Please wait a minute...
J. Mater. Sci. Technol.  2020, Vol. 49 Issue (0): 47-55    DOI: 10.1016/j.jmst.2020.02.027
Research Article Current Issue | Archive | Adv Search |
Improving the fretting biocorrosion of Ti6Al4V alloy bone screw by decorating structure optimised TiO2 nanotubes layer
Jiajun Luoa, Maryam Tamaddona, Changyou Yanb, Shuanhong Mab,*(), Xiaolong Wangb, Feng Zhoub, Chaozong Liua,*()
a Institute of Orthopaedic & Musculoskeletal Science, Division of Surgery & Interventional Science, University College London, Royal National Orthopaedic Hospital, Stanmore, HA7 4LP, United Kingdom
b State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
Download:  HTML  PDF(3495KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

TiO2 nanotubes (NT) has been demonstrated its potential in orthopaedic applications due to its enhanced surface wettability and bio-osteointegration. However, the fretting biocorrosion is the main concern that limited its successfully application in orthopaedic application. In this study, a structure optimised thin TiO2 nanotube (SONT) layer was successfully created on Ti6Al4V bone screw, and its fretting corrosion performance was investigated and compared to the pristine Ti6Al4V bone screws and NT decorated screw in a bone-screw fretting simulation rig. The results have shown that the debonding TiO2 nanotube from the bone screw reduced significantly, as a result of structure optimisation. The SONT layer also exhibited enhanced bio-corrosion resistance compared pristine bone screw and conventionally NT modified bone screw. It is postulated that interfacial layer between TiO2 nanotube and Ti6Al4V substrate, generated during structure optimisation process, enhanced bonding of TiO2 nanotube layer to the Ti6Al4V bone screws that leading to the improvement in fretting corrosion resistance. The results highlighted the potential SONT in orthopaedic application as bone fracture fixation devices.

Key words:  Bone implant interface      Bone screws      Biomedical materials      TiO2 nanotubes      Fretting corrosion     
Received:  19 November 2019     
Corresponding Authors:  Shuanhong Ma,Chaozong Liu     E-mail:  mashuanhong@licp.cas.cn;chaozong.liu@ucl.ac.uk

Cite this article: 

Jiajun Luo, Maryam Tamaddon, Changyou Yan, Shuanhong Ma, Xiaolong Wang, Feng Zhou, Chaozong Liu. Improving the fretting biocorrosion of Ti6Al4V alloy bone screw by decorating structure optimised TiO2 nanotubes layer. J. Mater. Sci. Technol., 2020, 49(0): 47-55.

URL: 

https://www.jmst.org/EN/10.1016/j.jmst.2020.02.027     OR     https://www.jmst.org/EN/Y2020/V49/I0/47

