J. Mater. Sci. Technol. ›› 2021, Vol. 85: 224-234.DOI: 10.1016/j.jmst.2020.12.050
• Research Article • Previous Articles Next Articles
Hui Lianga, Dongxu Qiaoa, Junwei Miaoa, Zhiqiang Caoa,b,*(), Hui Jiangc, Tongmin Wanga,b,*(
)
Received:
2020-08-17
Revised:
2020-10-23
Accepted:
2020-12-08
Published:
2021-09-20
Online:
2021-02-01
Contact:
Zhiqiang Cao,Tongmin Wang
About author:
tmwang@dlut.edu.cn (T. Wang).Hui Liang, Dongxu Qiao, Junwei Miao, Zhiqiang Cao, Hui Jiang, Tongmin Wang. Anomalous microstructure and tribological evaluation of AlCrFeNiW0.2Ti0.5 high-entropy alloy coating manufactured by laser cladding in seawater[J]. J. Mater. Sci. Technol., 2021, 85: 224-234.
Compound | Concentration, C (g L-1) |
---|---|
NaCl | 24.530 |
NaF | 0.003 |
Na2SO4 | 4.090 |
SrCl2 | 0.025 |
KCl | 0.695 |
MgCl2 | 5.200 |
KBr | 0.101 |
H3BO3 | 0.027 |
CaCl2 | 1.160 |
NaHCO3 | 0.201 |
Table 1 Chemical composition of artificial seawater [19].
Compound | Concentration, C (g L-1) |
---|---|
NaCl | 24.530 |
NaF | 0.003 |
Na2SO4 | 4.090 |
SrCl2 | 0.025 |
KCl | 0.695 |
MgCl2 | 5.200 |
KBr | 0.101 |
H3BO3 | 0.027 |
CaCl2 | 1.160 |
NaHCO3 | 0.201 |
Fig. 1. Microstructures of the AlCrFeNiW0.2Ti0.5 HEA coating: (a) the SEI-SEM micrograph of cross-section; (b) line analysis results (the line-scan direction along coating until to substrate); (c) magnified BSE-EPMA view of BZ.
Fig. 2. Microstructures in the CZ of AlCrFeNiW0.2Ti0.5 HEA coating: (a) and (b) are the SEI-SEM micrographs of CZ; (c) is the enlarged view of a typical ‘sunflower-like’ microstructure in (b).
Fig. 3. Bright-field TEM images and corresponding SAED patterns for the AlCrFeNiW0.2Ti0.5 HEA coating: (a) bright-field TEM image for the ‘sunflower-like’ microstructure; (b, c) bright-field images for the ‘core’ and ‘petal’ regions respectively, corresponding SAED patterns are shown in insets; (d) SAED pattern of inter-petal region.
Regions | Al | Cr | Fe | Ni | Ti | W |
---|---|---|---|---|---|---|
Core Seeds: A | 19.71 | 11.27 | 27.27 | 31.84 | 8.17 | 1.74 |
Core matrix: B | 9.90 | 32.80 | 40.35 | 8.67 | 2.92 | 5.36 |
Petal matrix: C | 20.84 | 6.39 | 24.17 | 38.26 | 9.56 | 0.78 |
Petal precipitates: D | 15.82 | 15.79 | 31.35 | 28.16 | 7.28 | 1.60 |
Inter-petals: E | 12.94 | 21.47 | 35.34 | 21.87 | 6.05 | 2.33 |
Table 2 Components of different regions of the AlCrFeNiW0.2Ti0.5 coating determined by TEM-EDS (at.%).
Regions | Al | Cr | Fe | Ni | Ti | W |
---|---|---|---|---|---|---|
Core Seeds: A | 19.71 | 11.27 | 27.27 | 31.84 | 8.17 | 1.74 |
Core matrix: B | 9.90 | 32.80 | 40.35 | 8.67 | 2.92 | 5.36 |
Petal matrix: C | 20.84 | 6.39 | 24.17 | 38.26 | 9.56 | 0.78 |
Petal precipitates: D | 15.82 | 15.79 | 31.35 | 28.16 | 7.28 | 1.60 |
Inter-petals: E | 12.94 | 21.47 | 35.34 | 21.87 | 6.05 | 2.33 |
Fig. 5. Formation mechanism of the ‘sunflower-like’ structure (L: the liquid phase; α1: primary BCC phase and the BCC phase within lamellae; β1: the B2 phase within lamellae; α2/β2, α3/β3: the BCC/B2 phases resulting from spinodal decomposition in the ‘core’ and ‘petal’ regions, respectively).
