J. Mater. Sci. Technol. ›› 2021, Vol. 78: 202-222.DOI: 10.1016/j.jmst.2020.10.061
• Review Article • Previous Articles Next Articles
Meng Zua,b, Xiaosong Zhoua,*(), Shengsen Zhangc, Shangshu Qianb, Dong-Sheng Lid, Xianhu Liue, Shanqing Zhangb,*(
)
Received:
2020-09-02
Revised:
2020-10-26
Accepted:
2020-10-26
Published:
2021-07-10
Online:
2020-11-22
Contact:
Xiaosong Zhou,Shanqing Zhang
About author:
s.zhang@griffith.edu.au(S. Zhang).Meng Zu, Xiaosong Zhou, Shengsen Zhang, Shangshu Qian, Dong-Sheng Li, Xianhu Liu, Shanqing Zhang. Sustainable engineering of TiO2-based advanced oxidation technologies: From photocatalyst to application devices[J]. J. Mater. Sci. Technol., 2021, 78: 202-222.
Fig. 1. Sustainable engineering of TiO2-based PC and PEC technologies: photocatalyst engineering (morphology fabrication, band-gap engineering, and co-catalysts) and device engineering (irradiation source, reactor structure, and applied potential bias), which are utilized for applications for wastewater treatment, sensing, and water splitting.
Fig. 2. Electron-hole generation and separation by the electron acceptor (A) and the electron donor (D) under illumination in n-type semiconductor TiO2 in a PC process.
Fig. 4. Schematic description and corresponding SEM/TEM images of (a-c) TiO2 nanorods, (d-f) TiO2 nanorod arrays, (g-i) branched TiO2 nanorod arrays and (j-l) TiO2 nanorod@nanobowls. (e,h) represent the cross-sectional view, (b,f,i,l) represents the top view. (k) SEM images of TiO2 nanobowls. (Derived from Ref. [[74], [75], [76], [77]]).
Fig. 5. (a) Schematic illustration of the preparation process of TiO2 nanotubes and MoS2 nanosheets@TiO2 nanotubes. The top view and the cross-sectional view of the SEM images of (b,c) TiO2 nanotubes and (d,e) MoS2 nanosheets@TiO2 nanotubes. (Derived from Ref. [93]).
Fig. 6. Top view and a corresponding cross-sectional view (inserted) SEM images of different pore sizes of (a) TiO2 nanorod photonic crystals (216), (b) TiO2 nanorod photonic crystals (292), and (c) disordered TiO2 bi-layer. (d) UV-vis diffused reflectance spectra of the three TiO2 films on the FTO substrate. Scale bars of all inserts in (a), (b), and (c) are 2mm [105].
Fig. 7. Schematic picture of heterostructures of (a) conventional charge-carrier transfer, (b) dye-sensitized transfer, and (c) SPR metal transfer for TiO2-based photocatalyst.
Photocatalyst | Heterostructure formation | PC/PEC application | Performance | Ref. |
---|---|---|---|---|
Ag3PO4/TiO2 | conventional | MO degradation, visible light (λ>500nm) | MO degradation rate: 95.5 % after 60min | [ |
porous ZrO2@TiO2 | conventional | HER, UV light | H2 evolution rate: 39.7mmol/h/g | [ |
TiO2/ZnFe2O4 | Z-scheme | N2 photofixation, visible light | ammonia generation rate: 1.48μmol/L/min | [ |
TiO2/CdS | Z-scheme | HER, UV light | H2 evolution rate: 51.4μmol/h | [ |
E-TiO2/Au/TiO2 | SPR | HER, visible light | H2 evolution rate: 26.25μmol/h/g | [ |
Ag-loaded TiO2 nanotube arrays | SPR | CO2 reduction, visible light | CH4 production rate: 48mmol/h/m2 | [ |
Table 1 The TiO2-based PC/PEC application with different heterostructure formation.
Photocatalyst | Heterostructure formation | PC/PEC application | Performance | Ref. |
---|---|---|---|---|
Ag3PO4/TiO2 | conventional | MO degradation, visible light (λ>500nm) | MO degradation rate: 95.5 % after 60min | [ |
porous ZrO2@TiO2 | conventional | HER, UV light | H2 evolution rate: 39.7mmol/h/g | [ |
TiO2/ZnFe2O4 | Z-scheme | N2 photofixation, visible light | ammonia generation rate: 1.48μmol/L/min | [ |
TiO2/CdS | Z-scheme | HER, UV light | H2 evolution rate: 51.4μmol/h | [ |
E-TiO2/Au/TiO2 | SPR | HER, visible light | H2 evolution rate: 26.25μmol/h/g | [ |
Ag-loaded TiO2 nanotube arrays | SPR | CO2 reduction, visible light | CH4 production rate: 48mmol/h/m2 | [ |
Fig. 9. Schematic procedure for fabricating the five different samples: (a) TiO2 nanotubes, TiO2 nanotubes-Al2O3, TiO2 nanotubes-Au, TiO2 nanotubes-Au-Al2O3, and TiO2 nanotubes-Al2O3-Au; (b) the simplified schematic structures of (a1) TiO2 nanotubes-Au, (b1) TiO2 nanotubes-Al2O3-Au, and (c1) TiO2 nanotubes-Au-Al2O3 and (a2-c2) the finite difference time domain (FDTD) simulation of the corresponding spatial distribution of electric field density (| E |) on the y-plane for the three structures under 570nm incident light irradiation [135].
Fig. 10. Scheme for a possible influence of electronic band structure at doped TiO2; (a) standard band-gap in pristine TiO2, (b) insertion of local states within the band-gap in a doped TiO2, (c) band-gap narrowing in a doped TiO2.
Photocatalyst | Doping elements | PC/PEC application | Performance | Ref. |
---|---|---|---|---|
Pt-TiO2 | metal | HER, near-UV light | H2 evolution rate: 0.116μmol/h/cm3 | [ |
Fe-TiO2 | metal | MB degradation, visible light | MB degradation rate: 75 % after 90 min | [ |
Cu-TiO2 | metal | antimicrobial, visible light | E-coli degradation rate: 99.9999% after 30 min | [ |
N-TiO2 | non-metal | MO degradation, visible light | MO degradation rate: 65 % after 60 min | [ |
S-TiO2 | non-metal | Acetaldehyde degradation, visible light | Acetaldehyde degradation rate: 75 % after 300 min | [ |
black C-TiO2 | non-metal | MB degradation, UV and visible light | MB degradation rate: 97 % after 120min under UV light; 74 % after 120min under visible light | [ |
Pd-H-TiO2 nanofibers | self-doping & metal | HER, UV light | H2 evolution rate: 17mmol/h/g under UV-A irradiation; ∼25.6mmol/h/g under UV-B irradiation | [ |
H-TiO2/MoS2 | self-doping | HER, visible light | H2 evolution rate: 1840mmol/h/m2 | [ |
Table 2 The TiO2-based PC/PEC application with different doping elements.
Photocatalyst | Doping elements | PC/PEC application | Performance | Ref. |
---|---|---|---|---|
Pt-TiO2 | metal | HER, near-UV light | H2 evolution rate: 0.116μmol/h/cm3 | [ |
Fe-TiO2 | metal | MB degradation, visible light | MB degradation rate: 75 % after 90 min | [ |
Cu-TiO2 | metal | antimicrobial, visible light | E-coli degradation rate: 99.9999% after 30 min | [ |
N-TiO2 | non-metal | MO degradation, visible light | MO degradation rate: 65 % after 60 min | [ |
S-TiO2 | non-metal | Acetaldehyde degradation, visible light | Acetaldehyde degradation rate: 75 % after 300 min | [ |
black C-TiO2 | non-metal | MB degradation, UV and visible light | MB degradation rate: 97 % after 120min under UV light; 74 % after 120min under visible light | [ |
Pd-H-TiO2 nanofibers | self-doping & metal | HER, UV light | H2 evolution rate: 17mmol/h/g under UV-A irradiation; ∼25.6mmol/h/g under UV-B irradiation | [ |
H-TiO2/MoS2 | self-doping | HER, visible light | H2 evolution rate: 1840mmol/h/m2 | [ |
Fig. 11. (a) The DOS calculation results of the metal-doped TiO2 (Ti1-xAxO2: A=V, Cr, Mn, Fe, Co, or Ni). Gray solid lines: total DOS; solid black lines: dopant's DOS; (b) scheme of the electronic band structure of doped TiO2 from DOS results [159]; (c) SEM images of i. TiO2, ii. Fe-TiO2, iii. Mn-TiO2 and ix. Co-TiO2 nanorod arrays on FTO substrates. Inserts are the corresponding digital pictures, respectively. All scale bars represent 1mm. Photocurrent densities vs. time of the Fe-doped TiO2, Mn-doped TiO2, Co-doped TiO2, and TiO2 nanorods measured at 0.5V vs. RHE under 100mW cm-2 solar illumination; (d) photocurrent density profile of as-prepared photocatalysts [160].
Fig. 12. The design of electrode back-illumination (a), thin-layer (b), and cylindrical PC reactors (c) to address light absorption from aqueous solution and slow mass transport problems in PC degradation.
