J. Mater. Sci. Technol. ›› 2021, Vol. 85: 141-151.DOI: 10.1016/j.jmst.2020.11.077
• Research Article • Previous Articles Next Articles
Xin Zhonga, Tao Zhua,b, Yaran Niua,*(), Haijun Zhouc, Le Zhangd,*(
), Xiangyu Zhangc, Qilian Lid, Xuebin Zhenga,*(
)
Received:
2020-07-21
Revised:
2020-10-30
Accepted:
2020-11-11
Published:
2021-09-20
Online:
2021-01-30
Contact:
Yaran Niu,Le Zhang,Xuebin Zheng
About author:
xbzheng@mail.sic.ac.cn (X. Zheng).Xin Zhong, Tao Zhu, Yaran Niu, Haijun Zhou, Le Zhang, Xiangyu Zhang, Qilian Li, Xuebin Zheng. Effect of microstructure evolution and crystal structure on thermal properties for plasma-sprayed RE2SiO5 (RE = Gd, Y, Er) environmental barrier coatings[J]. J. Mater. Sci. Technol., 2021, 85: 141-151.
APS Layer | Power(kW) | Primary Ar(slpm) | Secondary H2 (slpm) | Carrier Ar(slpm) | Spray distance(mm) |
---|---|---|---|---|---|
RE2SiO5a | 43 | 38 | 12 | 3 | 120 |
Yb2Si2O7 | 43 | 38 | 12 | 3 | 120 |
Si | 32 | 42 | 8 | 4 | 120 |
Table 1 Operating parameters used for atmospheric plasma spray.
APS Layer | Power(kW) | Primary Ar(slpm) | Secondary H2 (slpm) | Carrier Ar(slpm) | Spray distance(mm) |
---|---|---|---|---|---|
RE2SiO5a | 43 | 38 | 12 | 3 | 120 |
Yb2Si2O7 | 43 | 38 | 12 | 3 | 120 |
Si | 32 | 42 | 8 | 4 | 120 |
Fig. 3. Surface morphologies (a?c) and fracture section morphologies (d?f) of as-sprayed RE2SiO5 coatings: Gd2SiO5 (a, d), Y2SiO5 (b, e), and Er2SiO5 (c, f).
Fig. 7. Surface morphologies (a?c) and fracture section morphologies (d?f) of RE2SiO5 coatings after thermal aging at 1400?°C for 50?h: Gd2SiO5 (a, d), Y2SiO5 (b, e), and Er2SiO5 (c, f).
Spectrum location | Gd(at.%) | Y (at.%) | Er(at.%) | Yb (at.%) | Si (at.%) | O (at.%) |
---|---|---|---|---|---|---|
Point a1 | 27.21 | — | — | — | 12.27 | 59.64 |
Point a2 | 39.61 | — | — | — | 1.04 | 54.18 |
Point b1 | — | 28.09 | — | — | 13.06 | 59.73 |
Point b2 | — | 44.78 | — | — | 1.47 | 58.92 |
Point c1 | — | — | 27.41 | — | 12.11 | 60.48 |
Point c2 | — | — | 42.61 | — | 1.78 | 55.61 |
Point d1 | — | — | — | 26.43 | 12.89 | 60.68 |
Point d2 | — | — | — | 39.34 | 1.53 | 59.13 |
Table 2 Summary of EDS results for areas in Fig. 8.
