J. Mater. Sci. Technol. ›› 2022, Vol. 100: 129-136.DOI: 10.1016/j.jmst.2021.05.045
• Letter • Previous Articles Next Articles
Wei Li, Hanyang Liu, Peihua Yin, Wei Yan, Wei Wang*(), Yiyin Shan, Ke Yang
Revised:
2021-05-18
Accepted:
2021-05-10
Published:
2022-02-20
Online:
2022-02-15
Contact:
Wei Wang
About author:
*E-mail address: wangw@imr.ac.cn (W. Wang)Wei Li, Hanyang Liu, Peihua Yin, Wei Yan, Wei Wang, Yiyin Shan, Ke Yang. Special tetrahedral twins in a cryogenically deformed CoCrFeNi high-entropy alloy[J]. J. Mater. Sci. Technol., 2022, 100: 129-136.
Elements | Co | Cr | Fe | Ni |
---|---|---|---|---|
Nominal composition (at.%) | 25.00 | 25.00 | 25.00 | 25.00 |
Measured composition (at.%) | 25.08 | 24.83 | 25.68 | 24.41 |
Table 1 Nominal composition and measured composition of the equimolar CoCrFeNi alloy in our work.
Elements | Co | Cr | Fe | Ni |
---|---|---|---|---|
Nominal composition (at.%) | 25.00 | 25.00 | 25.00 | 25.00 |
Measured composition (at.%) | 25.08 | 24.83 | 25.68 | 24.41 |
Fig. 1. (a) Tensile engineering stress-strain curves of the samples with strain levels of 0, 0.12 and 0.63; (b) Yield strength and tensile strength of the samples with strain levels of 0, 0.12 and 0.63.
Fig. 2. Macroscopic optical images of the samples with deformation strains of 0.12 (a) and 0.63 (b); (c,d) macroscopic composition distributions of samples with strain of 0.63
Fig. 3. EBSD and high-resolution emission transmission electron microscope (HRTEM) results of the samples with deformation strains of 0.12 and 0.63. (a-c) and (d-f) are the EBSD results of the cross-sectional samples with strain levels of 0.12 and 0.63, respectively. Most HCP structures (ε-martensite, indicted in blue in Fig. 3 (c) and (f)) formed near the coherent Σ3 60° deformation twin boundaries (marked by red lines). (g) and (h) are the HRTEM images of ε-martensite shaped with a five-layer zipper in the samples with strain levels of 0.12and 0.63, respectively (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).
Fig. 4. (a),(b) TEM bright field image and schematic diagram of triangular intersecting twins in sample with a strain level of 0.63. (c),(f) [01$\bar 1$] and [10$\bar 1$] electron diffraction patterns of matrix and the selected three sides of the triangle in Fig. 1 (b). All sides of the triangle were proven to be twins.
Fig. 5. (a) Schematic diagram of intercepting tetrahedral twins by a certain crystallographic plane. (b,c) Comparison of the CBED results with the standard Kikuchi diffraction patterns provided by spherical Kikuchi maps. Good agreement between the calculation and experimental results proved the existence of the tetrahedral structures bounded by twins.
Fig. 6. (a) Schematic diagram of intersection structure patterns of folded lamella-twins. (b-d) Corresponding interception type of pattern 1, pattern 2, pattern 3 and pattern 4 in Fig. 6 (a).
Fig. 7. (a,b) Geometrically necessary dislocation density distribution maps of the sample with deformed strain of 0.63, circumferential direction (a) and drawing direction (b), respectively; (c) Enlarged image of the red box area in Fig. 7 (b). (d) Histogram of the geometrically necessary dislocation density changes on the triangular path (A-B-C-A) marked in Fig. 7 (c) (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).
[1] | J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 5 (2004) 299-303. |
[2] |
B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. A 375-377 (2004) 213-218.
DOI URL |
[3] |
Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Prog. Mater. Sci. 61 (2014) 1-93.
DOI URL |
[4] |
Y. Tong, D. Chen, B. Han, J. Wang, R. Feng, T. Yang, C. Zhao, Y.L. Zhao, W. Guo, Y. Shimizu, C.T. Liu, P.K. Liaw, K. Inoue, Y. Nagai, A. Hu, J.J. Kai, Acta Mater. 165 (2019) 228-240.