Photocatalyst | Irradiation source | Pollutants degradation | Time for degradation of 50 % pollutants (/min) | Ref. |
---|---|---|---|---|
Pt(Au,Ag)/TiO2 | 6×6W fluorescent lamps (λmax=365nm) | MO | 70 | [ |
Mesoporous TiO2 | 15W 365nm UV lamp | Rhodamine B | 100 | [ |
TiO2@C | Sunlight | Rhodamine B | 2 | [ |
Y-TiO2 film | 30W UV lamp | MO and Cr(VI) ions | 130 | [ |
BiOI/TiO2 NBAs | Visible light 150mW cm-2 | Methyl orange | 3.5 | [ |
TiO2/rGO | 15W UV-C lamp | Rhodamine B | 60 | [ |
MnFe2O4@rGO@TiO2 | Solar simulator (1000W/m2) | Ofloxacin | 50 | [ |
Nano TiO2 meshes | 30W low-pressure Hg vapor UV-C lamp emitting at 254 nm | Real water sample | 50 | [ |
Graphene/Cu2O /TiO2 mesh | Solar light 150W Xe lamp | Bisphenol A | 25 | [ |
Au/TiO2 NTAs | Visible light 350W Xe lamp | Methyl orange | 230 | [ |
Table 3 The TiO2-based electrodes for sustainable PC and PEC water treatment.
Photocatalyst | Irradiation source | Pollutants degradation | Time for degradation of 50 % pollutants (/min) | Ref. |
---|---|---|---|---|
Pt(Au,Ag)/TiO2 | 6×6W fluorescent lamps (λmax=365nm) | MO | 70 | [ |
Mesoporous TiO2 | 15W 365nm UV lamp | Rhodamine B | 100 | [ |
TiO2@C | Sunlight | Rhodamine B | 2 | [ |
Y-TiO2 film | 30W UV lamp | MO and Cr(VI) ions | 130 | [ |
BiOI/TiO2 NBAs | Visible light 150mW cm-2 | Methyl orange | 3.5 | [ |
TiO2/rGO | 15W UV-C lamp | Rhodamine B | 60 | [ |
MnFe2O4@rGO@TiO2 | Solar simulator (1000W/m2) | Ofloxacin | 50 | [ |
Nano TiO2 meshes | 30W low-pressure Hg vapor UV-C lamp emitting at 254 nm | Real water sample | 50 | [ |
Graphene/Cu2O /TiO2 mesh | Solar light 150W Xe lamp | Bisphenol A | 25 | [ |
Au/TiO2 NTAs | Visible light 350W Xe lamp | Methyl orange | 230 | [ |
Fig. 13. (a) Schematic design of the PC reactor incorporated with an economically friendly UV-LED array and a PeCOD detector, (b) the image of the microfluidic thin-layer PC system with low building and operating cost. [242,245].
Fig. 16. The photocurrent for different biosensors (a) PDA platform-Ab2 label, (b) the Au nanoclusters/PDA platform-Ab2 label, (c) the Au nanoclusters/PDA platform-Ab2-SiO2@G-quadruplex label, and (d) the Au nanoclusters/PDA platform-Ab2-SiO2@G-quadruplex-hemin label under the condition of 4-CN and H2O2. (e) The photocurrentof biosensor with different concentrations of MC-LR, (f) the calibration curve, (g) the interference of other chemical compounds. (Derived from Ref. [276]or).
Photocatalysts | Light intensity | Modification method | Electrolyte | Photocurrent Density | Hydrogen Production Rate (mmol/h/cm2) | Ref. |
---|---|---|---|---|---|---|
TiO2 NTAs | UV light 70mW/cm2 | - | 1M KOH | 112μA/cm2 | 7.1 | [ |
H/TiO2 NWs | UV light 100mW/cm2 | doping | 1M NaOH | 2.7mA/cm2 | 5.6 | [ |
Pt/TiO2 NTAs | UV light 30mW/cm2 | co-catalysis | 0.1M Na2SO4 and 1M ethylene glycol | 45.7μA/cm2 | 135 | [ |
Pd/TiO2 NTAs | Solar light 320mW/cm2 | co-catalysis | 2 M Na2CO3 and 0.5M ethylene glycol | 26.8mA/cm2 | 592 | [ |
Cu/TiO2 NTAs | Visible light 300W Xe lamp | co-catalysis | 5% ethylene glycol | 0.193mA/cm2 | 0.003 | [ |
Cu2O/TiO2 NTAs | Visible light 300W Xe lamp | heterostructure | 5% ethylene glycol (pH=7.40) | 1mA/cm2 | 0.003 | [ |
Graphite/ TiO2 NWs | Solar light 150mW/cm2 | heterostructure | 30 % methanol | 20μA/cm2 | 4.87 | [ |
CdS/TiO2 NR/NTA | Solar light 320mW/cm2 | heterostructure | 0.25M Na2S and 0.35M Na2SO3 | 2.41mA/cm2 | 24.74 | [ |
SrTiO3/TiO2 NWA | Solar light 320mW/cm2 | heterostructure | 0.5M KOH and 0.5M ethylene glycol | 1.91mA/cm2 | 314.9 | [ |
TiO2@BiVO4 NRAs | Solar light 100mW/cm2 | heterostructure | 0.1M Na2SO3 (pH=7.0) | 1.3mA/cm2 | 16.4 | [ |
Graphene/CdS/TiO2 NTA | Solar light 300mW/cm2 | multi-modification | 0.1M Na2S and 0.1M Na2SO3 | -- | 10 | [ |
CdS,CdSe/TiO2 NRA | Solar light 100mW/cm2 | multi-modification | 10 % ethylene glycol and 0.1M Na2S | 0.5mA/cm2 | 457 | [ |
Table 4 Modified TiO2 photocatalysts for sustainable water splitting.
Photocatalysts | Light intensity | Modification method | Electrolyte | Photocurrent Density | Hydrogen Production Rate (mmol/h/cm2) | Ref. |
---|---|---|---|---|---|---|
TiO2 NTAs | UV light 70mW/cm2 | - | 1M KOH | 112μA/cm2 | 7.1 | [ |
H/TiO2 NWs | UV light 100mW/cm2 | doping | 1M NaOH | 2.7mA/cm2 | 5.6 | [ |
Pt/TiO2 NTAs | UV light 30mW/cm2 | co-catalysis | 0.1M Na2SO4 and 1M ethylene glycol | 45.7μA/cm2 | 135 | [ |
Pd/TiO2 NTAs | Solar light 320mW/cm2 | co-catalysis | 2 M Na2CO3 and 0.5M ethylene glycol | 26.8mA/cm2 | 592 | [ |
Cu/TiO2 NTAs | Visible light 300W Xe lamp | co-catalysis | 5% ethylene glycol | 0.193mA/cm2 | 0.003 | [ |
Cu2O/TiO2 NTAs | Visible light 300W Xe lamp | heterostructure | 5% ethylene glycol (pH=7.40) | 1mA/cm2 | 0.003 | [ |
Graphite/ TiO2 NWs | Solar light 150mW/cm2 | heterostructure | 30 % methanol | 20μA/cm2 | 4.87 | [ |
CdS/TiO2 NR/NTA | Solar light 320mW/cm2 | heterostructure | 0.25M Na2S and 0.35M Na2SO3 | 2.41mA/cm2 | 24.74 | [ |
SrTiO3/TiO2 NWA | Solar light 320mW/cm2 | heterostructure | 0.5M KOH and 0.5M ethylene glycol | 1.91mA/cm2 | 314.9 | [ |
TiO2@BiVO4 NRAs | Solar light 100mW/cm2 | heterostructure | 0.1M Na2SO3 (pH=7.0) | 1.3mA/cm2 | 16.4 | [ |
Graphene/CdS/TiO2 NTA | Solar light 300mW/cm2 | multi-modification | 0.1M Na2S and 0.1M Na2SO3 | -- | 10 | [ |
CdS,CdSe/TiO2 NRA | Solar light 100mW/cm2 | multi-modification | 10 % ethylene glycol and 0.1M Na2S | 0.5mA/cm2 | 457 | [ |
Fig. 17. (a) Photo of UCA-WS device; (b) schematic diagram of UCA-ES device; (c) image of a UCA-WS prototype under white-light illumination. (Derived from Ref. [279]).
Fig. 18. (a) The preparation procedure of photoelectrodes and assemble process in the PEC-PV device; (b) front view of the module; (c) top view and bottom view of the module assembled with four multi-PE windows; (d) detailed view of the counter-electrode support; (e) detailed view of the double-layer reflective shield (PTFE-aluminium). (Derived from Ref. [280]).
[1] | Z. Wei, Q. Van Le, W. Peng, Y. Yang, H. Yang, H. Gu, S.S. Lam, C. Sonne, J. Hazard. Mater. (2020), 123658. |
[2] |
A. Fujishima, K. Honda, Nature 238(1972) 37-38.
PMID |
[3] | H. Wu, H.L. Tan, C.Y. Toe, J. Scott, L. Wang, R. Amal, Y.H. Ng, Adv. Mater. 32(2020), 1904717. |
[4] |
D. Ma, Z. Wang, J.-W. Shi, Y. Zou, Y. Lv, X. Ji, Z. Li, Y. Cheng, L. Wang, J. Mater. Chem. A 8(2020) 11031-11042.
DOI URL |
[5] | X. Liu, C. Chen, Mater. Lett. 261(2020), 127127. |
[6] | M. Kang, J. Liang, F. Wang, X. Chen, Y. Lu, J. Zhang, Mater. Res. Bull. 121(2020), 110614. |
[7] | X. Wang, M. Sun, M. Murugananthan, Y. Zhang, L. Zhang, Appl. Catal. B 260 (2020), 118205. |
[8] | H. Zhu, Z. Chen, Y. Hu, L. Gong, D. Li, Z. Li, J. Hazard. Mater. 389(2020), 122119. |
[9] | C. Hitam, A. Jalil, J. Environ. Manage. 258(2020), 110050. |
[10] | J. Wang, C. Liu, S. Yang, X. Lin, W. Shi, J. Phys. Chem. Solids 136 (2020), 109164. |
[11] | S. Tang, Z. Wang, D. Yuan, Y. Zhang, J. Qi, Y. Rao, G. Lu, B. Li, K. Wang, K. Yin, Int. J. Electrochem. Sci. 15(2020) 2470-2480. |