Fig. 7. Friction coefficients of samples sliding against different coupled balls in artificial seawater: (a) average friction coefficients of AlCrFeNiW0.2Ti0.5 HEA coating, Q235 steel and SUS304; (b) friction coefficient curves of HEA coating with sliding time.
Fig. 9. SEM images of the worn surfaces of AlCrFeNiW0.2Ti0.5 HEA coating and different coupled balls after sliding in artificial seawater: (a, a1) coating/Si3N4, (b, b1) coating/GCr15, (c, c1) coating/YG6.
Fig. 10. Schematic diagrams of abrasive wear mechanism of AlCrFeNiW0.2Ti0.5 HEA coating sliding against Si3N4 ball in seawater: (a) two-body abrasion; (b) three-body abrasion.
Regions | Al | Cr | Fe | Ni | W | Ti | O | Cl | Ca | Mg | Co |
---|---|---|---|---|---|---|---|---|---|---|---|
A | 5.55 | 6.45 | 29.89 | 22.49 | 1.31 | 2.93 | 30.24 | 0.37 | 0.17 | 0.60 | - |
B | 9.89 | 12.08 | 24.82 | 29.98 | 2.87 | 4.87 | 14.47 | 0.54 | 0.06 | 0.42 | - |
C | 12.58 | 11.25 | 16.55 | 12.79 | 3.16 | 6.09 | 36.97 | 0.33 | 0.12 | 0.04 | 0.12 |
Table 3 EDS results of different regions (Fig. 9) on worn surfaces of AlCrFeNiW0.2Ti0.5 HEA coating sliding against different coupled balls in artificial seawater (at.%).
Regions | Al | Cr | Fe | Ni | W | Ti | O | Cl | Ca | Mg | Co |
---|---|---|---|---|---|---|---|---|---|---|---|
A | 5.55 | 6.45 | 29.89 | 22.49 | 1.31 | 2.93 | 30.24 | 0.37 | 0.17 | 0.60 | - |
B | 9.89 | 12.08 | 24.82 | 29.98 | 2.87 | 4.87 | 14.47 | 0.54 | 0.06 | 0.42 | - |
C | 12.58 | 11.25 | 16.55 | 12.79 | 3.16 | 6.09 | 36.97 | 0.33 | 0.12 | 0.04 | 0.12 |
[1] |
L. Shan, Y.X. Wang, J.L. Li, X. Jiang, J.M. Chen, Tribol. Int. 82 (2015) 78-88.
DOI URL |
[2] | C.L. Dong, X.Q. Bai, X.P. Yan, C.Q. Yuan, Tribology 33 (2013) 311-320. |
[3] | I.U.H. Mir, A. Raina, K. Vohra, R. Kumar, A. Anand, Mater. Today 5 (2018) 3602-3609. |
[4] | D.X. Qiao, Y.P. Lu, Z.Y. Tang, X.S. Fan, T.M. Wang, T.J. Li, Peter K. Liaw, Int. J. Hydrog. Energy 44 (2019) 3527-3537. |
[5] | L. Jiang, Y. Lu, M. Song, C. Lu, Z. Cao, T. Wang, F. Gao, L. Wang, Scr. Mater. 65 (2019) 128-133. |
[6] |
H. Liang, H.W. Yao, D.X. Qiao, S. Nie, Y.P. Lu, D.W. Deng, Z.Q. Cao, T.M. Wang, J. Therm. Spray Technol. 28 (2019) 1318-1329.
DOI URL |
[7] | D.X. Qiao, H. Jiang, W.N. Jiao, Y.P. Lu, Z.Q. Cao, T.J. Li, Acta Metall. Sin.(Engl. Lett.) 32 (2019) 925-931. |
[8] |
F. Mao, S. Wei, C. Chen, C. Zhang, X. Wang, Z. Cao, Mater. Des. 186 (2020), 108268.
DOI URL |
[9] |
G.R. Argade, S.K. Panigrahi, R.S. Mishra, J. Mater. Sci. 55 (2020) 1216-1230.
DOI URL |
[10] |
A. Ayyagari, C. Barthelemy, B. Gwalani, R. Banerjee, T.W. Scharf, S. Mukherjee, Mater. Chem. Phys. 210 (2017) 162-169.
DOI URL |
[11] |
G.R. Argade, S.S. Joshi, A.V. Ayyagari, S. Mukherjee, R.S. Mishra, N.B. Dahotre, Appl. Phys. A 125 (2019) 272-280.