DOI |
[5] | L. Fan, T. Yang, Y. Zhao, J. Luan, G. Zhou, H. Wang, Z. Jiao, C.T. Liu, Nat. Com- mun. 11 (1) (2020). |
[6] |
Y. Ma, M. Yang, F. Yuan, X. Wu, J. Mater. Sci. Technol. 82 (2021) 122-134.
DOI |
[7] |
Q. Wang, L. Zeng, T. Gao, H. Du, X. Liu, J. Mater. Sci. Technol. 87 (2021) 29-38.
DOI URL |
[8] |
R. Wei, K. Zhang, L. Chen, Z. Han, T. Wang, C. Chen, J. Jiang, T. Hu, F. Li, J. Mater. Sci. Technol. 57 (2020) 153-158.
DOI URL |
[9] |
Y.Z. Tian, S.J. Sun, H.R. Lin, Z.F. Zhang, J. Mater. Sci. Technol. 35 (3) (2019) 334-340.
DOI |
[10] |
H. Chang, T.W. Zhang, S.G. Ma, D. Zhao, R.L. Xiong, T. Wang, Z.Q. Li, Z.H. Wang, Mater. Des. 197 (2021) 109202.
DOI URL |
[11] |
F. He, Z. Wang, Q. Wu, D. Chen, T. Yang, J. Li, J. Wang, C.T. Liu, J.j. Kai, Scr. Mater. 155 (2018) 134-138.
DOI URL |
[12] |
G. Laplanche, A. Kostka, O.M. Horst, G. Eggeler, E.P. George, Acta Mater. 118 (2016) 152-163.
DOI URL |
[13] |
J. Miao, C.E. Slone, T.M. Smith, C. Niu, H. Bei, M. Ghazisaeidi, G.M. Pharr, M.J. Mills, Acta Mater. 132 (2017) 35-48.
DOI URL |
[14] | X. Fu, X. Wu, Q. Yu, Mater. Today Nano 3 (2018) 48-53. |
[15] |
G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler, E.P. George, Acta Mater. 128 (2017) 292-303.
DOI URL |
[16] |
Y. Deng, C.C. Tasan, K.G. Pradeep, H. Springer, A. Kostka, D. Raabe, Acta Mater. 94 (2015) 124-133.
DOI URL |
[17] |
M. Naeem, H. He, F. Zhang, H. Huang, S. Harjo, T. Kawasaki, B. Wang, S. Lan, Z. Wu, F. Wang, Y. Wu, Z. Lu, Z. Zhang, C.T. Liu, X.L. Wang, Sci. Adv. 6 (13)(2020) eaax4002.
DOI URL |
[18] |
S.W. Wu, G. Wang, J. Yi, Y.D. Jia, I. Hussain, Q.J. Zhai, P.K. Liaw, Mater. Res. Lett. 5 (4) (2016) 276-283.
DOI URL |
[19] |
S. Zhao, Z. Li, C. Zhu, W. Yang, Z. Zhang, D.E.J. Armstrong, P.S. Grant, R.O. Ritchie, M.A. Meyers, Sci. Adv. 7 (5) (2021) eabb3108.
DOI URL |
[20] |
Y. Wang, B. Liu, K. Yan, M. Wang, S. Kabra, Y.L. Chiu, D. Dye, P.D. Lee, Y. Liu, B. Cai, Acta Mater. 163 (2019) 240-242.
DOI URL |
[21] |
D. Wei, X. Li, W. Heng, Y. Koizumi, F. He, W.M. Choi, B.J. Lee, H.S. Kim, H. Kato, A. Chiba, Mater. Res. Lett. 7 (2) (2018) 82-88.
DOI URL |
[22] |
D.D. Zhang, H. Wang, J.Y. Zhang, H. Xue, G. Liu, J. Sun, J. Mater. Sci. Technol. 87 (2021) 184-195.