Spectrum location | Gd(at.%) | Y (at.%) | Er(at.%) | Yb (at.%) | Si (at.%) | O (at.%) |
---|---|---|---|---|---|---|
Point a1 | 27.21 | — | — | — | 12.27 | 59.64 |
Point a2 | 39.61 | — | — | — | 1.04 | 54.18 |
Point b1 | — | 28.09 | — | — | 13.06 | 59.73 |
Point b2 | — | 44.78 | — | — | 1.47 | 58.92 |
Point c1 | — | — | 27.41 | — | 12.11 | 60.48 |
Point c2 | — | — | 42.61 | — | 1.78 | 55.61 |
Point d1 | — | — | — | 26.43 | 12.89 | 60.68 |
Point d2 | — | — | — | 39.34 | 1.53 | 59.13 |
RE2SiO5 | Crystal structure | Average bond length (Å) | CFS (Å-2) | γ |
---|---|---|---|---|
X1-Gd2SiO5 | [SiO4] | 1.633 [ | 3.41 1.94 [ | |
[GdO7] | 2.393 [ | |||
[GdO9] | 2.488 [ | |||
X2-Y2SiO5 | [SiO4] | 1.618 [ | 3.70 1.49 [ | |
[YO6] | 2.260 [ | |||
[YO7] | 2.359 [ | |||
X2-Er2SiO5 | [SiO4] | 1.644 [ | 3.79 1.53 [ | |
[ErO6] | 2.258 [ | |||
[ErO7] | 2.359 [ |
Table 3 The average bond length (Å), calculated cation field strength (CFS) (Å-2) as well as the Grüneisen parameter γ for RE2SiO5 (RE?=?Gd, Y and Er).
RE2SiO5 | Crystal structure | Average bond length (Å) | CFS (Å-2) | γ |
---|---|---|---|---|
X1-Gd2SiO5 | [SiO4] | 1.633 [ | 3.41 1.94 [ | |
[GdO7] | 2.393 [ | |||
[GdO9] | 2.488 [ | |||
X2-Y2SiO5 | [SiO4] | 1.618 [ | 3.70 1.49 [ | |
[YO6] | 2.260 [ | |||
[YO7] | 2.359 [ | |||
X2-Er2SiO5 | [SiO4] | 1.644 [ | 3.79 1.53 [ | |
[ErO6] | 2.258 [ | |||
[ErO7] | 2.359 [ |
RE2SiO5 | $\bar{M}$ (g mol-1) | δ (Å) | n | ΘD (K) | A(γ)/γ2 |
---|---|---|---|---|---|
X1-Gd2SiO5 | 52.82 | 2.49 [ | 32 | 419 [ | 8.12E-09 |
X2-Y2SiO5 | 35.74 | 2.35 [ | 32 | 513 [ | 1.44E-08 |
X2-Er2SiO5 | 55.33 | 2.37 [ | 32 | 423 [ | 1.36E-08 |
Table 4 Theoretical parameters for calculating lattice thermal conductivity based on Slack’s model.
RE2SiO5 | $\bar{M}$ (g mol-1) | δ (Å) | n | ΘD (K) | A(γ)/γ2 |
---|---|---|---|---|---|
X1-Gd2SiO5 | 52.82 | 2.49 [ | 32 | 419 [ | 8.12E-09 |
X2-Y2SiO5 | 35.74 | 2.35 [ | 32 | 513 [ | 1.44E-08 |
X2-Er2SiO5 | 55.33 | 2.37 [ | 32 | 423 [ | 1.36E-08 |
Fig. 13. Cross-sectional micrographs of Gd2SiO5/Yb2Si2O7/Si coatings before (a) and after 40 thermal cycles (b?d): as-sprayed coatings (a), Gd2SiO5/Yb2Si2O7/Si coatings with 40 cycles (b), high magnification views of Gd2SiO5-Yb2Si2O7 (c) and Yb2Si2O7-Si (d) interfaces.
Fig. 14. Cross-sectional micrographs of Y2SiO5/Yb2Si2O7/Si coatings before (a) and after 40 thermal cycles (b?d): as-sprayed coatings (a), Y2SiO5/Yb2Si2O7/Si coatings with 40 cycles (b), high magnification views of Y2SiO5-Yb2Si2O7 (c) and Yb2Si2O7-Si (d) interfaces.
Fig. 15. Cross-sectional micrographs of Er2SiO5/Yb2Si2O7/Si coatings before (a) and after 40 thermal cycles (b?d): as-sprayed coatings (a), Er2SiO5/Yb2Si2O7/Si coatings with 40 cycles (b), high magnification views of Er2SiO5-Yb2Si2O7 (c) and Yb2Si2O7-Si (d) interfaces.