DOI URL |
[12] |
H. Liang, J.W. Miao, B.Y. Gao, D.W. Deng, T.M. Wang, Y.P. Lu, Z.Q. Cao, H. Jiang, T.J. Li, H.J. Kang, Surf. Coat. Technol. 400 (2020), 126214.
DOI URL |
[13] |
M. Chen, X.H. Shi, J. Mater. Res. 33 (2018) 1-11.
DOI URL |
[14] |
S. Guo, C. Ng, C.T. Liu, J. Alloys. Compd. 557 (2013) 77-81.
DOI URL |
[15] |
L. Zhang, D. Zhou, B.S. Li, Mater. Lett. 216 (2018) 252-255.
DOI URL |
[16] |
X. Chen, D. Gao, J.X. Hu, Y. Liu, C.P. Tang, Met. Mater. Int. 25 (2019) 1135-1144.
DOI |
[17] |
U. Roy, H. Roy, H. Daoud, U. Glatzel, K.K. Ray, Mater. Lett. 132 (2014) 186-189.
DOI URL |
[18] |
Y.J. Zhou, Y. Zhang, F.J. Wang, Y.L. Wang, G.L. Chen, J. Alloys. Compd. 466 (2008) 201-204.
DOI URL |
[19] |
J.Z. Wang, J. Chen, B.B. Chen, F.Y. Yan, Q.J. Xue, Tribol. Int. 56 (2012) 38-46.
DOI URL |
[20] |
Y.T. Pei, J.T. M. de Hosson, Acta Mater. 48 (2000) 2617-2624.
DOI URL |
[21] |
Y. Dong, Y. Lu, J. Kong, J. Zhang, T. Li, J. Alloys. Compd. 573 (2013) 96-101.
DOI URL |
[22] |
Y.P. Wang, B.S. Li, M.X. Ren, C. Yang, H.Z. Fu, Mater. Sci. Eng. A 491 (2008) 154-158.
DOI URL |
[23] |
Z.S. Nong, Y.N. Lei, J.C. Zhu, Intermetallics 101 (2018) 144-151.
DOI URL |
[24] |
S. Singh, N. Wanderka, B.S. Murty, U. Glatzel, J. Banhart, Acta Mater. 59 (2011) 182-190.
DOI URL |
[25] |
C.J. Tong, Y.L. Chen, S.K. Chen, J.W. Yeh, J.W. Shun, C.H. Tsau, S.J. Lin, S.Y. Chang, Metall. Mater. Trans. A 36 (2005) 881-893.
DOI URL |
[26] |
S.H. Kim, H. Kim, N.J. Kim, Nature 518 (2015) 77-79.
DOI URL |
[27] |
J.L. de Mol van Otterloo, J.T.M. de Hosson, Scr. Mater. 36 (1997) 239-345.
DOI URL |
[28] |
M.X. Wei, S.Q. Wang, L. Wang, X.H. Cui, Tribol. Trans. 54 (2011) 840-848.
DOI URL |
[29] |
J.J. Penagos, F. Ono, E. Albertin, A. Sinatora, Wear 340-341 (2015) 19-24.
DOI URL |
[30] |
I. Loresch, O. Riemer, Proc. CIRP 31 (2015) 282-286.
DOI URL |
[31] |
A. Takeuchi, A. Inoue, Mater. Trans. 46 (2005) 2817-2829.
DOI URL |
[32] |
Y. Yu, J. Wang, J. Li, H. Kou, H. Duan, J. Li, W. Liu, Tribol. Int. 92 (2015) 203-210.
DOI URL |
[33] |
J. Cheng, F. Li, S. Zhu, Y. Yu, Z. Qiao, J. Yang, Tribol. Int. 115 (2017) 483-492.
DOI URL |
[34] |
X. Liu, Y. An, S. Li, X. Zhao, G. Hou, H. Zhou, J. Chen, Tribol. Int. 115 (2017) 35-44.
DOI URL |
[35] |
Y. Ye, C. Wang, H. Chen, Y. Wang, J. Li, F. Ma, RSC Adv. 6 (2016) 32922-32931.
DOI URL |
[36] |
A.K. Basak, J.P. Celis, P. Ponthiaux, F. Wenger, M. Vardavoulias, P. Matteazzi, Mater. Sci. Eng. A 558 (2012) 377-385.