DOI |
[23] |
S. Huang, H. Huang, W. Li, D. Kim, S. Lu, X. Li, E. Holmstrom, S.K. Kwon, L. Vi- tos, Nat. Commun. 9 (1) (2018) 2381.
DOI PMID |
[24] |
Z.F. He, N. Jia, D. Ma, H.L. Yan, Z.M. Li, D. Raabe, Mater. Sci. Eng. A 759 (2019) 437-447.
DOI URL |
[25] |
L. Tang, K. Yan, B. Cai, Y. Wang, B. Liu, S. Kabra, M.M. Attallah, Y. Liu, Scr. Mater. 178 (2020) 166-170.
DOI URL |
[26] |
Y. Han, H. Li, H. Feng, K. Li, Y. Tian, Z. Jiang, J. Mater. Sci. Technol. 65 (2021) 210-215.
DOI |
[27] |
N. Nakada, H. Ito, Y. Matsuoka, T. Tsuchiyama, S. Takaki, Acta Mater. 58 (3)(2010) 895-903.
DOI URL |
[28] |
W. Fu, W. Zheng, Y. Huang, F. Guo, S. Jiang, P. Xue, Y. Ren, H. Fan, Z. Ning, J. Sun, Mater. Sci. Eng. A 789 (2020) 139579.
DOI URL |
[29] |
F. Zhang, Y. Wu, H. Lou, Z. Zeng, V.B. Prakapenka, E. Greenberg, Y. Ren, J. Yan, J.S. Okasinski, X. Liu, Y. Liu, Q. Zeng, Z. Lu, Nat. Commun. 8 (1) (2017) 15687.
DOI URL |
[30] |
S. Chen, H.S. Oh, B. Gludovatz, S.J. Kim, E.S. Park, Z. Zhang, R.O. Ritchie, Q. Yu, Nat. Commun. 11 (1) (2020) 826.
DOI URL |
[31] |
J. Ding, Q. Yu, M. Asta, R.O. Ritchie, Proc. Natl. Acad. Sci. 115 (36) (2018) 8919.
DOI URL |
[32] |
S. Sun, X. Zhang, J. Cui, S. Liang, Nanoscale 12 (32) (2020) 16657-16677.
DOI URL |
[33] | K. Shoemake, Euler angle conversion, 1994. |
[34] |
B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345 (6201) (2014) 1153-1158.
DOI PMID |
[35] |
Q. Lin, J. Liu, X. An, H. Wang, Y. Zhang, X. Liao, Mater. Res. Lett. 6 (4) (2018) 236-243.
DOI URL |
[36] |
Y. Ikeda, F. Körmann, I. Tanaka, J. Neugebauer, Entropy 20 (9) (2018) 655.
DOI URL |
[37] |
S. Curtze, V.T. Kuokkala, Acta Mater. 58 (15) (2010) 5129-5141.
DOI URL |
[38] |
P. Theocaris, L. Petrou, Int. J. Fract. 31 (4) (1986) 271-289.
DOI URL |
[39] |
V.G. Ukadgaonker, D.K.N. Rao, Compos. Struct. 45 (3) (1999) 171-183.
