|
|
Improving the fretting biocorrosion of Ti6Al4V alloy bone screw by decorating structure optimised TiO2 nanotubes layer |
Jiajun Luoa, Maryam Tamaddona, Changyou Yanb, Shuanhong Mab,*( ), Xiaolong Wangb, Feng Zhoub, Chaozong Liua,*( ) |
a Institute of Orthopaedic & Musculoskeletal Science, Division of Surgery & Interventional Science, University College London, Royal National Orthopaedic Hospital, Stanmore, HA7 4LP, United Kingdom b State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China |
|
|
Abstract TiO2 nanotubes (NT) has been demonstrated its potential in orthopaedic applications due to its enhanced surface wettability and bio-osteointegration. However, the fretting biocorrosion is the main concern that limited its successfully application in orthopaedic application. In this study, a structure optimised thin TiO2 nanotube (SONT) layer was successfully created on Ti6Al4V bone screw, and its fretting corrosion performance was investigated and compared to the pristine Ti6Al4V bone screws and NT decorated screw in a bone-screw fretting simulation rig. The results have shown that the debonding TiO2 nanotube from the bone screw reduced significantly, as a result of structure optimisation. The SONT layer also exhibited enhanced bio-corrosion resistance compared pristine bone screw and conventionally NT modified bone screw. It is postulated that interfacial layer between TiO2 nanotube and Ti6Al4V substrate, generated during structure optimisation process, enhanced bonding of TiO2 nanotube layer to the Ti6Al4V bone screws that leading to the improvement in fretting corrosion resistance. The results highlighted the potential SONT in orthopaedic application as bone fracture fixation devices.
|
Received: 19 November 2019
|
Corresponding Authors:
Shuanhong Ma,Chaozong Liu
E-mail: mashuanhong@licp.cas.cn;chaozong.liu@ucl.ac.uk
|
[1] |
M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, Prog. Mater. Sci. 54 (2009) 397-425.
|
[2] |
I.S. Park, T.G. Woo, W.Y. Jeon, H.H. Park, M.H. Lee, T.S. Bae, K.W. Seol, Electrochim. Acta 53 (2007) 863-870.
|
[3] |
S. Oh, C. Daraio, L.H. Chen, T.R. Pisanic, R.R. Finones, S. Jin, J. Biomed. Mater. Res. A 78A (2006) 97-103.
|
[4] |
C. von Wilmowsky, S. Bauer, S. Roedl, F.W. Neukam, P. Schmuki, K.A. Schlegel, Clin. Oral Implant. Res. 23 (2012) 359-366.
|
[5] |
N. Swami, Z.W. Cui, L.S. Nair, J. Heat Trans. -T ASME 133 (2011), 034002.
|
[6] |
K. Lee, A. Mazare, P. Schmuki, Chem. Rev. 114 (2014) 9385-9454.
doi: 10.1021/cr500061m
pmid: 25121734
|
[7] |
H.R. Li, Q. Cui, B. Feng, J.X. Wang, X. Lu, J. Weng, Appl. Surf. Sci. 284 (2013) 179-183.
|
[8] |
Y. Zhao, Q. Xing, J. Janjanam, K. He, F. Long, K.B. Low, A. Tiwari, F. Zhao, R. Shahbazian-Yassar, C. Friedrich, T. Shokuhfar, Int. J. Nanomed. 9 (2014) 5177-5187.
|
[9] |
N. Wang, H.Y. Li, W.L. Lu, J.H. Li, J.S. Wang, Z.T. Zhang, Y.R. Liu, Biomaterials 32 (2011) 6900-6911.
doi: 10.1016/j.biomaterials.2011.06.023
pmid: 21733571
|
[10] |
L. Salou, A. Hoornaert, G. Louarn, P. Layrolle, Acta Biomater. 11 (2015) 494-502.
doi: 10.1016/j.actbio.2014.10.017
pmid: 25449926
|
[11] |
S. Bauer, J. Park, K. von der Mark, P. Schmuki, Acta Biomater. 4 (2008) 1576-1582.
pmid: 18485845
|
[12] |
F. Schmidt-Stein, S. Thiemann, S. Berger, R. Hahn, P. Schmuki, Acta Mater. 58 (2010) 6317-6323.
doi: 10.1016/j.actamat.2010.07.053
|
[13] |
D.A. Wang, B. Yu, C.W. Wang, F. Zhou, W.M. Liu, Adv. Mater. 21 (2009) 1964-1967.
doi: 10.1002/adma.v21:19
|
[14] |
O. Bostman, H. Pihlajamaki, Biomaterials 21 (2000) 2615-2621.
pmid: 11071611
|
[15] |
S.B. Goodman, Z.Y. Yao, M. Keeney, F. Yang, Biomaterials 34 (2013) 3174-3183.
doi: 10.1016/j.biomaterials.2013.01.074
|
[16] |
M. Sundfeldt, L.V. Carlsson, C.B. Johansson, P. Thomsen, C. Gretzer, Acta Orthop. 77 (2006) 177-197.
pmid: 16752278
|
[17] |
W.Q. Yu, J. Qiu, L. Xu, F.Q. Zhang, Biomed. Mater. 4 (2009), 065012.