[12] |
F. Li, J. Yang, J. Gao, Y. Liu, Y. Gong, Int. J. Hydrogen Energy 45(2020) 1969-1980.
DOI URL |
[13] | Y. Hu, X. Hao, Z. Cui, J. Zhou, S. Chu, Y. Wang, Z. Zou, Appl. Catal. B 260 (2020), 118131. |
[14] | E.H. Edwards, A.A. Fertig, K.P. McClelland, M.T. Meidenbauer, S. Chakraborty, T.D. Krauss, K.L. Bren, E.M. Matson, Chem. Commun. (2020). |
[15] | M. Yu, J. Wang, L. Tang, C. Feng, H. Liu, H. Zhang, B. Peng, Z. Chen, Q. Xie, Water Res. (2020), 115673. |
[16] | M.S. Abdel-Wahed, A.S. El-Kalliny, M.I. Badawy, M.S. Attia, T.A. Gad-Allah, Chem. Eng. J. 382(2020), 122936. |
[17] |
X. Ge, P. Zhou, Q. Zhang, Z. Xia, S. Chen, P. Gao, Z. Zhang, L. Gu, S. Guo, Angew. Chemie 132(2020) 238-242.
DOI URL |
[18] |
T. Takata, J. Jiang, Y. Sakata, M. Nakabayashi, N. Shibata, V. Nandal, K. Seki, T. Hisatomi, K. Domen, Nature 581(2020) 411-414.
DOI URL |
[19] |
S. Zhang, G. Cheng, L. Guo, N. Wang, B. Tan, S. Jin, Angew. Chemie 132(2020) 6063-6070.
DOI URL |
[20] | S. Ji, Y. Qu, T. Wang, Y. Chen, G. Wang, X. Li, J. Dong, Q. Chen, W. Zhang, Z. Zhang, Angew. Chemie (2020). |
[21] | Y. Zhang, B. Xia, J. Ran, K. Davey, S.Z. Qiao, Adv. Energy Mater. 10(2020), 1903879. |
[22] | H. Liu, S. Ma, L. Shao, H. Liu, Q. Gao, B. Li, H. Fu, S. Fu, H. Ye, F. Zhao, Appl. Catal. B 261(2020) 118201. |
[23] | A. Habibi-Yangjeh, S. Asadzadeh-Khaneghah, S. Feizpoor, A. Rouhi, J. Colloid Interface Sci. (2020). |
[24] | X. Zou, C. Yuan, Y. Dong, H. Ge, J. Ke, Y. Cui, Chem. Eng. J. 379(2020), 122380. |
[25] | A.H. Mamaghani, F. Haghighat, C.-S. Lee, Appl. Catal. B 269 (2020), 118735. |
[26] | W. Hu, J. Huang, X. Zhang, S. Zhao, L. Pei, C. Zhang, Y. Liu, Z. Wang, Appl. Surf. Sci. 507(2020), 145168. |
[27] | H. Li, Q. Gao, G. Wang, B. Han, K. Xia, C. Zhou, Chem. Eng. J. 392(2020), 123819. |
[28] |
Z. Shayegan, C.-S. Lee, F. Haghighat , Chem. Eng. J. 334(2018) 2408-2439.
DOI URL |
[29] |
S.G. Ullattil, S.B. Narendranath, S.C. Pillai, P. Periyat, Chem. Eng. J. 343(2018) 708-736.
DOI URL |
[30] | Z. Xiu, M. Guo, T. Zhao, K. Pan, Z. Xing, Z. Li, W. Zhou, Chem. Eng. J. 382(2020), 123011. |
[31] | A. Habibi-Yangjeh, S. Feizpoor, D. Seifzadeh, S. Ghosh, Sep. Purif. Technol. 238(2020), 116404. |
[32] | C. Wang, Y. Zhao, H. Xu, Y. Li, Y. Wei, J. Liu, Z. Zhao, Appl. Catal. B 263 (2020), 118314. |
[33] | Y. Wang, M. Zu, X. Zhou, H. Lin, F. Peng, S. Zhang, Chem. Eng. J. 381(2020), 122605. |
[34] |
P. Zhou, J. Yu, M. Jaroniec, Adv. Mater. 26(2014) 4920-4935.
DOI URL |
[35] |
N. Fajrina, M. Tahir, Int. J. Hydrogen Energy 44(2019) 540-577.
DOI URL |
[36] |
M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O’Shea, M.H. Entezari, D.D. Dionysiou, Appl Cata B: Environ 125(2012) 331-349.
DOI URL |
[37] | P. Cox, Cambridge university press, 1996. |
[38] | S.B.K. Moorthy, Thin Film Structures in Energy Applications, Springer, 2015. |
[39] | M. Gao, L. Zhu, W.L. Ong, J. Wang, G.W. Ho, Cat. Sci. Tec. 5(2015) 4703-4726. |
[40] |
K. Wang, B. Liu, J. Li, X. Liu, Y. Zhou, X. Zhang, X. Bi, X. Jiang, J. Mater. Sci. Technol. 35(2019) 615-622.
DOI |
[41] |
M.-J. Chang, W.-N. Cui, J. Liu, K. Wang, H.-L. Du, L. Qiu, S.-M. Fan, Z.-M. Luo , J. Mater. Sci. Technol. 36(2020) 97-105.
DOI URL |
[42] | X. Sui, X. Li, T. Ni, F. Lin, G. Li, J. Mater. Sci. (2020) 1-16. |
[43] |
H. Shindume L, Z. Zhao, N. Wang, H. Liu, A. Umar, J. Zhang, T. Wu, Z. Guo, J. Nanosci. Nanotechnol. 19(2019) 839-849.
DOI URL |
[44] |
J. Huang, J. Shen, S. Li, J. Cai, S. Wang, Y. Lu, J. He, C.J. Carmalt, I.P. Parkin, Y. Lai, J. Mater. Sci. Technol. 39(2020) 28-38.
DOI URL |
[45] | S. Varnagiris, A. Medvids, M. Lelis, D. Milcius, A. Antuzevics, J. Photochem. Photobiol. A: Chem. 382(2019), 111941. |
[46] |
H. Gong, Q. Liu, C. Huang, Int. J. Hydrogen Energy 44(2019) 4821-4831.
DOI URL |
[47] |
T. Su, Z.D. Hood, M. Naguib, L. Bai, S. Luo, C.M. Rouleau, I.N. Ivanov, H. Ji, Z. Qin, Z. Wu, Acs Appl. Energy Mater. 2(2019) 4640-4651.
DOI URL |
[48] | S. Hejazi, S. Mohajernia, B. Osuagwu, G. Zoppellaro, P. Andryskova, O. Tomanec, S. Kment, R. Zboˇril, P. Schmuki, Adv. Mater. 32(2020), 1908505. |
[49] | X. Du, Y. Wu, Y. Kou, J. Mu, Z. Yang, X. Hu, F. Teng, J. Alloys. Compd. 810(2019), 151917. |
[50] |
S. Haffad, K.K. Kiprono, Surf. Sci. 686(2019) 10-16.
DOI URL |
[51] | J. Dong, J. Huang, A. Wang, G.V. Biesold-McGee, X. Zhang, S. Gao, S. Wang, Y. Lai, Z. Lin, Nano Energy 71(2020) 104579. |
[52] |
H. Maleki, V. Bertola, Acs Appl. Nano Mater. 2(2019) 7237-7244.
DOI |
[53] | Y. Fu, C.-L. Dong, W. Zhou, Y.-R. Lu, Y.-C. Huang, Y. Liu, P. Guo, L. Zhao, W.-C. Chou, S. Shen, Appl. Catal. B 260 (2020), 118206. |
[54] | M. Zhang, J. Wang, Y. Wang, J. Zhang, X. Han, Y. Chen, Y. Wang, Z. Karim, W. Hu, Y. Deng, J. Mater. Sci. Technol. (2020). |
[55] | X. Mei, J. Bai, S. Chen, M. Zhou, P. Jiang, C. Zhou, F. Fang, Y. Zhang, J. Li, M. Long, Environ. Sci. Technol. (2020). |
[56] | J. Li, N. Wu, Cat. Sci. Tec. 5(2015) 1360-1384. |
[57] |
X. Yue, J. Xiang, J. Chen, H. Li, Y. Qiu, X. Yu, J. Mater. Sci. Technol. 47(2020) 223-230.
DOI URL |
[58] | C. Wang, W. Chen, D. Yuan, S. Qian, D. Cai, J. Jiang, S. Zhang, Nano Energy 69 (2020), 104453. |
[59] |
Y. Li, R. Wang, H. Li, X. Wei, J. Feng, K. Liu, Y. Dang, A. Zhou, J. Phys. Chem C 119(2015) 20283-20292.
DOI URL |
[60] |
C. Ebenhoch, J. Kalb, J. Lim, T. Seewald, C. Scheu, L. Schmidt-Mende, ACS Appl. Mater. Interfaces 12(2020) 23363-23369.
DOI URL |
[61] |
W. Wang, J. Dong, X. Ye, Y. Li, Y. Ma, L. Qi, Small 12(2016) 1469-1478.
DOI URL |
[62] |
Z. Pan, Y. Qiu, J. Yang, M. Liu, L. Zhou, Y. Xu, L. Sheng, X. Zhao, Y. Zhang, J Mater Chem A 3(2015) 4004-4009.
DOI URL |
[63] | J. Zhang, Z. Pang, Q. Sun, X. Chen, Y. Zhu, M. Li, J. Wang, H. Qiu, X. Li, Y. Li, J. Alloys. Compd. 820(2020), 153128. |
[64] | S. Wang, Z. Zhang, W. Huo, K. Zhu, X. Zhang, X. Zhou, F. Fang, Z. Xie, J. Jiang, J. Hazard. Mater. (2020), 123016. |
[65] |
I.S. Cho, Z. Chen, A.J. Forman, D.R. Kim, P.M. Rao, T.F. Jaramillo, X. Zheng, Nano Lett. 11(2011) 4978-4984.