Fig. 1.  Schematic of fretting at bone-implant interface: Fretting behavior of inserted injury fixation screws (a), load vertically applied on screws, fretting behavior at bone implant interface, the fretting leads to implant surface damage and wear debris generation (b) and mechanical jig setup (c).
Fig. 2.  Schematic of self-tapping screw and SEM observation of debonding of TiO2 nanotube layer, five points on the thread ridge were used for SEM examinations.
Fig. 3.  FESEM images of the surfaces of MA, NT and SONT screws. The micro pits were formed on both NT and SONT surface (black arrows).
Fig. 4.  FESEM images of NT and SONT, top view of NT (a1) and SONT (b1), side view of NT (a2) and SONT (b2) and the bottom part view NT (a3) and SONT (b3). The structure of NT and SONT were shown highly similarity except the bottom, a flat layer was bonded nanotubes bottom in SONT.
Fig. 5.  SEM-EDX images of NT and SONT at pits and nanotubes areas: NT pits areas and nanotubes areas (a) and SONT pits areas and nanotubes areas (b).
Fig. 6.  Open circuit potential of MA, NT and SONT: before and after fretting (a) and OCP decreased value of each screws after fretting (b).
Fig. 7.  Optical image of MA, NT and SONT screws before fretting test (a1) and after fretting test (a2). The enlarged optical images revealed the fretting worn markers on pristine (b1), NT (b2) and SONT (b3) screws, respectively.
Fig. 8.  Worn after fretting on drill tapping areas, MA screw a1 and a2, NT screw b1 and b2, SONT screw c1 and c2. MA tapping area has worn heavily, tapping upper areas were also worn (a1 and a2, white arrows). The nanotubes layer lift off on NT tapping areas were more than that on SONT (b1 and c1, b2 and c2), some areas on SONT displayed light grey color (c1 and c2, white arrows).
Fig. 9.  SEM observations of worn thread ridges of machined (MA 1-5), NT (NT 1-5) and SONT (SONT 1-5) screw, bar = 300 μm.
Fig. 10.  Lift off areas of nanotubes layer on thread for NT and SONT decorated screw, **, p < 0.01. p value: 0.0051, Error bars represent standard error with the mean (s.e.m).
Fig. 11.  Thread width measure points (white bar areas) of MA(a), NT(b) and SONT(c), bar = 300 μm.
Fig. 12.  Thread width of MA, NT and SONT after fretting, , p < 0.05, **, p < 0.01, ***, p < 0.001.
Fig. 13.  The vanadium containing phase dissolved during nanotubes generation process that caused micro pits formed, leading to substrate exposure. The bonding layer presents a vital role to against corrosion in SBF though sealed the pits.
European Union via the H2020-MSCA-RISE-2016 program (BAMOS, 734156)
[1] M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, Prog. Mater. Sci. 54 (2009) 397-425.
[2] I.S. Park, T.G. Woo, W.Y. Jeon, H.H. Park, M.H. Lee, T.S. Bae, K.W. Seol, Electrochim. Acta 53 (2007) 863-870.
[3] S. Oh, C. Daraio, L.H. Chen, T.R. Pisanic, R.R. Finones, S. Jin, J. Biomed. Mater. Res. A 78A (2006) 97-103.
[4] C. von Wilmowsky, S. Bauer, S. Roedl, F.W. Neukam, P. Schmuki, K.A. Schlegel, Clin. Oral Implant. Res. 23 (2012) 359-366.
[5] N. Swami, Z.W. Cui, L.S. Nair, J. Heat Trans. -T ASME 133 (2011), 034002.
[6] K. Lee, A. Mazare, P. Schmuki, Chem. Rev. 114 (2014) 9385-9454.
doi: 10.1021/cr500061m pmid: 25121734
[7] H.R. Li, Q. Cui, B. Feng, J.X. Wang, X. Lu, J. Weng, Appl. Surf. Sci. 284 (2013) 179-183.
[8] Y. Zhao, Q. Xing, J. Janjanam, K. He, F. Long, K.B. Low, A. Tiwari, F. Zhao, R. Shahbazian-Yassar, C. Friedrich, T. Shokuhfar, Int. J. Nanomed. 9 (2014) 5177-5187.
[9] N. Wang, H.Y. Li, W.L. Lu, J.H. Li, J.S. Wang, Z.T. Zhang, Y.R. Liu, Biomaterials 32 (2011) 6900-6911.
doi: 10.1016/j.biomaterials.2011.06.023 pmid: 21733571
[10] L. Salou, A. Hoornaert, G. Louarn, P. Layrolle, Acta Biomater. 11 (2015) 494-502.
doi: 10.1016/j.actbio.2014.10.017 pmid: 25449926
[11] S. Bauer, J. Park, K. von der Mark, P. Schmuki, Acta Biomater. 4 (2008) 1576-1582.
pmid: 18485845
[12] F. Schmidt-Stein, S. Thiemann, S. Berger, R. Hahn, P. Schmuki, Acta Mater. 58 (2010) 6317-6323.
doi: 10.1016/j.actamat.2010.07.053
[13] D.A. Wang, B. Yu, C.W. Wang, F. Zhou, W.M. Liu, Adv. Mater. 21 (2009) 1964-1967.
doi: 10.1002/adma.v21:19
[14] O. Bostman, H. Pihlajamaki, Biomaterials 21 (2000) 2615-2621.
pmid: 11071611
[15] S.B. Goodman, Z.Y. Yao, M. Keeney, F. Yang, Biomaterials 34 (2013) 3174-3183.
doi: 10.1016/j.biomaterials.2013.01.074
[16] M. Sundfeldt, L.V. Carlsson, C.B. Johansson, P. Thomsen, C. Gretzer, Acta Orthop. 77 (2006) 177-197.
pmid: 16752278
[17] W.Q. Yu, J. Qiu, L. Xu, F.Q. Zhang, Biomed. Mater. 4 (2009), 065012.
