J. Mater. Sci. Technol. ›› 2019, Vol. 35 ›› Issue (3): 254-265.DOI: 10.1016/j.jmst.2018.09.052
• Orginal Article • Previous Articles Next Articles
Lan-Yue Cuia, Guang-Bin Weia, Zhuang-Zhuang Hana, Rong-Chang Zenga*(), Lei Wanga, Yu-Hong Zoub, Shuo-Qi Lia, Dao-Kui Xuc, Shao-Kang Guand
Received:
2018-05-17
Revised:
2018-07-25
Accepted:
2018-08-01
Online:
2019-03-15
Published:
2019-01-18
Contact:
Zeng Rong-Chang
About author:
1 These authors contributed equally to this work.
Lan-Yue Cui, Guang-Bin Wei, Zhuang-Zhuang Han, Rong-Chang Zeng, Lei Wang, Yu-Hong Zou, Shuo-Qi Li, Dao-Kui Xu, Shao-Kang Guan. In vitro corrosion resistance and antibacterial performance of novel tin dioxide-doped calcium phosphate coating on degradable Mg-1Li-1Ca alloy[J]. J. Mater. Sci. Technol., 2019, 35(3): 254-265.
Sample | Mg | Ca | Li | Mn | Si | Fe | Cu | Ni |
---|---|---|---|---|---|---|---|---|
Mg-Li-Ca alloy | Balanced | 1.12 | 0.88 | 0.014 | 0.013 | 0.0002 | 0.0002 | 0.0003 |
Table 1 Chemical compositions of as-extruded Mg-Li-Ca alloy, wt. %.
Sample | Mg | Ca | Li | Mn | Si | Fe | Cu | Ni |
---|---|---|---|---|---|---|---|---|
Mg-Li-Ca alloy | Balanced | 1.12 | 0.88 | 0.014 | 0.013 | 0.0002 | 0.0002 | 0.0003 |
Fig. 2. SEM micrographs: (a) low magnification, (b) high magnification; and (c, d) chemical compositions of Points A and B, respectively, in the Ca-P-Sn coating on the Mg-Li-Ca alloy.
Fig. 3. (a) Hydrogen evolution volume as a function of immersion time, (b) polarization curves, (c) Nyquist plots, (d) Bode plots, equivalent circuits of the (e) Mg-Li-Ca alloy, (f) Ca-P and (g) Ca-P-Sn coatings in Hank’s solution at 37?°C.
Sample | Ecorr (V/SCE) | βa (mV/dec) | -βc (mV/dec) | icorr (A/cm2) | Pi (mm/a) |
---|---|---|---|---|---|
Mg-Li-Ca alloy | -1.55 | 40.89 | 238.87 | 1.01?×?10-5 | 0.231 |
Ca-P coating | -1.49 | 150.87 | 156.26 | 3.57?×?10-6 | 0.082 |
Ca-P-Sn coating | -1.47 | 121.04 | 127.44 | 1.87?×?10-6 | 0.043 |
Table 2 Electrochemical parameters of the polarization curves of the samples.
Sample | Ecorr (V/SCE) | βa (mV/dec) | -βc (mV/dec) | icorr (A/cm2) | Pi (mm/a) |
---|---|---|---|---|---|
Mg-Li-Ca alloy | -1.55 | 40.89 | 238.87 | 1.01?×?10-5 | 0.231 |
Ca-P coating | -1.49 | 150.87 | 156.26 | 3.57?×?10-6 | 0.082 |
Ca-P-Sn coating | -1.47 | 121.04 | 127.44 | 1.87?×?10-6 | 0.043 |
Samples | Rs (Ω?cm2) | CPE1 (Ω-1?cm-2?s-1) | n1 | Rct (Ω?cm2) | CPE2 (Ω-1?cm-2?s-1) | n2 | Rf1 (Ω?cm2) | CPE3 (Ω-1?cm-2?s-1) | n3 | Rf2 (Ω?cm2) | RL (Ω?cm2) | L (H?cm-2) | Chi square |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mg-1Li-1Ca alloy | 73.48 | 6.97?×?10-5 | 0.65 | 113.0 | 2.25?×?10-6 | 2.98?×?103 | 82.44 | 8.16?×?10-4 | |||||
Ca-P coating | 63.85 | 1.27?×?10-9 | 1.00 | 602.3 | 7.75?×?10-7 | 0.57 | 4.46?×?103 | 6.59?×?10-5 | 0.60 | 2.11?×?103 | 1.61?×?103 | 9.06?×?10-4 | |
Ca-P-Sn coating | 31.67 | 3.96?×?10-8 | 0.77 | 744.9 | 2.35?×?10-5 | 0.18 | 9.99?×?103 | 3.80?×?10-7 | 1.00 | 2.68?×?103 | 2.99?×?104 | 1.91?×?105 | 4.08?×?10-4 |
Table 3 Fitting results of EIS spectra.