Coating layer | CTE, α (×10-6 K-1) | E (GPa) | Poisson ratio ν | Thermal stress (MPa) |
---|---|---|---|---|
Gd2SiO5 | 9.94a | 75.15b | 0.30 [ | 1098 (tensile) |
Y2SiO5 | 7.11a | 72.94b | 0.20 [ | 578 (tensile) |
Er2SiO5 | 7.42a | 74.51b | 0.22 [ | 646 (tensile) |
Yb2Si2O7 | 4.25 [ | 67.49 [ | 0.30 [ | 232 (tensile) |
Si | 4.10 [ | 105.30 b | 0.22 [ | 297 (tensile) |
Table 5 Thermal mismatch stress calculations of EBC system components.
Coating layer | CTE, α (×10-6 K-1) | E (GPa) | Poisson ratio ν | Thermal stress (MPa) |
---|---|---|---|---|
Gd2SiO5 | 9.94a | 75.15b | 0.30 [ | 1098 (tensile) |
Y2SiO5 | 7.11a | 72.94b | 0.20 [ | 578 (tensile) |
Er2SiO5 | 7.42a | 74.51b | 0.22 [ | 646 (tensile) |
Yb2Si2O7 | 4.25 [ | 67.49 [ | 0.30 [ | 232 (tensile) |
Si | 4.10 [ | 105.30 b | 0.22 [ | 297 (tensile) |
[1] |
H. Kaya, Compos. Sci. Technol. 59 (1999) 861-872.
DOI URL |
[2] |
W. Krenkel, F. Berndt, Mater. Sci. Eng. A 412 (2005) 177-181.
DOI URL |
[3] |
S. Schmidt, S. Beyer, H. Knabe, H. Immich, R. Meistring, A. Gessler, Acta Astronaut. 55 (2004) 409-420.
DOI URL |
[4] |
N.P. Padture, Nat. Mater. 15 (2016) 804-809.
DOI PMID |
[5] |
E.J. Opila, D.S. Fox, N.S. Jacobson, J. Am. Ceram. Soc. 80 (1997) 1009-1012.
DOI URL |
[6] |
R.C. Robinson, J.L. Smialek, J. Am. Ceram. Soc. 82 (1999) 1817-1825.
DOI URL |
[7] |
K.N. Lee, J. Am. Ceram. Soc. 102 (2019) 1507-1521.
DOI URL |
[8] |
K.N. Lee, Surf. Coat. Technol. 133-134 (2000) 1-7.
DOI URL |
[9] |
I. Spitsberg, J. Steibel, Int. J. Appl. Ceram. Technol. 1 (2004) 291-301.
DOI URL |
[10] |
K.N. Lee, D.S. Fox, N.P. Bansal, J. Eur. Ceram. Soc. 25 (2005) 1705-1715.
DOI URL |
[11] |
D.L. Poerschke, R.W. Jackson, C.G. Levi, Annu. Rev. Mater. Res. 47 (2017) 297-330.
DOI URL |
[12] |
E. Bakan, Y.J. Sohn, W. Kunz, H. Klemm, R. Vaßen, J. Eur. Ceram. Soc. 39 (2019) 1507-1513.
DOI URL |
[13] |
X.F. Zhang, J.B. Song, Z.Q. Deng, C. Wang, S.P. Niu, G. Liu, C.M. Deng, C.G. Deng, M. Liu, K.S. Zhou, J. Lu, J. Eur. Ceram. Soc. 40 (2020) 1478-1487.
DOI URL |
[14] | J. Felsche, The Crystal Chemistry of the Rare-earth Silicates, Heidelberg, Berlin, 1973. |
[15] |
J.G. Wang, S.J. Tian, G.B. Li, F.H. Liao, X.P. Jing, Mater. Res. Bull. 36 (2001) 1855-1861.
DOI URL |
[16] |
Z.L. Tian, L.Y. Zheng, J.M. Wang, P. Wan, J.L. Li, J.Y. Wang, J. Eur. Ceram. Soc. 36 (2016) 189-202.