DOI URL |
[66] |
X. Wang, S. Zhang, H. Wang, H. Yu, H. Wang, S. Zhang, F. Peng, RSC Adv. 5(2015) 76315-76320.
DOI URL |
[67] |
Y. Duan, P.A. Grah, F. Cai, Z. Yuan, J. Alloys. Compd. 803(2019) 456-465.
DOI URL |
[68] |
A. Morlando, J. McNamara, Y. Rehman, V. Sencadas, P.J. Barker, K. Konstantinov, J. Mater. Sci. 55(2020) 8095-8108.
DOI URL |
[69] |
T. Sreethawong, S. Laehsalee, S. Chavadej, Catal. Commun. 10(2009) 538-543.
DOI URL |
[70] |
D. Regonini, A.C. Teloeken, A.K. Alves, F.A. Berutti, K. Gajda-Schrantz, C.P. Bergmann, T. Graule, F. Clemens, ACS Appl. Mater. Interfaces 5(2013) 11747-11755.
DOI URL |
[71] | M.S. Nasir, G. Yang, I. Ayub, S. Wang, W. Yan, Appl. Catal. B (2020), 118900. |
[72] |
J. Zhang, G. Xiao, F.-X. Xiao, B. Liu , Mater. Chem. Front. 1(2017) 231-250.
DOI URL |
[73] |
Y. Yu, X. Yin, A. Kvit, X. Wang, Nano Lett. 14(2014) 2528-2535.
DOI URL |
[74] |
Y. Yamazaki, M. Fujitsuka, S. Yamazaki, Acs Appl. Nano Mater. 2(2019) 5890-5899.
DOI |
[75] |
Y. Wang, M. Zhang, J. Li, H. Yang, J. Gao, G. He, Z. Sun, Appl. Surf. Sci. 476(2019) 84-93.
DOI URL |
[76] | M. Zu, M. Zheng, S. Zhang, C. Xing, M. Zhou, H. Liu, X. Zhou, S. Zhang, Sens. Actuators B Chem. (2020), 128504. |
[77] |
W. Wang, J. Dong, X. Ye, Y. Li, Y. Ma, L. Qi, Small 12(2016) 1469-1478.
DOI URL |
[78] | J.-H. Yun, A.J. Mozer, P. Wagner, D.L. Offier, R. Amal, Y.H. Ng, Sustain. Mater. Technol. 24(2020), e00165. |
[79] | J. Wang, Y. Zeng, L. Wan, J. Zhao, J. Yang, J. Hu, F. Miao, W. Zhan, R. Chen, F. Liang, Appl. Surf. Sci. 509(2020), 145301. |
[80] |
G. He, J. Zhang, Y. Hu, Z. Bai, C. Wei, Appl. Catal. B 250(2019) 301-312.
DOI URL |
[81] | L. Cheng, Y. Li, Y. Liu, J. Wang, R. Chen, H. Ni, Mater. Lett. 256(2019), 126602. |
[82] | F. Cai, X. Chen, L. Qiu, L. Jiang, S. Ma, Q. Zhang, Y. Zhao, J. Alloys. Compd. 808(2019), 151770. |
[83] |
Q. Wang, Z. Liu, S. Zhang, Y. Cui, S. Gao, Y. Wang, Sep. Purif. Technol. 211(2019) 866-872.
DOI URL |
[84] |
T. Gakhar, A. Hazra, J. Electron. Mater. 48(2019) 5342-5347.
DOI |
[85] |
H. Fraoucene, V.A. Sugiawati, D. Hatem, M.S. Belkaid, F. Vacandio, M. Eyraud, M. Pasquinelli, T. Djenizian, Front. Chem. 7(2019) 66.
DOI PMID |
[86] |
U.F. Gunputh, H. Le, R.D. Handy, C. Tredwin, Mater. Sci. Eng. C 91(2018) 638-644.
DOI URL |
[87] |
S. Ozkan, A. Mazare, P. Schmuki, Electrochim. Acta 268(2018) 435-447.
DOI URL |
[88] |
R.A. Ocampo, F.E. Echeverría, Appl. Surf. Sci. 469(2019) 994-1006.
DOI URL |
[89] |
Q. Zheng, B. Zhou, J. Bai, L. Li, Z. Jin, J. Zhang, J. Li, Y. Liu, W. Cai, X. Zhu, Adv. Mater. 20(2008) 1044-1049.
DOI URL |
[90] | A. El Ruby Mohamed, S. Rohani, Synth. Lect. Energy Environ. Technol. Sci. Soc. 4(2011) 1065-1086. |
[91] |
Z. Zhang, L. Zhang, M.N. Hedhili, H. Zhang, P. Wang, Nano Lett. 13(2012) 14-20.
DOI URL |
[92] |
P. Liu, H. Zhang, H. Liu, Y. Wang, X. Yao, G. Zhu, S. Zhang, H. Zhao, J. Am. Chem. Soc. 133(2011) 19032-19035.
DOI URL |
[93] |
J. Zhou, M. Guo, L. Wang, Y. Ding, Z. Zhang, Y. Tang, C. Liu, S. Luo, Chem. Eng. J. 366(2019) 163-171.
DOI URL |
[94] |
N. Wei, H. Cui, C. Wang, G. Zhang, Q. Song, W. Sun, X. Song, M. Sun, J. Tian, J. Am. Ceram. Soc. 100(2017) 1339-1349.
DOI URL |
[95] |
Y. Chen, A. Li, Q. Li, X. Hou, L.-N. Wang, Z.-H. Huang, J. Mater. Sci. Technol. 34(2018) 955-960.
DOI URL |
[96] | T. Butburee, Y. Bai, H. Wang, H. Chen, Z. Wang, G. Liu, J. Zou, P. Khemthong, G.Q.M. Lu, L. Wang, Adv. Mater. 30(2018), 1705666. |
[97] | H.-J. Chen, Y.-L. Yang, M. Hong, J.-G. Chen, G.-Q. Suo, X.-J. Hou, L. Feng, Z.-G. Chen, Sustain. Mater. Technol. 21(2019), e00105. |
[98] |
J.E. Kroeze, T.J. Savenije, J.M. Warman, J. Am. Chem. Soc. 126(2004) 7608-7618.
DOI URL |
[99] | Y. Wu, Y. Jiang, J. Shi, L. Gu, Y. Yu, Small 13 (2017), 1700129. |
[100] |
F. Feng, C. Li, J. Jian, X. Qiao, H. Wang, L. Jia, Chem. Eng. J. 368(2019) 959-967.
DOI |
[101] |
E.J.W. Crossland, N. Noel, V. Sivaram, T. Leijtens, J.A. Alexander-Webber, H.J. Snaith, Nature 495(2013) 215-219.
DOI PMID |
[102] | N. Kanjana, W. Maiaugree, P. Poolcharuansin, P. Laokul, J. Mater. Sci. Technol. (2020). |
[103] |
M.W. Kadi, R.M. Mohamed, A.A. Ismail, Ceram. Int. 46(2020) 8819-8826.
DOI URL |
[104] | H. Li, S. Wu, Z.D. Hood, J. Sun, B. Hu, C. Liang, S. Yang, Y. Xu, B. Jiang, Appl.Surf. Sci. 513(2020), 145723. |
[105] | X. Zhang, Y. Liu, S.-T. Lee, S. Yang, Z. Kang, Synth. Lect. Energy Environ. Technol. Sci. Soc. 7(2014) 1409-1419. |
[106] |
H.L. Tan, F.F. Abdi, Y.H. Ng, Chem. Soc. Rev. 48(2019) 1255-1271.
DOI URL |
[107] |
H. Park, Y. Park, W. Kim, W. Choi, Journal Of Photochemistry And Photobiology C-Photochemistry Reviews 15(2013) 1-20.
DOI URL |
[108] | Y. Huang, Z. Guo, H. Liu, S. Zhang, P. Wang, J. Lu, Y. Tong, Adv. Funct. Mater. 29(2019), 1903490. |
[109] |
L. Kavan, M. Grätzel, S.E. Gilbert, C. Klemenz, H.J. Scheel, J. Am. Chem. Soc. 118(1996) 6716-6723.
DOI URL |
[110] |
T. Kawahara, Y. Konishi, H. Tada, N. Tohge, J. Nishii, S. Ito, Angew Chem 114(2002) 2935-2937.
DOI URL |
[111] |
T. Miyagi, M. Kamei, T. Mitsuhashi, T. Ishigaki, A. Yamazaki, Chem. Phys. Lett. 390(2004) 399-402.
DOI URL |
[112] |
D.O. Scanlon, C.W. Dunnill, J. Buckeridge, S.A. Shevlin, A.J. Logsdail, S.M. Woodley, C.R.A. Catlow, M.J. Powell, R.G. Palgrave, I.P. Parkin, G.W. Watson, T.W. Keal, P. Sherwood, A. Walsh, A.A. Sokol, Nat. Mater. 12(2013) 798-801.
DOI PMID |
[113] |
J. Hu, S. Zhang, Y. Cao, H. Wang, H. Yu, F. Peng, ACS Sustain. Chem. Eng. 6(2018) 10823-10832.
DOI URL |
[114] |
T. Al-Fahdi, F. Al Marzouqi, A.T. Kuvarega, B.B. Mamba, S.M. Al Kindy, Y. Kim, R. Selvaraj , J. Photochem. Photobiol. A: Chem. 374(2019) 75-83.