Samples | Rs (Ω?cm2) | CPE1 (Ω-1?cm-2?s-1) | n1 | Rct (Ω?cm2) | CPE2 (Ω-1?cm-2?s-1) | n2 | Rf1 (Ω?cm2) | CPE3 (Ω-1?cm-2?s-1) | n3 | Rf2 (Ω?cm2) | RL (Ω?cm2) | L (H?cm-2) | Chi square |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mg-1Li-1Ca alloy | 73.48 | 6.97?×?10-5 | 0.65 | 113.0 | 2.25?×?10-6 | 2.98?×?103 | 82.44 | 8.16?×?10-4 | |||||
Ca-P coating | 63.85 | 1.27?×?10-9 | 1.00 | 602.3 | 7.75?×?10-7 | 0.57 | 4.46?×?103 | 6.59?×?10-5 | 0.60 | 2.11?×?103 | 1.61?×?103 | 9.06?×?10-4 | |
Ca-P-Sn coating | 31.67 | 3.96?×?10-8 | 0.77 | 744.9 | 2.35?×?10-5 | 0.18 | 9.99?×?103 | 3.80?×?10-7 | 1.00 | 2.68?×?103 | 2.99?×?104 | 1.91?×?105 | 4.08?×?10-4 |
Fig. 4. Numbers of E. coli colonies on the samples: the (a) control, (b) Mg-1Li-1Ca alloy, (c) Ca-P coating, (d) SnO2 nanoparticles and (d) Ca-P-Sn coating.
Fig. 5. (a) Low and (b) high magnification of the coating morphology prepared at room temperature; (c) XRD patterns of the coating prepared at room temperature; (d) the pH values of the bath solution as a function of immersion time at room temperature.
Fig. 6. XRD patterns of the Mg-Li-Ca alloy with and without the Ca-P-Sn coating (A) before and (B) after an immersion in Hank’s solution for 8 days in comparison to the SnO2 nano-particles; (C) the enlarged images of the Ca-P-Sn coating before and after an immersion.
Fig. 7. SEM morphologies of the coatings with the (a) presence of SnO2 at pH 2.9, (b) presence of SnO2 at pH 7.90, (c) absence of SnO2 and (d) presence of Na2SnO3 instead of SnO2 in the solution.
Fig. 8. (a) Cross-sectional SEM image, (b) EDS with line scanning and (c) elemental distributions of the (d) Ca, (e) P, (f) Sn, (g) N, (h) C, (i) O and (j) Mg elements in the Ca-P-Sn coating on the Mg-Li-Ca alloy.
Spectra | C | O | Mg | Sn | N | Na | Ca | P | Ca/P |
---|---|---|---|---|---|---|---|---|---|
A Substrate | 10.40 (15.47) | 52.61 (58.71) | 29.39 (21.58) | - | - | - | 1.08 (0.47) | 6.55 (3.77) | - (0.13) |
A Coating | 19.57 (29.72) | 47.06 (53.65) | 1.32 (1.00) | 3.00 (0.48) | - | 0.67 (0.53) | 15.57 (7.08) | 12.81 (7.54) | - (0.94) |
B Coating | 25.94 (37.13) | 34.13 (36.66) | 0.75 (0.53) | - | 9.15 (11.22) | 0.56 (0.42) | 18.36 (7.88) | 11.11 (6.16) | - (1.28) |
Table 4 Chemical compositions of spectrums detected by EDS, wt. % (at. %).
Spectra | C | O | Mg | Sn | N | Na | Ca | P | Ca/P |
---|---|---|---|---|---|---|---|---|---|
A Substrate | 10.40 (15.47) | 52.61 (58.71) | 29.39 (21.58) | - | - | - | 1.08 (0.47) | 6.55 (3.77) | - (0.13) |
A Coating | 19.57 (29.72) | 47.06 (53.65) | 1.32 (1.00) | 3.00 (0.48) | - | 0.67 (0.53) | 15.57 (7.08) | 12.81 (7.54) | - (0.94) |
B Coating | 25.94 (37.13) | 34.13 (36.66) | 0.75 (0.53) | - | 9.15 (11.22) | 0.56 (0.42) | 18.36 (7.88) | 11.11 (6.16) | - (1.28) |
Ca(OH)2 | CaCO3 | MgCO3 | Mg(OH)2 | MgHPO4·3H2O | CaHPO4 | Mg3(PO4)2 | Ca3(PO4)2 | HA |
---|---|---|---|---|---|---|---|---|
5.5×10-6 | 2.9×10-9 | 3.5×10-8 | 1.8×10-11 | 1.5×10-6 | 1.0×10-7 | 1.0×10-25 | 2.0×10-29 | 2.35×10-59 |
Table 5 Solubility, Ksp [82].