DOI URL |
[37] | M.M. Tlili, M.B. Amor, C. Gabrielli, S. Joiret, G. Maurin1, P.Rousseau, J. Raman Spectrosc. 33 (2001) 10-16. |
[38] | M.I. Sosulnikov, Y.A. Teterin, XPS Study of Calcium, Strontium, Barium and Their Oxides, Doklady Akademii nauk SSSR, vol. 317, 1991, pp. 418-421. |
[39] |
P. Dawson, C.D. Hadfield, J. Phys, Chem. Solids 34 (1973) 1217-1225.
DOI URL |
[40] | D.E. Haycock, M. Kasrai, C.J. Nicholls, D.S. Urch, J. Chem. Soc. Dalton Trans. 12 (1978) 1791-1796. |
[41] |
J.Z. Wang, F.Y. Yan, Q.J. Xue, Wear 267 (2009) 1634-1641.
DOI URL |
[42] |
B.B. Chen, J.Z. Wang, F.Y. Yan, Tribol. Lett. 42 (2011) 17-25.
DOI URL |
[43] |
S.H. Shim Thomas S. Duffy,, Am. Mineral. 87 (2001) 318-326.
DOI URL |
[44] |
Y. Li, W. Qiu, F. Qin, Hu. Fang, V.G. Hadjiev, D. Litvinov, J. Bao, J. Phys. Chem. C 120 (2016) 4511-4516.
DOI URL |
[45] |
V.I. Nefedov, M.N. Firsov, I.S. Shaplygin, J. Electron Spectrosc. Relat. Phenom. 26 (1982) 65-78.
DOI URL |
[46] | B.F. Dzhurinskii, D. Gati, N.P. Sergushin, V.I. Nefedov, Y.V. Salyn, Russ. J. Inorg. Chem. 20 (1975) 2307-2314. |
[47] | O. Monnereau, L. Tortet, C.E.A. Grigorescu, D. Savastru, C.R. Iordanescu, F. Guinneton, R. Notonier, A. Tonetto, T. Zhang, I.N. Mihailescu, D. Stanoi, H.J. Trodahl, J. Optoelectron. Adv. Mater. 12 (2010) 1752-1758. |
[48] |
S. Mischle, H.J. Mathieu, D. Landolt, Surf. Interface Anal. 11 (1988) 182-188.
DOI URL |
[49] |
E. Salje, Acta Cryst. A 31 (1975) 360-363.
DOI URL |
[50] | D. Mueller, A. Shih, J. Vac, Sci. Technol. A 6 (1988) 1067-1071. |
[51] |
R.F. Nie, J.J. Shi, W.C. Du, Z.Y. Hou, Appl. Catal. A Gen. 473 (2014) 1-6.
DOI URL |
[52] |
K.S. Kim, N. Winograd, Surf. Sci. 43 (1974) 625-643.
DOI URL |
[53] |
H.C. Choi, Y.M. Jung, S.B. Kim, Vib. Spectrosc. 37 (2005) 33-38.
DOI URL |
[54] |
A. Ayame, H. Suzuki, R. Shinya, T. Morohashi, Bunseki Kagaku 40 (1991) 717-722.
DOI URL |
[55] |
E. Huang, A. Li, J.A. Xu, Geophys. Res. Lett. 23 (1996) 3083-3086.
DOI URL |
[56] | J.A. Taylor, J. Vac, Sci. Technol. 20 (1982) 751-755. |
[57] |
M.C. Bernard, R. Cortes, M. Keddam, H. Takenouti, P. Bernard, S. Senyarich, J. Power Sources 63 (1996) 247-254.
DOI URL |
[58] |
A.N. Mansour, Surf. Sci. Spectr. 3 (1994) 239-246.
DOI URL |
[59] |
R.S. Gates, S.M. Hsu, E.E. Klaus, Tribol. Trans. 32 (1989) 357-363.