DOI URL |
[115] | Z. Wang, Y. Chen, L. Zhang, B. Cheng, J. Yu, J. Fan, J. Mater. Sci. Technol. (2020). |
[116] |
Y. Sheng, Z. Wei, H. Miao, W. Yao, H. Li, Y. Zhu, Chem. Eng. J. 370(2019) 287-294.
DOI URL |
[117] | A. Kumar, M. Khan, J. He, I.M. Lo, Appl. Catal. B (2020), 118898. |
[118] |
Y. Wang, F. Zhang, M. Yang, Z. Wang, Y. Ren, J. Cui, Y. Zhao, J. Du, K. Li, W. Wang, Microporous Mesoporous Mater. 284(2019) 403-409.
DOI URL |
[119] | V.N. Rao, S. Pitchaimuthu, P. Ravi, M. Sathish, H. Han, S.M. Venkatakrishnan, ChemCatChem (2020). |
[120] | Y. Qin, H. Li, J. Lu, F. Meng, C. Ma, Y. Yan, M. Meng, Chem. Eng. J. 384(2020), 123275. |
[121] | X. Luo, Y. Ke, L. Yu, Y. Wang, K.P. Homewood, X. Chen, Y. Gao, Appl. Surf. Sci. (2020), 145970. |
[122] |
H. Wang, Y. Bai, H. Zhang, Z. Zhang, J. Li, L. Guo, J. Phys. Chem. C 114(2010) 16451-16455.
DOI URL |
[123] | X.Q. An, T. Li, B. Wen, J.W. Tang, Z.Y. Hu, L.M. Liu, J.H. Qu, C.P. Huang, H.J. Liu, Adv. Energy Mater. 6(2016) 1614-6840. |
[124] |
M. Pastore, F. De Angelis, J. Am. Chem. Soc. 137(2015) 5798-5809.
DOI URL |
[125] |
V. Leandri, P. Liu, A. Sadollahkhani, M. Safdari, L. Kloo, J.M. Gardner, ChemPhysChem 20(2019) 618-626.
DOI URL |
[126] |
S. Putthikorn, T. Tran-Duc, N. Thamwattana, J.M. Hill, D. Baowan, Mathematics 8(2020) 841.
DOI URL |
[127] |
W.J. Youngblood, S.-H.A. Lee, Y. Kobayashi, E.A. Hernandez-Pagan, P.G. Hoertz, T.A. Moore, A.L. Moore, D. Gust, T.E. Mallouk , J. Am. Chem. Soc. 131(2009) 926-927.
DOI URL |
[128] |
W.J. Youngblood, S.-H.A. Lee, K. Maeda, T.E. Mallouk, Accounts Chem Res 42(2009) 1966-1973.
DOI PMID |
[129] |
F. Li, K. Fan, B. Xu, E. Gabrielsson, Q. Daniel, L. Li, L. Sun, J. Am. Chem. Soc. 137(2015) 9153-9159.
DOI URL |
[130] |
V. Kumaravel, S. Mathew, J. Bartlett, S.C. Pillai, Appl. Catal. B 244(2019) 1021-1064.
DOI URL |
[131] | N.S. Ibrahim, W.L. Leaw, D. Mohamad, S.H. Alias, H. Nur, Int. J. Hydrogen Energy (2020). |
[132] |
P. Ribao, J. Corredor, M.J. Rivero, I. Ortiz, J. Hazard. Mater. 372(2019) 45-51.
DOI URL |
[133] |
Y.-C. Pu, G. Wang, K.-D. Chang, Y. Ling, Y.-K. Lin, B.C. Fitzmorris, C.-M. Liu, X. Lu, Y. Tong, J.Z. Zhang, Y.-J. Hsu, Y. Li, Nano Lett. 13(2013) 3817-3823.
DOI URL |
[134] |
Z. Zhan, J. An, H. Zhang, R.V. Hansen, L. Zheng, ACS Appl. Mater. Interfaces 6(2014) 1139-1144.
DOI URL |
[135] | Z. Xu, Y.Y. Lin, M. Yin, H.F. Zhang, C.W. Cheng, L.F. Lu, X.Z. Xue, H.J. Fan, X.Y. Chen, D.D. Li, Adv. Mater. Sci. Eng. Int. J. 2(2015), 1500169. |
[136] |
H. Liu, D. Li, X. Yang, H. Li, Mater. Technol. 34(2019) 192-203.
DOI URL |
[137] |
F. Li, Y. Jiao, J. Liu, Q. Li, C. Guo, C. Tian, B. Jiang, J. Colloid Interface Sci. 561(2020) 568-575.
DOI URL |
[138] |
X. Rong, H. Chen, J. Rong, X. Zhang, J. Wei, S. Liu, X. Zhou, J. Xu, F. Qiu, Z. Wu, Chem. Eng. J. 371(2019) 286-293.
DOI URL |
[139] |
A. Meng, B. Zhu, B. Zhong, L. Zhang, B. Cheng, Appl. Surf. Sci. 422(2017) 518-527.
DOI URL |
[140] | X. Yu, X. Jin, X. Chen, A. Wang, J. Zhang, J. Zhang, Z. Zhao, M. Gao, L. Razzari, H. Liu, ACS Nano (2020). |
[141] |
J. Low, S. Qiu, D. Xu, C. Jiang, B. Cheng, Appl. Surf. Sci. 434(2018) 423-432.
DOI URL |
[142] | X. Wang, F. Wang, Y. Sang, H. Liu, Adv. Energy Mater. 7(2017), 1700473. |
[143] |
X. Chen, L. Liu, Y.Y. Peter, S.S. Mao, Science 331(2011) 746-750.
DOI URL |
[144] |
D.P. Opra, S.V. Gnedenkov, S.L. Sinebryukhov, E.I. Voit, A.A. Sokolov, E.B. Modin, A.B. Podgorbunsky, Y.V. Sushkov, V.V. Zheleznov, J. Mater. Sci. Technol. 33(2017) 527-534.
DOI URL |
[145] |
K. Zou, G. Dong, J. Liu, B. Xu, D. Wang, J. Mater. Sci. Technol. 35(2019) 483-490.
DOI URL |
[146] |
R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293(2001) 269-271.
DOI URL |
[147] |
M. Valero-Romero, J. Santaclara, L. Oar-Arteta, L. Van Koppen, D. Osadchii, J. Gascon, F. Kapteijn, Chem. Eng. J. 360(2019) 75-88.
DOI |
[148] | H. Wang, N. Zhang, G. Cheng, H. Guo, Z. Shen, L. Yang, Y. Zhao, A. Alsaedi, T. Hayat, X. Wang, Appl. Surf. Sci. 505(2020), 144640. |
[149] |
P. Singla, M. Sharma, O.P. Pandey, K. Singh, Appl Phys A 116(2014) 371-378.
DOI URL |
[150] |
X. Liu, Z. Wu, Y. Zhang, C. Tsamis, Appl. Surf. Sci. 471(2019) 28-35.
DOI URL |
[151] | E. Bayan, T. Lupeiko, L. Pustovaya, M. Volkova, V. Butova, A. Guda, J. Alloys. Compd. 822(2020), 153662. |
[152] |
V. Binas, V. Stefanopoulos, G. Kiriakidis, P. Papagiannakopoulos, J. Mater. 5(2019) 56-65.
DOI URL |
[153] | B. Bharati, N. Mishra, A. Sinha, C. Rath, Mater. Res. Bull. 123(2020), 110710. |
[154] |
B. Gao, T. Wang, X. Fan, H. Gong, H. Guo, W. Xia, Y. Feng, X. Huang, J. He, Inorg. Chem. Front. 4(2017) 898-906.
DOI URL |
[155] |
M. Shaban, A.M. Ahmed, N. Shehata, M.A. Betiha, A.M. Rabie, J. Colloid Interface Sci. 555(2019) 31-41.
DOI URL |
[156] | R. Darvishi Cheshmeh Soltani, M. Safari, R. Rezaee, A. Maleki, R. Ghanbari, Y. Zandsalimi, Int. J. Environ. Anal. Chem. (2020) 1-13. |
[157] |
Y. Wang, R. Zhang, J. Li, L. Li, S. Lin, Nanoscale Res. Lett. 9(2014) 1-8.
DOI URL |
[158] |
P.S. Basavarajappa, S.B. Patil, N. Ganganagappa, K.R. Reddy, A.V. Raghu, C.V. Reddy, Int. J. Hydrogen Energy 45(2020) 7764-7778.
DOI URL |
[159] |
T. Umebayashi, T. Yamaki, H. Itoh, K. Asai, J. Phys. Chem. Solids 63(2002) 1909-1920.
DOI URL |
[160] |
C. Wang, Z. Chen, H. Jin, C. Cao, J. Li, Z. Mi, J. Mater. Chem. A Mater. Energy Sustain. 2(2014) 17820-17827.
DOI URL |
[161] |
J. Nie, Y. Mo, B. Zheng, H. Yuan, D. Xiao, Electrochim. Acta 90(2013) 589-596.
DOI URL |
[162] |
M.M. Momeni, Y. Ghayeb, Z. Ghonchegi, J. Solid State Electrochem. 19(2015) 1359-1366.
DOI URL |
[163] | R. Xie, D. Lei, Y. Zhan, B. Liu, C.H.A. Tsang, Y. Zeng, K. Li, D.Y. Leung, H. Huang, Chem. Eng. J. 386(2020), 121025. |
[164] | X. Han, L. An, Y. Hu, Y. Li, C. Hou, H. Wang, Q. Zhang, Appl. Catal. B 265 (2020), 118539. |
[165] | Z. Zhang, C. Zhao, Y. Duan, C. Wang, Z. Zhao, H. Wang, Y. Gao, Appl. Surf. Sci. 527(2020), 146693. |
[166] |
S.U.M. Khan, M. Al-Shahry, W.B. Ingler, Science 297(2002) 2243-2245.