Ca(OH)2 | CaCO3 | MgCO3 | Mg(OH)2 | MgHPO4·3H2O | CaHPO4 | Mg3(PO4)2 | Ca3(PO4)2 | HA |
---|---|---|---|---|---|---|---|---|
5.5×10-6 | 2.9×10-9 | 3.5×10-8 | 1.8×10-11 | 1.5×10-6 | 1.0×10-7 | 1.0×10-25 | 2.0×10-29 | 2.35×10-59 |
|
[1] | Yanhua Zeng, Fenfen Yang, Zongning Chen, Enyu Guo, Minqiang Gao, Xuejian Wang, Huijun Kang, Tongmin Wang. Enhancing mechanical properties and corrosion resistance of nickel-aluminum bronze via hot rolling process [J]. J. Mater. Sci. Technol., 2021, 61(0): 186-196. |
[2] | Hu Liu, Jie Wei, Junhua Dong, Yiqing Chen, Yumin Wu, Yangtao Zhou, Subedi Dhruba Babu, Wei Ke. Influence of cementite spheroidization on relieving the micro-galvanic effect of ferrite-pearlite steel in acidic chloride environment [J]. J. Mater. Sci. Technol., 2021, 61(0): 234-246. |
[3] | Yanxin Qiao, Daokui Xu, Shuo Wang, Yingjie Ma, Jian Chen, Yuxin Wang, Huiling Zhou. Effect of hydrogen charging on microstructural evolution and corrosion behavior of Ti-4Al-2V-1Mo-1Fe alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 168-176. |
[4] | Jiawei Ding, Haitao Wang, En-Hou Han. A multiphysics model for studying transient crevice corrosion of stainless steel [J]. J. Mater. Sci. Technol., 2021, 60(0): 186-196. |
[5] | Hongxia Wan, Dongdong Song, Xiaolei Shi, Yong Cai, Tingting Li, Changfeng Chen. Corrosion behavior of Al0.4CoCu0.6NiSi0.2Ti0.25 high-entropy alloy coating via 3D printing laser cladding in a sulphur environment [J]. J. Mater. Sci. Technol., 2021, 60(0): 197-205. |
[6] | Qianqian Jin, Xiaohong Shao, Shijian Zheng, Yangtao Zhou, Bo Zhang, Xiuliang Ma. Interfacial dislocations dominated lateral growth of long-period stacking ordered phase in Mg alloys [J]. J. Mater. Sci. Technol., 2021, 61(0): 114-118. |
[7] | Xian-Zong Wang, Hong-Qiang Fan, Triratna Muneshwar, Ken Cadien, Jing-Li Luo. Balancing the corrosion resistance and through-plane electrical conductivity of Cr coating via oxygen plasma treatment [J]. J. Mater. Sci. Technol., 2021, 61(0): 75-84. |
[8] | Heng Chen, Zifan Zhao, Huimin Xiang, Fu-Zhi Dai, Wei Xu, Kuang Sun, Jiachen Liu, Yanchun Zhou. High entropy (Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12: A novel high temperature stable thermal barrier material [J]. J. Mater. Sci. Technol., 2020, 48(0): 57-62. |
[9] | Enze Zhou, Jianjun Wang, Masoumeh Moradi, Huabing Li, Dake Xu, Yuntian Lou, Jinheng Luo, Lifeng Li, Yulei Wang, Zhenguo Yang, Fuhui Wang, Jessica A. Smith. Methanogenic archaea and sulfate reducing bacteria induce severe corrosion of steel pipelines after hydrostatic testing [J]. J. Mater. Sci. Technol., 2020, 48(0): 72-83. |
[10] | Xiao-Yuan Wang, Yu-Fei Wang, Cheng Wang, Shun Xu, Jian Rong, Zhi-Zheng Yang, Jin-Guo Wang, Hui-Yuan Wang. A simultaneous improvement of both strength and ductility by Sn addition in as-extruded Mg-6Al-4Zn alloy [J]. J. Mater. Sci. Technol., 2020, 49(0): 117-125. |
[11] | Zhuowei Tan, Liuyang Yang, Dalei Zhang, Zhenbo Wang, Frank Cheng, Mingyang Zhang, Youhai Jin. Development mechanism of internal local corrosion of X80 pipeline steel [J]. J. Mater. Sci. Technol., 2020, 49(0): 186-201. |
[12] | Jiajun Luo, Maryam Tamaddon, Changyou Yan, Shuanhong Ma, Xiaolong Wang, Feng Zhou, Chaozong Liu. Improving the fretting biocorrosion of Ti6Al4V alloy bone screw by decorating structure optimised TiO2 nanotubes layer [J]. J. Mater. Sci. Technol., 2020, 49(0): 47-55. |
[13] | Zhao-Qi Zhang, Rong-Chang Zeng, Cun-Guo Lin, Li Wang, Xiao-Bo Chen, Dong-Chu Chen. Corrosion resistance of self-cleaning silane/polypropylene composite coatings on magnesium alloy AZ31 [J]. J. Mater. Sci. Technol., 2020, 41(0): 43-55. |
[14] | Pengfei Zhang, Yunchang Xin, Ling Zhang, Shiwei Pan, Qing Liu. On the texture memory effect of a cross-rolled Mg-2Zn-2Gd plate after unidirectional rolling [J]. J. Mater. Sci. Technol., 2020, 41(0): 98-104. |
[15] | Wei Xu, Xin Lu, Jingjing Tian, Chao Huang, Miao Chen, Yu Yan, Luning Wang, Xuanhui Qu, Cuie Wen. Microstructure, wear resistance, and corrosion performance of Ti35Zr28Nb alloy fabricated by powder metallurgy for orthopedic applications [J]. J. Mater. Sci. Technol., 2020, 41(0): 191-198. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||