Ashby, The model, Acta Metall. 38 (1990) 1789-1802. |
| [39] |
A. Belsky, M. Hellenbrandt, V.L. Karen, P. Luksch, Acta Crystallogr. 58 (2010) 364-369.
DOI URL |
| [40] | E.O. Hall, Proc. Phys. Soc. Sect. B 9 (1951) 747-755. |
| [41] | N.J. Petch, J. Iron Steel Inst. 1 (1953) 25-28. |
| [42] | J.C. Ehrström, P. Achon, J.F. Hébert, A. Pineau, Mater. Sci. Forum.217- 222 (1996) 1539-1546. |
| [43] |
G.T. Hahn, A.R. Rosenfield, Metall. Trans. A 6 (1975) 653-668.
DOI URL |
| [44] |
N. Kamp, I. Sinclair, M.J. Starink, Metall. Mater. Trans. A 33 (2002) 1125-1136.
DOI URL |
| [45] |
K. Minakawa, G. Levan, A.J. McEvily, Metall. Mater. Trans. A 17 (1986) 1787.
DOI URL |
| [46] |
O.E. Alarcon, A.M.M. Nazar, W.A. Monteiro, Mater. Sci. Eng. A 138 (1991) 275-285.
DOI URL |
| [47] | C.J. Peel, P.J.E. Forsyth, Metal. Sci. J. 7 (1973) 121-127. |
| [48] |
H.C. Fang, H. Chao, K.H. Chen. J. Alloy. Compd. 622 (2015) 166-173.
DOI URL |
| [49] |
Z. Chen, Y. Mo, Z. Nie, Metall. Mater. Trans. A 44 (2013) 3910-3920.
DOI URL |
| [50] |
T. Ohira, T. Kishi, Mater. Sci. Eng. 78 (1986) 9-19.
DOI URL |
| [51] |
M. Nakai, T. Eto, Mater. Sci. Eng. A 285 (2000) 62-68.
DOI URL |
| [52] |
S.V. Kamat, J.P. Hirth, Acta Mater. 44 (1996) 201-208.
DOI URL |
| [53] |
S.P. Yuan, G. Liu, R.H. Wang, G.J. Zhang, X. Pu, J. Sun, K.H. Chen, Scr. Mater. 60 (2009) 1109-1112.
DOI URL |
| [1] | Yu Liao, Junhua Bai, Fuwen Chen, Guanglong Xu, Yuwen Cui. Microstructural strengthening and toughening mechanisms in Fe-containing Ti-6Al-4V: A comparison between homogenization and aging treated states [J]. J. Mater. Sci. Technol., 2022, 99(0): 114-126. |
| [2] | H.F. Li, P. Zhang, B. Wang, Z.F. Zhang. Predictive fatigue crack growth law of high-strength steels [J]. J. Mater. Sci. Technol., 2022, 100(0): 46-50. |
| [3] | Defang Tu, Jianqi Yan, Yunbo Xie, Jun Li, Shuo Feng, Mingxu Xia, Jianguo Li, Alex Po Leung. Accelerated design for magnetocaloric performance in Mn-Fe-P-Si compounds using machine learning [J]. J. Mater. Sci. Technol., 2022, 96(0): 241-247. |
| [4] | Lihe Qian, Zhi Li, Tongliang Wang, Dongdong Li, Fucheng Zhang, Jiangying Meng. Roles of pre-formed martensite in below-Ms bainite formation, microstructure, strain partitioning and impact absorption energies of low-carbon bainitic steel [J]. J. Mater. Sci. Technol., 2022, 96(0): 69-84. |
| [5] | Yang Liu, Samuel C.V. Lim, Chen Ding, Aijun Huang, Matthew Weyland. Unravelling the competitive effect of microstructural features on the fracture toughness and tensile properties of near beta titanium alloys [J]. J. Mater. Sci. Technol., 2022, 97(0): 101-112. |
| [6] | Young-Kyun Kim, Min-Chul Kim, Kee-Ahn Lee. 1.45 GPa ultrastrong cryogenic strength with superior impact toughness in the in-situ nano oxide reinforced CrMnFeCoNi high-entropy alloy matrix nanocomposite manufactured by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 97(0): 10-19. |
| [7] | Zhen Ma, Huarui Zhang, Hanwei Fu, Yanzhao Yang, Jianji Wang, Ming Du, Hu Zhang. Insights into the rheological modeling of semi-solid metals: Theoretical and simulation study [J]. J. Mater. Sci. Technol., 2022, 100(0): 182-192. |
| [8] | J. Dong, J. Shen, Y.H. Sun, H.B. Ke, B.A. Sun, W.H. Wang, H.Y. Bai. Composition and size dependent torsion fracture of metallic glasses [J]. J. Mater. Sci. Technol., 2021, 82(0): 153-160. |
| [9] | Yunwu Ma, Sizhe Niu, Huihong Liu, Yongbing Li, Ninshu Ma. Microstructural evolution in friction self-piercing riveted aluminum alloy AA7075-T6 joints [J]. J. Mater. Sci. Technol., 2021, 82(0): 80-95. |
| [10] | Jia Li, Baobin Xie, Qihong Fang, Bin Liu, Yong Liu, Peter K. Liaw. High-throughput simulation combined machine learning search for optimum elemental composition in medium entropy alloy [J]. J. Mater. Sci. Technol., 2021, 68(0): 70-75. |
| [11] | Yunsheng Wu, Xuezhi Qin, Changshuai Wang, Lanzhang Zhou. Microstructural evolution and its influence on the impact toughness of GH984G alloy during long-term thermal exposure [J]. J. Mater. Sci. Technol., 2021, 60(0): 61-69. |
| [12] | Shixing Huang, Qinyang Zhao, Yongqing Zhao, Cheng Lin, Cong Wu, Weiju Jia, Chengliang Mao, Vincent Ji. Toughening effects of Mo and Nb addition on impact toughness and crack resistance of titanium alloys [J]. J. Mater. Sci. Technol., 2021, 79(0): 147-164. |
| [13] | Youfang Cao, Longtao Jiang, Deng Gong, Guoqin Chen, Ziyang Xiu, Yangming Cheng, Xiufang Wang, Gaohui Wu. Quantitative study of dimensional stability mechanism and microstructure evolution during precipitation process of 2024Al alloy [J]. J. Mater. Sci. Technol., 2021, 90(0): 85-94. |
| [14] | Lei He, ZhiLei Wang, Hiroyuki Akebono, Atsushi Sugeta. Machine learning-based predictions of fatigue life and fatigue limit for steels [J]. J. Mater. Sci. Technol., 2021, 90(0): 9-19. |
| [15] | Young-Kyun Kim, Kyu-Sik Kim, Young-Beum Song, Jung Hyo Park, Kee-Ahn Lee. 2.47 GPa grade ultra-strong 15Co-12Ni secondary hardening steel with superior ductility and fracture toughness [J]. J. Mater. Sci. Technol., 2021, 66(0): 36-45. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
