J. Mater. Sci. Technol. ›› 2020, Vol. 51: 193-201.DOI: 10.1016/j.jmst.2020.04.004
• Research Article • Previous Articles
Kim Yong-Ila,*(), Kim Ki-Bokb, Kim Misob
Received:
2019-10-08
Revised:
2020-01-16
Accepted:
2020-01-29
Published:
2020-08-15
Online:
2020-08-11
Contact:
Kim Yong-Il
About author:
*, yikim@kriss.re.kr(Y.-I. Kim).Kim Yong-Il, Kim Ki-Bok, Kim Miso. Characterization of lattice parameters gradient of Cu(In1-xGax)Se2 absorbing layer in thin-film solar cell by glancing incidence X-ray diffraction technique[J]. J. Mater. Sci. Technol., 2020, 51: 193-201.
Fig. 1. Cross-sectional transmission electron microscope (TEM) photographs of the device structure of the Cu(In1-xGax)Se2 (CIGS) thin-film solar cells. It consists of Pt, ITO, ZnO and CdS as transparent front contact layers, CIGS as absorbing layer and Mo as a back-contact layer. The inset indicates that a lamellar-typed MoSe2 phase appears at the CIGS/Mo interfacial region.
Fig. 2 shows the theoretical X-ray penetration depth of the Cu(In1-xGax)Se2 absorbing layer with x = 0.0, 0.2, 0.5, 0.8 and 1.0 as a function of the incident angle. In GIXRD, the theoretical X-ray penetration depth of the incident X-ray beam, τ(α), is given by the following equation [[30], [31], [32], [33]]: (1)$\tau (\alpha )=\frac{\lambda }{4\pi \times {{2}^{-1/2}}}{{\left( \sqrt{{{({{\alpha }^{2}}-\alpha _{c}^{2})}^{2}}+4{{\beta }^{2}}}+{{\alpha }^{2}}-\alpha _{c}^{2} \right)}^{{}^{1}/{}_{2}}}$
Fig. 2. Theoretical X-ray penetration depth of the Cu(In1-xGax)Se2 (x = 0.0, 0.2, 0.5, 0.8 and 1.0) absorbing layer as a function of the incident angle.
Fig. 3. (a) Glancing incidence X-ray diffraction (GIXRD) patterns of the Cu(In1-xGax)Se2 (CIGS) absorbing layer at incident angles between 0.50° and 5.00°, (b) the shift in the position of 112 and (c) the shift in the position of 204 peak of the CIGS absorbing layer as a function of the incident angle.
Fig. 6. (a) Cross-sectional transmission electron microscope (TEM) photograph and (b) compositional profile of constituent atoms (Cu, Ga, Se and In) of the Cu(In1-xGax)Se2 (CIGS) absorbing layer as a function of depth from the surface to the bottom of the absorbing layer.
Fig. 7. Unit-cell volume, theoretical penetration, In/(Ga + In) ratio and bandgap of the Cu(In1-xGax)Se2 (CIGS) absorbing layer as functions of the incident angle.
[1] | M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop , Prog. Photovolt. Res. Appl., 23(2015), pp. 1-9. |
[2] | S.-H. Bae, H. Zhao, Y.-T. Hsieh, L. Zuo, N.D. Marco, Y.S. Rim, G. Li, Y. Yang, Chem., 1(2016), pp. 197-219. |
[3] | D. Fraga, T. Stoyanova Lyubenova, R. Martí, I. Calvet, E. Barrachina, J.B. Carda, J. Eur. Ceram. Soc., 27(2007), pp. 3509-3515. |
[4] | T. Kato, Jpn. J. Appl. Phys ., 56 ( 2017),Article 04CA02. |
[5] | P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T.M. Friedlmeier, M. Powalla , Phys. Status Solidi-R., 9(2015), pp. 28-31. |
[6] | F. Kessier, D. Rudmann , Sol. Energy, 77(2004), pp. 685-695. |
[7] | A. Chirilâ, P. Reinhard, F. Pianezzi, P. Bloesch, A.R. Uhl, C. Fella, L. Kranz, D. Keller, C. Gretener, H. Hagendorfer, D. Jaeger, R. Erni, S. Nishiwaki, S. Buecheler, A.N. Tiwari , Nat. Mater., 12(2013), pp. 1107-1111. |
[8] | J. Ramanujam, U.P. Singh , Energy Environ. Sci., 10(2017), pp. 1306-1319. |
[9] | T. Dullweber, G. Hanna, U. Rau, H.W. Schock , Sol. Energy Mater. Sol. Cells, 67(2001), pp. 145-150. |
[10] | S.-H. Wei, S.B. Zhang, A. Zunger, Appl. Phys. Lett., 72(1998), pp. 3199-3201. |
[11] | J. Park, M. Shin , Energies, 11(2018), pp. 1785-1884. |
[12] | M. Gloeckler, J.R. Sites, J. Phys. Chem . Solids, 66(2005), pp. 1891-1894. |
[13] | W.C. Lim, J.H. Lee, Y.H. Lee, J. Surf. Anal., 17(2011), pp. 324-327. |
[14] | C.L. Perkins, B. Egaas, I. Repins, B. To , Appl. Surf. Sci., 257(2010), pp. 878-886. |
[15] | Y.J. Jang, J. Lee, K.-B. Lee, D. Kim, Y. Lee, J. Anal. Methods Chem., 8(2018), pp. 1-9. |