doi: 10.1088/1748-6041/4/6/065012 pmid: 20009163
[18] W.-q. Yu, J. Qiu, F.-q. Zhang, Colloids Surf. B Biointerfaces 84 (2011) 400-405.
doi: 10.1016/j.colsurfb.2011.01.033 pmid: 21377339
[19] C.E.B. Marino, L.H. Mascaro, J. Electroanal. Chem. 568 (2004) 115-120.
[20] I. Hacisalihoglu, A. Samancioglu, F. Yildiz, G. Purcek, A. Alsaran, Wear 332 (2015) 679-686.
[21] J. Luo, B. Li, S. Ajami, S. Ma, F. Zhou, C. Liu, J. Bionic Eng. 16 (2019) 1039-1051.
[22] J.Y. Rho, G.M. Pharr, J. Mater. Sci. Mater. Med. 10 (1999) 485-488.
pmid: 15348117
[23] S.B. Goodman, Biomaterials 28 (2007) 5044-5048.
doi: 10.1016/j.biomaterials.2007.06.035 pmid: 17645943
[24] J. Geringer, B. Forest, P. Combrade, Wear 259 (2005) 943-951.
[25] S. Barril, N. Debaud, S. Mischler, D. Landolt, Wear 252 (2002) 744-754.
[26] J. Raphel, M. Holodniy, S.B. Goodman, S.C. Heilshorn, Biomaterials 84 (2016) 301-314.
doi: 10.1016/j.biomaterials.2016.01.016 pmid: 26851394
[27] J.M. Macak, H. Tsuchiya, L. Taveira, A. Ghicov, P. Schmuki, J. Biomed. Mater. Res. A. 75 (2005) 928-933.
doi: 10.1002/jbm.a.30501 pmid: 16138327
[1] Xiayu Lu, Li Liu, Xuan Xie, Yu Cui, Emeka E. Oguzie, Fuhui Wang. Synergetic effect of graphene and Co(OH)2 as cocatalysts of TiO2 nanotubes for enhanced photogenerated cathodic protection[J]. 材料科学与技术, 2020, 37(0): 55-63.
[2] Lan-Yue Cui, Guang-Bin Wei, Zhuang-Zhuang Han, Rong-Chang Zeng, Lei Wang, Yu-Hong Zou, Shuo-Qi Li, Dao-Kui Xu, Shao-Kang Guan. In vitro corrosion resistance and antibacterial performance of novel tin dioxide-doped calcium phosphate coating on degradable Mg-1Li-1Ca alloy[J]. 材料科学与技术, 2019, 35(3): 254-265.
[3] Chen Yingzhi, Li Aoxiang, Jin Ming, Lu-NingWang, Zheng-HongHuang. Inorganic Nanotube/Organic Nanoparticle Hybrids for[J]. 材料科学与技术, 2017, 33(7): 728-733.
[4] L.J. Sun, D.G. Guo, W.A. Zhao, L.Y. Wang, K.W. Xu. Influences of Reaction Parameters and Ce Contents on Structure and Properties of Nano-scale Ce-HA Powders[J]. J. Mater. Sci. Technol., 2014, 30(8): 776-781.
[5] L.J. Sun, P.F. Ni, D.G. Guo, C.Q. Fang, J. Wang, F. Yang, X.F. Huang, Y.Z. Hao, H. Zhu, K.W. Xu. Synthesis and Characterization of Tb-incorporated Apatite Nano-scale Powders[J]. J. Mater. Sci. Technol., 2012, 28(9): 773-778.
[1] Chunni Jia, Chengwu Zheng, Dianzhong Li. Cellular automaton modeling of austenite formation from ferrite plus pearlite microstructures during intercritical annealing of a C-Mn steel[J]. J. Mater. Sci. Technol., 2020, 47(0): 1 -9 .
[2] Yanan Pu, Wenwen Dou, Tingyue Gu, Shiya Tang, Xiaomei Han, Shougang Chen. Microbiologically influenced corrosion of Cu by nitrate reducing marine bacterium Pseudomonas aeruginosa[J]. J. Mater. Sci. Technol., 2020, 47(0): 10 -19 .
[3] Wenjing Long, Haining Li, Bing Yang, Nan Huang, Lusheng Liu, Zhigang Gai, Xin Jiang. Research Article Superhydrophobic diamond-coated Si nanowires for application of anti-biofouling’[J]. J. Mater. Sci. Technol., 2020, 48(0): 1 -8 .
[4] Long Chen, Chengtao Yang, Chaoyi Yan. High-performance UV detectors based on 2D CVD bismuth oxybromide single-crystal nanosheets[J]. J. Mater. Sci. Technol., 2020, 48(0): 100 -104 .
[5] Nattakan Kanjana, Wasan Maiaugree, Phitsanu Poolcharuansin, Paveena Laokul. Size controllable synthesis and photocatalytic performance of mesoporous TiO2 hollow spheres[J]. J. Mater. Sci. Technol., 2020, 48(0): 105 -113 .
[6] Bo Yang, Xianghe Peng, Yinbo Zhao, Deqiang Yin, Tao Fu, Cheng Huang. Superior mechanical and thermal properties than diamond: Diamond/lonsdaleite biphasic structure[J]. J. Mater. Sci. Technol., 2020, 48(0): 114 -122 .
[7] Y.Z. Chen, X.Y. Ma, W.X. Zhang, H. Dong, G.B. Shan, Y.B. Cong, C. Li, C.L. Yang, F. Liu. Effects of dealloying and heat treatment parameters on microstructures of nanoporous Pd[J]. J. Mater. Sci. Technol., 2020, 48(0): 123 -129 .
[8] Hui Liu, Rui Liu, Ihsan Ullah, Shuyuan Zhang, Ziqing Sun, Ling Ren, Ke Yang. Rough surface of copper-bearing titanium alloy with multifunctions of osteogenic ability and antibacterial activity[J]. J. Mater. Sci. Technol., 2020, 48(0): 130 -139 .
[9] Jinxiong Hou, Wenwen Song, Liwei Lan, Junwei Qiao. Surface modification of plasma nitriding on AlxCoCrFeNi high-entropy alloys[J]. J. Mater. Sci. Technol., 2020, 48(0): 140 -145 .
[10] H.F. Zhang, H.L. Yan, H. Yu, Z.W. Ji, Q.M. Hu, N. Jia. The effect of Co and Cr substitutions for Ni on mechanical properties and plastic deformation mechanism of FeMnCoCrNi high entropy alloys[J]. J. Mater. Sci. Technol., 2020, 48(0): 146 -155 .
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.