DOI URL |
[167] |
J. Geng, D. Yang, J. Zhu, D. Chen, Z. Jiang, Mater. Res. Bull. 44(2009) 146-150.
DOI URL |
[168] | S. Abu Bakar, C. Ribeiro, J. Photochem.Photobiol. C-Photochem. Rev. 27(2016) 1-29. |
[169] |
T. Horikawa, M. Katoh, T. Tomida, Microporous Mesoporous Mater. 110(2008) 397-404.
DOI URL |
[170] |
A. Abdelhaleem, W. Chu, X. Liang, Appl. Catal. B 244(2019) 823-835.
DOI URL |
[171] | B. Yan, D. Liu, X. Feng, M. Shao, Y. Zhang, Adv. Funct. Mater. (2020), 2003007. |
[172] |
X. Chen, P.-A. Glans, X. Qiu, S. Dayal, W.D. Jennings, K.E. Smith, C. Burda, J. Guo, J. Electron Spectros. Relat. Phenomena 162(2008) 67-73.
DOI URL |
[173] |
W. Fang, M. Xing, J. Zhang, J. Photochem. Photobiol. C Photochem. Rev. 32(2017) 21-39.
DOI URL |
[174] | Z. Su, J. Liu, M. Li, Y. Zhu, S. Qian, M. Weng, J. Zheng, Y. Zhong, F. Pan, S. Zhang, Electrochem. Energy Rev. (2020) 1-58. |
[175] |
T. Sekiya, T. Yagisawa, N. Kamiya, D. Das Mulmi, S. Kurita, Y. Murakami, T. Kodaira, J Phys Soc Jpn 73(2004) 703-710.
DOI URL |
[176] |
X. Chen, L. Liu, P.Y. Yu, S.S. Mao, Science 331(2011) 746-750.
DOI URL |
[177] |
J. Lim, Y. Yang, M.R. Hoffmann, Environ. Sci. Technol. 53(2019) 6972-6980.
DOI URL |
[178] |
F.-Y. Fu, I. Shown, C.-S. Li, P. Raghunath, T.-Y. Lin, T. Billo, H.-L. Wu, C.-I. Wu, P.-W. Chung, M.-C. Lin, ACS Appl. Mater. Interfaces 11(2019) 25186-25194.
DOI URL |
[179] | Y. Chen, H. Yin, F. Li, J. Zhou, L. Wang, J. Wang, S. Ai, Chem. Eng. J. (2020), 124707. |
[180] |
K. Zhang, W. Zhou, X. Zhang, Y. Qu, L. Wang, W. Hu, K. Pan, M. Li, Y. Xie, B. Jiang, RSC Adv. 6(2016) 50506-50512.
DOI URL |
[181] |
L. Han, Z. Ma, Z. Luo, G. Liu, J. Ma, X. An, RSC Adv. 6(2016) 6643-6650.
DOI URL |
[182] |
C.-F. Li, X. Guo, Q.-H. Shang, X. Yan, C. Ren, W.-Z. Lang, Y.-J. Guo, Ind. Eng. Chem. Res. 59(2020) 4377-4387.
DOI URL |
[183] |
A. Sinhamahapatra, J.-P. Jeon, J.-S. Yu , Energy Environ. Sci. 8(2015) 3539-3544.
DOI URL |
[184] |
H.-R. An, S.Y. Park, J.Y. Huh, H. Kim, Y.-C. Lee, Y.B. Lee, Y.C. Hong, H.U. Lee, Appl. Catal. B 211(2017) 126-136.
DOI URL |
[185] |
H.-R. An, Y.C. Hong, H. Kim, J.Y. Huh, E.C. Park, S.Y. Park, Y. Jeong, J.-I. Park, J.-P. Kim, Y.-C. Lee, J. Hazard. Mater. 358(2018) 222-233.
DOI URL |
[186] |
D. Ariyanti, L. Mills, J. Dong, Y. Yao, W. Gao, Mater. Chem. Phys. 199(2017) 571-576.
DOI URL |
[187] |
S. Bagheri, N.M. Julkapli, Int. J. Hydrogen Energy 41(2016) 14652-14664.
DOI URL |
[188] | B. Wang, S. Shen, S.S. Mao, J. Mater. 3(2017) 96-111. |
[189] |
L. Shen, Z. Xing, J. Zou, Z. Li, X. Wu, Y. Zhang, Q. Zhu, S. Yang, W. Zhou, Sci. Rep. 7(2017) 41978.
DOI URL |
[190] |
M. Ge, C. Cao, J. Huang, S. Li, Z. Chen, K.-Q. Zhang, S. Al-Deyab, Y. Lai, J. Mater. Chem. A 4(2016) 6772-6801.
DOI URL |
[191] |
G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R.C. Fitzmorris, C. Wang, J.Z. Zhang, Y. Li, Nano Lett. 11(2011) 3026-3033.
DOI URL |
[192] |
W. Qingli, Z. Zhaoguo, C. Xudong, H. Zhengfeng, D. Peimei, C. Yi, Z. Xiwen, J. Co2 Util. 12(2015) 7-11.
DOI URL |
[193] |
T. Lin, C. Yang, Z. Wang, H. Yin, X. Lü, F. Huang, J. Lin, X. Xie, M. Jiang, Energy Environ. Sci. 7(2014) 967-972.
DOI URL |
[194] |
J.F. Guayaquil-Sosa, B. Serrano-Rosales, P.J. Valadés-Pelayo, H. de Lasa, Appl. Catal. B 211(2017) 337-348.
DOI URL |
[195] | T. Ali, P. Tripathi, A. Azam, W. Raza, A.S. Ahmed, A. Ahmed, M. Muneer, Mater. Res. Express 4(2017), 015022. |
[196] |
S. Mathew, P. Ganguly, S. Rhatigan, V. Kumaravel, C. Byrne, S.J. Hinder, J. Bartlett, M. Nolan, S.C. Pillai, Appl. Sci. 8(2018) 2067.
DOI URL |
[197] |
J.T. Park, D.J. Kim, D.H. Kim, J.H. Kim, Mater. Lett. 202(2017) 66-69.
DOI URL |
[198] |
T. Boningari, S.N.R. Inturi, M. Suidan, P.G. Smirniotis, Chem. Eng. J. 339(2018) 249-258.
DOI URL |
[199] |
M.-C. Wu, W.-K. Huang, T.-H. Lin, Y.-J. Lu, Appl. Surf. Sci. 469(2019) 34-43.
DOI URL |
[200] |
J. Hu, Y. Li, S. Zhang, Q. Zhang, Y. Liu, J. Zuo, Q. Li, F. Peng, Int. J. Hydrogen Energy 44(2019) 31008-31019.
DOI URL |
[201] |
J. Yang, D. Wang, H. Han, C. Li, Accounts Chem Res 46(2013) 1900-1909.
DOI URL |
[202] |
P. Yilmaz, A.M. Lacerda, I. Larrosa, S. Dunn, Electrochim. Acta 231(2017) 641-649.
DOI URL |
[203] |
J. Park, J.W. Lee, B.U. Ye, S.H. Chun, S.H. Joo, H. Park, H. Lee, H.Y. Jeong, M.H. Kim, J.M. Baik, Sci. Rep. 5(2015) 11933.
DOI URL |
[204] |
M.W. Kanan, D.G. Nocera, Science 321(2008) 1072-1075.
DOI URL |
[205] |
M.W. Kanan, Y. Surendranath, D.G. Nocera, Chem. Soc. Rev. 38(2009) 109-114.
DOI URL |
[206] |
G. Ai, R. Mo, H. Li, J. Zhong, Nanoscale 7(2015) 6722-6728.
DOI URL |
[207] |
J.B. Sambur, T.-Y. Chen, E. Choudhary, G. Chen, E.J. Nissen, E.M. Thomas, N. Zou, P. Chen, Nature 530(2016) 77-80.
DOI URL |
[208] | G.M. Carroll, D.K. Zhong, D.R. Gamelin, Synth. Lect. Energy Environ.Technol. Sci. Soc. 8(2015) 577-584. |
[209] |
Z. Jia, L. La, W. Zhang, S. Liang, B. Jiang, S. Xie, D. Habibi, L. Zhang, J. Mater. Sci. Technol. 33(2017) 856-863.
DOI URL |
[210] |
C. Li, W. Yang, Q. Li, J. Mater. Sci. Technol. 34(2018) 969-975.
DOI URL |
[211] |
K. Natarajan, T.S. Natarajan, H.C. Bajaj, R.J. Tayade, Chem. Eng. J. 178(2011) 40-49.
DOI URL |
[212] |
T.S. Natarajan, K. Natarajan, H.C. Bajaj, R.J. Tayade, Ind. Eng. Chem. Res. 50(2011) 7753-7762.
DOI URL |
[213] | B. Liu, B. Chen, B. Zhang, X. Song, G. Zeng, K. Lee, J. Hazard. Mater. (2020), 123456. |
[214] |
C. Casado, R. Timmers, A. Sergejevs, C. Clarke, D. Allsopp, C. Bowen, R. Van Grieken, J. Marugán, Chem. Eng. J. 327(2017) 1043-1055.