[16] | L.M. Mansfield, R.L. Garris, K.D. Counts, J.R. Sites, C.P. Thompson, W.N. Shafarman, K. Ramanathan , IEEE J. Photovolt., 7(2017), pp. 286-293. |
[17] | D. Abou-Ras, R. Caballero, C.H. Fischer, C.A. Kaufmann, I. Lauermann, R. Mainz, H. Mnig, A. Schpke, C. Stephan, C. Streeck, S. Schorr, A. Eicke, M. Dbeli, B. Gade, J. Hinrichs, T. Nunney, H. Dijkstra, V. Hoffmann, D. Klemm, V. Efimova, A. Bergmaier, G. Dollinger, T. Wirth, W. Unger, A. Angus Rockett, J. Perez-Rodriguez, V. Alvarez-Garcia, T. Izquierdo-Roca, P.P. Schmid, M. Choi, F. Müller, J. Bertram, H. Christen, R.W. Khatri, S. Collins, I. Marsillac, Ktschau , Microsc. Microanal., 17(2011), pp. 728-751. |
[18] | G.S. Pawley, J. Appl. Cryst., 14(1981), pp. 357-361. |
[19] | L.W. Finger, D.E. Cox, A.P. Jephcoat, J. Appl. Cryst., 27(1994), pp. 892-900. |
[20] | R. Dalven , Phys. Rev. B, 8(1973), pp. 6033-6034. |
[21] | M. Singh, I.M. Low, A. Asmi, J. Eur. Ceram. Soc., 22(2002), pp. 2877-2882. |
[22] | M. Nauer, K. Ernst, W. Kautek, M. Neumann-Spallart , Thin Solid Films, 489(2005), pp. 86-93. |
[23] | D. Simeone, G. Baldinozzi, D. Gosset, S.L. Caer, J.-F. Berar, Thin Solid Films, 530(2013), pp. 9-13. |
[24] | N.E. Widjonarko , Coatings, 54(2016), pp. 54-71. |
[25] | B.L. Ballard, X. Zhu, P.K. Predecki, D. Albin, A. Gabor, J. Tuttle, R. Noufi , Adv. X-Ray Anal., 38(1995), pp. 269-276. |
[26] | I.M. Ktschau, H.W. Schock, J. Appl. Cryst., 39(2006), pp. 683-696. |
[27] | I.M. Ktschau, H.W. Schock, J. Phys. Chem. Solids, 64(2003), pp. 1559-1563. |
[28] | C.-Y. Chiang, S.-W. Hsiao, P.-J. Wu, C.-S. Yang, C.-H. Chen, W.-C. Chou, ACS Appl. Mater. Interfaces, 8(2016), pp. 24152-24160. |
[29] | J. Koo, S. Kim, T. Cheon, S.-H. Kim, W.K. Kim, Sci. Rep., 8(2018), pp. 3905-4105. |
[30] | L.G. Parratt , Phys. Rev., 95(1954), pp. 359-369. |
[31] | J. Daillant, A. Gibaud (Eds.), X-ray and Neutron Re?ectivity: Principles and Applications, Springer, Berlin, Heiddelberg(1999), pp. 96-98. |
[32] | S. Debnath, P. Predecki, R. Suryanarayanan , Pharm. Res., 21(2004), pp. 149-159. |
[33] | P. Colombi, P. Zanola, E. Bontempi, R. Roberti, M. Gelfi, L.E. Depero, J. Appl. Cryst ., 39(2006), pp. 176-179. |
[34] | P. Pluengphon, T. Bovornratanaraks, S. Vannarat, K. Yoodee, D. Ruffolo, U. Pinsook , Solid State Commun., 152(2012), pp. 775-778. |
[35] | J.M. Merino, M.D. Michiel, M. Leon, J. Phys. Chem. Solids, 64(2003), pp. 1649-1652. |
[36] | M. Souilah, A. Lafond, C. Guilot-Deudon, S. Harel, M. Evain , J. Solid State Chem., 183(2010), pp. 2274-2280. |
[37] | L.A. Mechkovski, S.A. Alfer, I.V. Bodnar, A.P. Bologa , Thermochi. Acta, 93(1985), pp. 729-732. |
[38] | I.V. Bodnar, A.P. Boloya, A.A. Vaipolin, L.A. Makovetskaya, J. Mater. Sci. Lett., 4(1985), pp. 1308-1312. |
[39] | D.K. Suri, K.C. Nagpal, G.K. Chadha, J. Appl. Crystallogr., 22(1989), pp. 578-583. |
[40] | I.V. Bodnar, I.T. Bodnar, A.A. Vaipolin , Cryst. Res. Technol., 19(1984), pp. 1553-1557. |
[41] | T. Tinoco, C. Rincón, M. Quintero, G. Sánchez Pérez , Phys. Status Solidi A, 124(1991), pp. 427-434. |
[42] | H. Hahn, G. Frank, W. Klinger, A.D. Meyer, G. Stoerger, Z. Anorg. Allg. Chem., 271(1953), pp. 153-170. |
[43] | J. Srour, M. Badawi, F. El Haj Hassan, A.V. Postnikov, Phys. Status Solidi B, 253(2016), pp. 1472-1475. |
[44] | R.D. Shannon , Acta Cryst. Sect. A, 32(1976), pp. 751-767. |
[45] | E.J. Friedrich, R. Fernández-Ruiz, J.M. Merino, M. León , Powder Diffr., 25(2010), pp. 253-257. |
[46] | M.R. Balboul, H.W. Schock, S.A. Fayak, A. Abdel El-Aal, J.H. Werner, A.A. Ramadan, Appl. Phys. A, 92(2008), pp. 557-563. |
[47] | SRM 660cPowder Line Position and Line Shape Standard for Powder Diffraction, National institute of standards and technology; U.S. Department of Commerce, Gaithersburg, MD ( 2015)29 October. |
[48] | A.R. Denton, N.W. Ashcroft , Phys. Rev. A, 43(1991), pp. 3161-3164. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||