DOI URL |
[60] |
L. Sokoloff, S.L. Lee, Wear 88 (1983) 207-219.
DOI URL |
[1] | Yanxin Qiao, Daokui Xu, Shuo Wang, Yingjie Ma, Jian Chen, Yuxin Wang, Huiling Zhou. Effect of hydrogen charging on microstructural evolution and corrosion behavior of Ti-4Al-2V-1Mo-1Fe alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 168-176. |
[2] | Yunsheng Wu, Xuezhi Qin, Changshuai Wang, Lanzhang Zhou. Microstructural evolution and its influence on the impact toughness of GH984G alloy during long-term thermal exposure [J]. J. Mater. Sci. Technol., 2021, 60(0): 61-69. |
[3] | Hui Jiang, Dongxu Qiao, Wenna Jiao, Kaiming Han, Yiping Lu, Peter K. Liaw. Tensile deformation behavior and mechanical properties of a bulk cast Al0.9CoFeNi2 eutectic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 119-124. |
[4] | Jincheng Wang, Yujing Liu, Chirag Dhirajlal Rabadia, Shun-Xing Liang, Timothy Barry Sercombe, Lai-Chang Zhang. Microstructural homogeneity and mechanical behavior of a selective laser melted Ti-35Nb alloy produced from an elemental powder mixture [J]. J. Mater. Sci. Technol., 2021, 61(0): 221-233. |
[5] | Qin Xu, Dezhi Chen, Chongyang Tan, Xiaoqin Bi, Qi Wang, Hongzhi Cui, Shuyan Zhang, Ruirun Chen. NbMoTiVSix refractory high entropy alloys strengthened by forming BCC phase and silicide eutectic structure [J]. J. Mater. Sci. Technol., 2021, 60(0): 1-7. |
[6] | K.J. Tan, X.G. Wang, J.J. Liang, J. Meng, Y.Z. Zhou, X.F. Sun. Effects of rejuvenation heat treatment on microstructure and creep property of a Ni-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 206-215. |
[7] | Hui Xiao, Manping Cheng, Lijun Song. Direct fabrication of single-crystal-like structure using quasi-continuous-wave laser additive manufacturing [J]. J. Mater. Sci. Technol., 2021, 60(0): 216-221. |
[8] | Xing Zhou, Jingrui Deng, Changqing Fang, Wanqing Lei, Yonghua Song, Zisen Zhang, Zhigang Huang, Yan Li. Additive manufacturing of CNTs/PLA composites and the correlation between microstructure and functional properties [J]. J. Mater. Sci. Technol., 2021, 60(0): 27-34. |
[9] | Zijuan Xu, Zhongtao Li, Yang Tong, Weidong Zhang, Zhenggang Wu. Microstructural and mechanical behavior of a CoCrFeNiCu4 non-equiatomic high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 35-43. |
[10] | B.N. Du, Z.Y. Hu, L.Y. Sheng, D.K. Xu, Y.X. Qiao, B.J. Wang, J. Wang, Y.F. Zheng, T.F. Xi. Microstructural characteristics and mechanical properties of the hot extruded Mg-Zn-Y-Nd alloys [J]. J. Mater. Sci. Technol., 2021, 60(0): 44-55. |
[11] | Jiang Bi, Zhenglong Lei, Yanbin Chen, Xi Chen, Ze Tian, Nannan Lu, Xikun Qin, Jingwei Liang. Microstructure, tensile properties and thermal stability of AlMgSiScZr alloy printed by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2021, 69(0): 200-211. |
[12] | Yoon Hwa, Christopher S. Kumai, Thomas M. Devine, Nancy Yang, Joshua K. Yee, Ryan Hardwick, Kai Burgmann. Microstructural banding of directed energy deposition-additively manufactured 316L stainless steel [J]. J. Mater. Sci. Technol., 2021, 69(0): 96-105. |
[13] | Yan Zou, Xiaodong Wu, Songbai Tang, Qianqian Zhu, Hui Song, Mingxing Guo, Lingfei Cao. Investigation on microstructure and mechanical properties of Al-Zn-Mg-Cu alloys with various Zn/Mg ratios [J]. J. Mater. Sci. Technol., 2021, 85(0): 106-117. |
[14] | Xin Zhong, Tao Zhu, Yaran Niu, Haijun Zhou, Le Zhang, Xiangyu Zhang, Qilian Li, Xuebin Zheng. Effect of microstructure evolution and crystal structure on thermal properties for plasma-sprayed RE2SiO5 (RE = Gd, Y, Er) environmental barrier coatings [J]. J. Mater. Sci. Technol., 2021, 85(0): 141-151. |
[15] | SeungHyeok Chung, Bin Lee, Soo Yeol Lee, Changwoo Do, Ho Jin Ryu. The effects of Y pre-alloying on the in-situ dispersoids of ODS CoCrFeMnNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 85(0): 62-75. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||