DOI URL |
[215] |
H. Xiong, S. Dong, J. Zhang, D. Zhou, B.E. Rittmann, Water Res. 136(2018) 75-83.
DOI URL |
[216] |
H. Tada, M. Tanaka, Langmuir 13(1997) 360-364.
DOI URL |
[217] |
S. Horikoshi, Y. Satou, H. Hidaka, N. Serpone, J. Photochem. Photobiol. A: Chem. 146(2001) 109-119.
DOI URL |
[218] |
G. Palmisano, V. Loddo, H.H.E. Nazer, S. Yurdakal, V. Augugliaro, R. Ciriminna, M. Pagliaro , Chem. Eng. J. 155(2009) 339-346.
DOI URL |
[219] |
M.G. Nielsen, S.-I. In, P.C.K. Vesborg, T. Pedersen, K.P. Almtoft, I.H. Andersen, O. Hansen, I. Chorkendorff , J. Catal. 289(2012) 62-72.
DOI URL |
[220] |
A. Visan, D. Rafieian, W. Ogieglo, R.G.H. Lammertink, Appl. Catal.B 150-151(2014) 93-100.
DOI URL |
[221] |
N. Padoin, C. Soares, Chem. Eng. J. 310(2017) 381-388.
DOI URL |
[222] |
S. Zhang, W. Wen, D. Jiang, H. Zhao, R. John, G.J. Wilson, G.D. Will, J. Photochem. Photobiol. A: Chem. 179(2006) 305-313.
DOI URL |
[223] |
X. Meng, Z. Zhang, X. Li, J. Photochem. Photobiol. C Photochem. Rev. 24(2015) 83-101.
DOI URL |
[224] |
G. Palmisano, V. Loddo, H.H.E. Nazer, S. Yurdakal, V. Augugliaro, R. Ciriminna, M. Pagliaro, Chem. Eng. J. 155(2009) 339-346.
DOI URL |
[225] |
Y. Xu, D. Zhong, J. Jia, K. Li, J. Li, X. Quan, Chem. Eng. J. 225(2013) 138-143.
DOI URL |
[226] |
W.Y. Gan, H. Zhao, R. Amal, Appl. Catal. A Gen. 354(2009) 8-16.
DOI URL |
[227] |
W.Y. Gan, D. Friedmann, R. Amal, S. Zhang, K. Chiang, H. Zhao, Chem. Eng. J. 158(2010) 482-488.
DOI URL |
[228] |
S. Zhang, L. Li, H. Zhao, Environ. Sci. Technol. 43(2009) 7810-7815.
DOI URL |
[229] | X. Zhou, Y. Zheng, J. Zhou, S. Zhou, J. Nanomater. 2015 (2015) 7. |
[230] |
M. Harada, Crit. Rev. Toxicol. 25(1995) 1-24.
PMID |
[231] |
A.H. Smith, E.O. Lingas, M. Rahman, B World Health Organ 78(2000) 1093-1103.
PMID |
[232] |
S. Garcia-Segura, E. Brillas, J. Photochem. Photobiol. C Photochem. Rev. 31(2017) 1-35.
DOI URL |
[233] | M. Scarisoreanu, A.G. Ilie, E. Goncearenco, A.M. Banici, I.P. Morjan, E. Dutu, E. Tanasa, I. Fort, M. Stan, C.N. Mihailescu, C. Fleaca, Appl. Surf. Sci. 509(2020), 145217. |
[234] |
G. Huang, X. Liu, S. Shi, S. Li, Z. Xiao, W. Zhen, S. Liu, P.K. Wong, Chinese J. Catal. 41(2020) 50-61.
DOI URL |
[235] |
S. Kment, H. Kmentova, Z. Hubicka, J. Olejnicek, M. Cada, J. Krysa, Res Chem Intermediat 41(2015) 9343-9355.
DOI URL |
[236] |
Q. Zhang, Y. Fu, Y. Wu, Y.-N. Zhang, T. Zuo , ACS Sustain. Chem. Eng. 4(2016) 1794-1803.
DOI URL |
[237] |
Q. Teng, X. Zhou, B. Jin, J. Luo, X. Xu, H. Guan, W. Wang, F. Yang, RSC Adv. 6(2016) 36881-36887.
DOI URL |
[238] |
G. Byzynski, D.P. Volanti, C. Ribeiro, V.R. Mastelaro, E. Longo, J. Mater. Sci. Mater. Electron. 29(2018) 17022-17037.
DOI URL |
[239] | S. Murgolo, S. Franz, H. Arab, M. Bestetti, E. Falletta, G. Mascolo, Water Res. 164(2019), 114920. |
[240] |
L. Yang, Z. Li, H. Jiang, W. Jiang, R. Su, S. Luo, Y. Luo, Appl Cata B: Environ 183(2016) 75-85.
DOI URL |
[241] |
L. Wu, F. Li, Y. Xu, J.W. Zhang, D. Zhang, G. Li, H. Li, Appl Cata B: Environ 164(2015) 217-224.
DOI URL |
[242] |
W.Y. Gan, H. Zhao, R. Amal, App Catal A: Gen 354(2009) 8-16.
DOI URL |
[243] |
Y. Xu, Y. He, X. Cao, D. Zhong, J. Jia, Environ. Sci. Technol. 42(2008) 2612-2617.
DOI URL |
[244] |
Y. Xu, Y. He, J. Jia, D. Zhong, Y. Wang, Environ. Sci. Technol. 43(2009) 6289-6294.
DOI URL |
[245] |
N. Wang, X. Zhang, B. Chen, W. Song, N.Y. Chan, H.L.W. Chan, Lab Chip 12(2012) 3983-3990.
DOI URL |
[246] |
C. Pablos, J. Marugán, R. van Grieken, C. Adán, A. Riquelme, J. Palma, Electrochim. Acta 130(2014) 261-270.
DOI URL |
[247] |
S. Zhang, H. Zhao, D. Jiang, R. John, Anal. Chim. Acta 514(2004) 89-97.
DOI URL |
[248] |
H. Zhao, D. Jiang, S. Zhang, K. Catterall, R. John, Anal. Chem. 76(2004) 155-160.
DOI URL |
[249] |
L. Li, S. Zhang, G. Li, H. Zhao, Anal. Chim. Acta 754(2012) 47-53.
DOI URL |
[250] | L. Li, S. Zhang, H. Zhao, J. Electroanal. Chem. Lausanne (Lausanne) 656(2011) 211-217. |
[251] |
S. Zhang, L. Li, H. Zhao, G. Li, Sens. Actuators B Chem. 141(2009) 634-640.
DOI URL |
[252] |
X. Li, W. Yin, J. Li, J. Bai, K. Huang, J. Li, B. Zhou, Water Environ. Res. 86(2014) 532-539.
DOI URL |
[253] |
J. Zhang, B. Zhou, Q. Zheng, J. Li, J. Bai, Y. Liu, W. Cai, Water Res. 43(2009) 1986-1992.
DOI URL |
[254] |
D.C. Hurum, K.A. Gray, T. Rajh, M.C. Thurnauer, J. Phys. Chem. B 109(2005) 977-980.
DOI URL |
[255] |
D.C. Hurum, A.G. Agrios, K.A. Gray, T. Rajh, M.C. Thurnauer, J. Phys. Chem. B 107(2003) 4545-4549.
DOI URL |
[256] |
S. Li, J. Qiu, M. Ling, F. Peng, B. Wood, S. Zhang, ACS Appl. Mater. Interfaces 5(2013) 11129-11135.
DOI URL |
[257] |
S. Taniselass, M.M. Arshad, S.C. Gopinath, Biosens. Bioelectron. 130(2019) 276-292.
DOI PMID |
[258] |
P. Steglich, M. Hülsemann, B. Dietzel, A. Mai, Molecules 24(2019) 519.
DOI URL |
[259] | M.T. Chorsi, E.J. Curry, H.T. Chorsi, R. Das, J. Baroody, P.K. Purohit, H. Ilies, T.D. Nguyen, Adv. Mater. 31(2019), 1802084. |
[260] | Q. Zhou, D. Tang, Trac Trends Anal. Chem. 124(2020), 115814. |
[261] |
W. Tu, Y. Dong, J. Lei, H. Ju, Anal. Chem. 82(2010) 8711-8716.
DOI URL |
[262] |
A. Devadoss, A. Kuragano, C. Terashima, P. Sudhagar, K. Nakata, T. Kondo, M. Yuasa, A. Fujishima, J. Mater. Chem. B Mater. Biol. Med. 4(2016) 220-228.
DOI URL |
[263] |
W.-W. Zhao, J.-J. Xu, H.-Y. Chen, Chem. Soc. Rev. 44(2015) 729-741.
DOI URL |
[264] | R. Gill, M. Zayats, I. Willner, Angew. Chemie Int. Ed. English 47(2008) 7602-7625. |
[265] |
J. Tang, J. Li, P. Da, Y. Wang, G. Zheng, Chem. Eur. J. 21(2015) 11288-11299.
DOI URL |
[266] | Y. Chen, Y. Zhou, H. Yin, F. Li, H. Li, R. Guo, Y. Han, S. Ai, Sens. Actuators B Chem. 307(2020), 127633. |
[267] |
P. Wang, L. Cao, Y. Chen, Y. Wu, J. Di, Acs Appl. Nano Mater. 2(2019) 2204-2211.
DOI URL |
[268] |
R. Atchudan, N. Muthuchamy, T.N.J.I. Edison, S. Perumal, R. Vinodh, K.H. Park, Y.R. Lee, Biosens. Bioelectron. 126(2019) 160-169.