doi: 10.1088/1748-6041/4/6/065012
pmid: 20009163
|
[18] |
W.-q. Yu, J. Qiu, F.-q. Zhang, Colloids Surf. B Biointerfaces 84 (2011) 400-405.
doi: 10.1016/j.colsurfb.2011.01.033
pmid: 21377339
|
[19] |
C.E.B. Marino, L.H. Mascaro, J. Electroanal. Chem. 568 (2004) 115-120.
|
[20] |
I. Hacisalihoglu, A. Samancioglu, F. Yildiz, G. Purcek, A. Alsaran, Wear 332 (2015) 679-686.
|
[21] |
J. Luo, B. Li, S. Ajami, S. Ma, F. Zhou, C. Liu, J. Bionic Eng. 16 (2019) 1039-1051.
|
[22] |
J.Y. Rho, G.M. Pharr, J. Mater. Sci. Mater. Med. 10 (1999) 485-488.
pmid: 15348117
|
[23] |
S.B. Goodman, Biomaterials 28 (2007) 5044-5048.
doi: 10.1016/j.biomaterials.2007.06.035
pmid: 17645943
|
[24] |
J. Geringer, B. Forest, P. Combrade, Wear 259 (2005) 943-951.
|
[25] |
S. Barril, N. Debaud, S. Mischler, D. Landolt, Wear 252 (2002) 744-754.
|
[26] |
J. Raphel, M. Holodniy, S.B. Goodman, S.C. Heilshorn, Biomaterials 84 (2016) 301-314.
doi: 10.1016/j.biomaterials.2016.01.016
pmid: 26851394
|
[27] |
J.M. Macak, H. Tsuchiya, L. Taveira, A. Ghicov, P. Schmuki, J. Biomed. Mater. Res. A. 75 (2005) 928-933.
doi: 10.1002/jbm.a.30501
pmid: 16138327
|
[1] |
Chunni Jia, Chengwu Zheng, Dianzhong Li. Cellular automaton modeling of austenite formation from ferrite plus pearlite microstructures during intercritical annealing of a C-Mn steel[J]. J. Mater. Sci. Technol., 2020, 47(0): 1
-9
. |
[2] |
Yanan Pu, Wenwen Dou, Tingyue Gu, Shiya Tang, Xiaomei Han, Shougang Chen. Microbiologically influenced corrosion of Cu by nitrate reducing marine bacterium Pseudomonas aeruginosa[J]. J. Mater. Sci. Technol., 2020, 47(0): 10
-19
. |
[3] |
Wenjing Long, Haining Li, Bing Yang, Nan Huang, Lusheng Liu, Zhigang Gai, Xin Jiang. Research Article Superhydrophobic diamond-coated Si nanowires for application of anti-biofouling’[J]. J. Mater. Sci. Technol., 2020, 48(0): 1
-8
. |
[4] |
Long Chen, Chengtao Yang, Chaoyi Yan. High-performance UV detectors based on 2D CVD bismuth oxybromide single-crystal nanosheets[J]. J. Mater. Sci. Technol., 2020, 48(0): 100
-104
. |
[5] |
Nattakan Kanjana, Wasan Maiaugree, Phitsanu Poolcharuansin, Paveena Laokul. Size controllable synthesis and photocatalytic performance of mesoporous TiO2 hollow spheres[J]. J. Mater. Sci. Technol., 2020, 48(0): 105
-113
. |
[6] |
Bo Yang, Xianghe Peng, Yinbo Zhao, Deqiang Yin, Tao Fu, Cheng Huang. Superior mechanical and thermal properties than diamond: Diamond/lonsdaleite biphasic structure[J]. J. Mater. Sci. Technol., 2020, 48(0): 114
-122
. |
[7] |
Y.Z. Chen, X.Y. Ma, W.X. Zhang, H. Dong, G.B. Shan, Y.B. Cong, C. Li, C.L. Yang, F. Liu. Effects of dealloying and heat treatment parameters on microstructures of nanoporous Pd[J]. J. Mater. Sci. Technol., 2020, 48(0): 123
-129
. |
[8] |
Hui Liu, Rui Liu, Ihsan Ullah, Shuyuan Zhang, Ziqing Sun, Ling Ren, Ke Yang. Rough surface of copper-bearing titanium alloy with multifunctions of osteogenic ability and antibacterial activity[J]. J. Mater. Sci. Technol., 2020, 48(0): 130
-139
. |
[9] |
Jinxiong Hou, Wenwen Song, Liwei Lan, Junwei Qiao. Surface modification of plasma nitriding on AlxCoCrFeNi high-entropy alloys[J]. J. Mater. Sci. Technol., 2020, 48(0): 140
-145
. |
[10] |
H.F. Zhang, H.L. Yan, H. Yu, Z.W. Ji, Q.M. Hu, N. Jia. The effect of Co and Cr substitutions for Ni on mechanical properties and plastic deformation mechanism of FeMnCoCrNi high entropy alloys[J]. J. Mater. Sci. Technol., 2020, 48(0): 146
-155
. |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|