DOI URL |
[1] | Young-Kyun Kim, Min-Chul Kim, Kee-Ahn Lee. 1.45 GPa ultrastrong cryogenic strength with superior impact toughness in the in-situ nano oxide reinforced CrMnFeCoNi high-entropy alloy matrix nanocomposite manufactured by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 97(0): 10-19. |
[2] | Kaiju Lu, Ankur Chauhan, Dimitri Litvinov, Aditya Srinivasan Tirunilai, Jens Freudenberger, Alexander Kauffmann, Martin Heilmaier, Jarir Aktaa. Micro-mechanical deformation behavior of CoCrFeMnNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 100(0): 237-245. |
[3] | Dong Wang, Xu Lu, Meichao Lin, Di Wan, Zhiming Li, Jianying He, Roy Johnsen. Understanding the hydrogen effect on pop-in behavior of an equiatomic high-entropy alloy during in-situ nanoindentation [J]. J. Mater. Sci. Technol., 2022, 98(0): 118-122. |
[4] | Yang Jianyan, Ren Weijun, Zhao Xinguo, Kikuchi Tatsuya, Miao Ping, Nakajima Kenji, Li Bing, Zhang Zhidong. Mictomagnetism and suppressed thermal conduction of the prototype high-entropy alloy CrMnFeCoNi [J]. J. Mater. Sci. Technol., 2022, 99(0): 55-60. |
[5] | Hui Jiang, Dongxu Qiao, Wenna Jiao, Kaiming Han, Yiping Lu, Peter K. Liaw. Tensile deformation behavior and mechanical properties of a bulk cast Al0.9CoFeNi2 eutectic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 119-124. |
[6] | Quan-xin Shi, Cui-ju Wang, Kun-kun Deng, Kai-bo Nie, Yucheng Wu, Wei-min Gan, Wei Liang. Microstructure and mechanical behavior of Mg-5Zn matrix influenced by particle deformation zone [J]. J. Mater. Sci. Technol., 2021, 60(0): 8-20. |
[7] | Yu Han, Huabing Li, Hao Feng, Kemei Li, Yanzhong Tian, Zhouhua Jiang. Simultaneous enhancement in strength and ductility of Fe50Mn30Co10Cr10 high-entropy alloy via nitrogen alloying [J]. J. Mater. Sci. Technol., 2021, 65(0): 210-215. |
[8] | Ting Xiong, Wenfan Yang, Shijian Zheng, Zhaorui Liu, Yiping Lu, Ruifeng Zhang, Yangtao Zhou, Xiaohong Shao, Bo Zhang, Jun Wang, Fuxing Yin, Peter K. Liaw, Xiuliang Ma. Faceted Kurdjumov-Sachs interface-induced slip continuity in the eutectic high-entropy alloy, AlCoCrFeNi2.1 [J]. J. Mater. Sci. Technol., 2021, 65(0): 216-227. |
[9] | Hui Liang, Dongxu Qiao, Junwei Miao, Zhiqiang Cao, Hui Jiang, Tongmin Wang. Anomalous microstructure and tribological evaluation of AlCrFeNiW0.2Ti0.5 high-entropy alloy coating manufactured by laser cladding in seawater [J]. J. Mater. Sci. Technol., 2021, 85(0): 224-234. |
[10] | SeungHyeok Chung, Bin Lee, Soo Yeol Lee, Changwoo Do, Ho Jin Ryu. The effects of Y pre-alloying on the in-situ dispersoids of ODS CoCrFeMnNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 85(0): 62-75. |
[11] | Qiang Wang, Liangcai Zeng, Tengfei Gao, Hui Du, Xinwang Liu. On the room-temperature tensile deformation behavior of a cast dual-phase high-entropy alloy CrFeCoNiAl0.7 [J]. J. Mater. Sci. Technol., 2021, 87(0): 29-38. |
[12] | Q. Cheng, X.D. Xu, P. Xie, L.L. Han, J.Y. He, X.Q. Li, J. Zhang, Z.T. Li, Y.P. Li, B. Liu, T.G. Nieh, M.W. Chen, J.H. Chen. Unveiling anneal hardening in dilute Al-doped AlxCoCrFeMnNi (x = 0, 0.1) high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 91(0): 270-277. |
[13] | Muhammad Akmal, Ahtesham Hussain, Muhammad Afzal, Young Ik Lee, Ho Jin Ryu. Systematic study of (MoTa)xNbTiZr medium- and high-entropy alloys for biomedical implants- In vivo biocompatibility examination [J]. J. Mater. Sci. Technol., 2021, 78(0): 183-191. |
[14] | Wenyan Luo, Yunzhong Liu, Cheng Tu. Wetting behaviors and interfacial characteristics of molten AlxCoCrCuFeNi high-entropy alloys on a WC substrate [J]. J. Mater. Sci. Technol., 2021, 78(0): 192-201. |
[15] | Yufang Zhao, Jinyu Zhang, YaQiang Wang, Shenghua Wu, Xiaoqing Liang, Kai Wu, Gang Liu, Jun Sun. The metastable constituent effects on size-dependent deformation behavior of nanolaminated micropillars: Cu/FeCoCrNi vs Cu/CuZr [J]. J. Mater. Sci. Technol., 2021, 68(0): 16-29. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||