DOI PMID |
[269] |
W. Cheng, Z. Zheng, J. Yang, M. Chen, Q. Yao, Y. Chen, W. Gao, Electrochim. Acta 296(2019) 627-636.
DOI URL |
[270] | C. Sui, F. Li, H. Wu, H. Yin, S. Zhang, G.I. Waterhouse, J. Wang, L. Zhu, S. Ai, Biosens. Bioelectron. 142(2019), 111516. |
[271] |
M. Wang, H. Yin, Y. Zhou, C. Sui, Y. Wang, X. Meng, G.I. Waterhouse, S. Ai, Biosens. Bioelectron. 128(2019) 137-143.
DOI URL |
[272] |
R. Zeng, Z. Luo, L. Su, L. Zhang, D. Tang, R. Niessner, D. Knopp, Anal. Chem. 91(2019) 2447-2454.
DOI URL |
[273] | L. Meng, K. Xiao, X. Zhang, C. Du, J. Chen, Sens. Actuators B Chem. 305(2020), 127480. |
[274] |
Y.-C. Zhu, Y.-L. Liu, Y.-T. Xu, Y.-F. Ruan, G.-C. Fan, W.-W. Zhao, J.-J. Xu, H.-Y. Chen, ACS Appl. Mater. Interfaces 11(2019) 25702-25707.
DOI URL |
[275] |
T.-Y. Xue, L.-P. Mei, Y.-T. Xu, Y.-L. Liu, G.-C. Fan, H.-Y. Li, D. Ye, W.-W. Zhao, Anal. Chem. 91(2019) 3795-3799.
DOI URL |
[276] |
A. Qileng, Y. Cai, J. Wei, H. Lei, W. Liu, S. Zhang, Y. Liu, Sens. Actuators B Chem. 254(2018) 727-735.
DOI URL |
[277] | B.A. Pinaud, J.D. Benck, L.C. Seitz, A.J. Forman, Z. Chen, T.G. Deutsch, B.D. James, K.N. Baum, G.N. Baum, S. Ardo, H. Wang, E. Miller, T.F. Jaramillo, Synth. Lect. Energy Environ.Technol. Sci. Soc. 6(2013) 1983-2002. |
[278] | Z. Li, W. Luo, M. Zhang, J. Feng, Z. Zou, Synth. Lect. Energy Environ.Technol. Sci. Soc. 6(2013) 347-370. |
[279] |
A. Monguzzi, A. Oertel, D. Braga, A. Riedinger, D.K. Kim, P.N. Kn¨usel, A. Bianchi, M. Mauri, R. Simonutti, D.J. Norris, ACS Appl. Mater. Interfaces 9(2017) 40180-40186.
DOI URL |
[280] | A. Vilanova, P. Dias, J. Azevedo, M. Wullenkord, C. Spenke, T. Lopes, A. Mendes, J. Power Sources 454 (2020), 227890. |
[281] |
Y. Li, H. Yu, W. Song, G. Li, B. Yi, Z. Shao, Int J Hydrogen Energ 36(2011) 14374-14380.
DOI URL |
[282] |
L. Zhang, N. Pan, S. Lin, Int J Hydrogen Energ 39(2014) 13474-13480.
DOI URL |
[283] |
M. Ye, J. Gong, Y. Lai, C. Lin, Z. Lin, J. Am. Chem. Soc. 134(2012) 15720-15723.
DOI URL |
[284] |
S. Zhang, B. Peng, S. Yang, H. Wang, H. Yu, Y. Fang, F. Peng, Int J Hydrogen Energ 40(2015) 303-310.
DOI URL |
[285] |
S. Zhang, B. Peng, S. Yang, Y. Fang, F. Peng, Int J Hydrogen Energ 38(2013) 13866-13871.
DOI URL |
[286] |
X. Yu, X. Han, Z. Zhao, J. Zhang, W. Guo, C. Pan, A. Li, H. Liu, Z.L. Wang, Nano Energy 11(2015) 19-27.
DOI URL |
[287] |
X. Li, W. Teng, Q. Zhao, L. Wang, J. Nanopart. Res. 13(2011) 6813-6820.
DOI URL |
[288] |
Z. Wu, Y. Su, J. Yu, W. Xiao, L. Sun, C. Lin, Int J Hydrogen Energ 40(2015) 9704-9712.
DOI URL |
[289] |
X. Zhang, B. Zhang, K. Cao, J. Brillet, J. Chen, M. Wang, Y. Shen, J. Mater. Chem. A 3(2015) 21630-21636.
DOI URL |
[290] |
Y. Yu, J. Ren, M. Meng, Int J Hydrogen Energ 38(2013) 12266-12272.
DOI URL |
[291] |
H. Wang, W. Zhu, B. Chong, K. Qin, Int J Hydrogen Energ 39(2014) 90-99.
DOI URL |
[1] | Xueru Chen, Yin Zhang, Dashui Yuan, Wu Huang, Jing Ding, Hui Wan, Wei-Lin Dai, Guofeng Guan. One step method of structure engineering porous graphitic carbon nitride for efficient visible-light photocatalytic reduction of Cr(VI) [J]. J. Mater. Sci. Technol., 2021, 71(0): 211-220. |
[2] | Ye Yuan, Zhong Ji, Genghua Yan, Zhuowei Li, Jinliang Li, Min Kuang, Bangqi Jiang, Longlong Zeng, Likun Pan, Wenjie Mai. TiO2 electron transport bilayer for all-inorganic perovskite photodetectors with remarkably improved UV stability toward imaging applications [J]. J. Mater. Sci. Technol., 2021, 75(0): 39-47. |
[3] | Tingting Wu, Guoqiang Deng, Chao Zhen. Metal oxide mesocrystals and mesoporous single crystals: synthesis, properties and applications in solar energy conversion [J]. J. Mater. Sci. Technol., 2021, 73(0): 9-22. |
[4] | Tingting Xu, Ping Niu, Shulan Wang, Li Li. High visible light photocatalytic activities obtained by integrating g-C3N4 with ferroelectric PbTiO3 [J]. J. Mater. Sci. Technol., 2021, 74(0): 128-135. |
[5] | Xinyue Tang, Junchao Wang, Jing Li, Xinglai Zhang, Peiqing La, Xin Jiang, Baodan Liu. In-situ growth of large-area monolithic Fe2O3/TiO2 catalysts on flexible Ti mesh for CO oxidation [J]. J. Mater. Sci. Technol., 2021, 69(0): 119-128. |
[6] | Xiumin Ma, Zheng Ma, Dongzhu Lu, Quantong Jiang, Leilei Li, Tong Liao, Baorong Hou. Enhanced photoelectrochemical cathodic protection performance of MoS2/TiO2 nanocomposites for 304 stainless steel under visible light [J]. J. Mater. Sci. Technol., 2021, 64(0): 21-28. |
[7] | Xiangang Lin, Xiaojuan Hou, Lixia Cui, Shiqiang Zhao, Hong Bi, Haiwei Du, Yupeng Yuan. Increasing π-electron availability in benzene ring incorporated graphitic carbon nitride for increased photocatalytic hydrogen generation [J]. J. Mater. Sci. Technol., 2021, 65(0): 164-170. |
[8] | Chao Xie, Xingtong Lu, Yi Liang, Huahan Chen, Li Wang, Chunyan Wu, Di Wu, Wenhua Yang, Linbao Luo. Patterned growth of β-Ga2O3 thin films for solar-blind deep-ultraviolet photodetectors array and optical imaging application [J]. J. Mater. Sci. Technol., 2021, 72(0): 189-196. |
[9] | Liping Han, Bo Li, Hao Wen, Yuxi Guo, Zhan Lin. Photocatalytic degradation of mixed pollutants in aqueous wastewater using mesoporous 2D/2D TiO2(B)-BiOBr heterojunction [J]. J. Mater. Sci. Technol., 2021, 70(0): 175-184. |
[10] | Tianyan Zhong, Huangxin Li, Tianming Zhao, Hongye Guan, Lili Xing, Xinyu Xue. Self-powered/self-cleaned atmosphere monitoring system from combining hydrovoltaic, gas sensing and photocatalytic effects of TiO2 nanoparticles [J]. J. Mater. Sci. Technol., 2021, 76(0): 33-40. |
[11] | Wuyou Wang, Xuewen Wang, Lei Gan, Xinfei Ji, Zili Wu, Rongbin Zhang. All-solid-state Z-scheme BiVO4-Bi6O6(OH)3(NO3)3 heterostructure with prolonging electron-hole lifetime for enhanced photocatalytic hydrogen and oxygen evolution [J]. J. Mater. Sci. Technol., 2021, 77(0): 117-125. |
[12] | Derek Hao, Zhi-gang Chen, Monika Figiela, Izabela Stepniak, Wei Wei, Bing-Jie Ni. Emerging alternative for artificial ammonia synthesis through catalytic nitrate reduction [J]. J. Mater. Sci. Technol., 2021, 77(0): 163-168. |
[13] | Jiajun Luo, Maryam Tamaddon, Changyou Yan, Shuanhong Ma, Xiaolong Wang, Feng Zhou, Chaozong Liu. Improving the fretting biocorrosion of Ti6Al4V alloy bone screw by decorating structure optimised TiO2 nanotubes layer [J]. J. Mater. Sci. Technol., 2020, 49(0): 47-55. |
[14] | Nattakan Kanjana, Wasan Maiaugree, Phitsanu Poolcharuansin, Paveena Laokul. Size controllable synthesis and photocatalytic performance of mesoporous TiO2 hollow spheres [J]. J. Mater. Sci. Technol., 2020, 48(0): 105-113. |
[15] | Cuiyu Zhang, Xuan Ge, Qiaodan Hu, Fan Yang, Pingsheng Lai, Caijuan Shi, Wenquan Lu, Jianguo Li. Atomic scale structural analysis of liquid immiscibility in binary silicate melt: A case of SiO2‒TiO2 system [J]. J. Mater. Sci. Technol., 2020, 53(0): 53-60. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||