DOI URL |
[17] |
Z. Tian, J. Zhang, L. Sun, L. Zheng, J. Wang, J. Am. Ceram. Soc. 102 (2019) 3076-3080.
DOI URL |
[18] |
N.A. Nasiri, N. Patra, D. Horlait, D.D. Jayaseelan, W.E. Lee, J. Am. Ceram. Soc. 99 (2016) 589-596.
DOI URL |
[19] |
N.A. Nasiri, N. Patra, D.D. Jayaseelan, W.E. Lee, Ceram. Int. 43 (2017) 7393-7400.
DOI URL |
[20] |
X. Zhong, Y.R. Niu, H. Li, H.J. Zhou, S.M. Dong, X.B. Zheng, C.X. Ding, J.L. Sun, J. Am. Ceram. Soc. 101 (2018) 4743-4752.
DOI URL |
[21] |
B.T. Richards, H.N.G. Wadley, J. Eur. Ceram. Soc. 34 (2014) 3069-3083.
DOI URL |
[22] |
B.T. Richards, S. Sehr, F. Franqueville, M.R. Begley, H.N.G. Wadley, Acta Mater. 103 (2016) 448-460.
DOI URL |
[23] |
B.T. Richards, M.R. Begley, H.N.G. Wadley, J. Am. Ceram. Soc. 98 (2015) 4066-4075.
DOI URL |
[24] |
X. Zhong, Y.R. Niu, H. Li, Y. Zeng, X.B. Zheng, C.X. Ding, J.L. Sun, J. Am. Ceram. Soc. 100 (2017) 1896-1906.
DOI URL |
[25] |
Y.W. Wang, Y.R. Niu, X. Zhong, M.H. Shi, F.Q. Mao, L. Zhang, Q.L. Li, X.B. Zheng, Corros. Sci. 167 (2020), 108529.
DOI URL |
[26] | D. Ye, Inorganic Material Thermodynamics, 2nd ed., Metallurgical Industry Press, Beijing, 2002. |
[27] |
R.F. Wu, W. Pan, X.R. Ren, C.L. Wan, Z.X. Qu, A.B. Du, Acta Mater. 60 (2012) 5536-5544.
DOI URL |
[28] |
B. Zheng, Y. Luo, H. Liao, C. Zhang, J. Eur. Ceram. Soc. 37 (2017) 5017-5021.
DOI URL |
[29] |
L. Chen, G.J. Yang, J. Therm. Spray Technol. 26 (2017) 1168-1182.
DOI URL |
[30] |
L. Chen, G.J. Yang, J. Therm. Spray Technol. 27 (2018) 255-268.
DOI URL |
[31] |
K.N. Lee, R.A. Miller, N.S. Jabocson, J. Am. Ceram. Soc. 78 (1995) 705-710.
DOI URL |
[32] |
K.N. Lee, J.I. Eldridge, R.C. Robinson, J. Am. Ceram. Soc. 88 (2005) 3483-3488.
DOI URL |
[33] |
Z.L. Tian, J. Zhang, T.Y. Zhang, X.M. Ren, W.P. Hu, L.Y. Zheng, J.Y. Wang, J. Eur. Ceram. Soc. 39 (2019) 1463-1476.
DOI URL |
[34] |
Y.X. Luo, L.C. Sun, J.M. Wang, Z.L. Tian, H.Q. Nian, J.Y. Wang, J. Eur. Ceram. Soc. 38 (2018) 2043-2052.
DOI URL |
[35] |
Y.R. Li, J.M. Wang, J.Y. Wang, J. Eur. Ceram. Soc. 40 (2020) 2658-2666.
DOI URL |
[36] |
H.J. Choi, H.G. Kim, J.G. Lee, Y.W. Kim, J. Am. Ceram. Soc. 83 (2000) 2821-2827.
DOI URL |
[37] | P. Klemens, Thermal Conductivity, Academic Press, London, 1969. |
[38] |
G.R. Li, G.J. Yang, C.X. Li, C.J. Li, Ceram. Int. 43 (2017) 9600-9615.
DOI URL |
[39] |
G.R. Li, L.S. Wang, Appl. Surf. Sci. 483 (2019) 472-480.
DOI URL |
[40] |
G.R. Li, G.J. Yang, C.X. Li, C.J. Li, J. Eur. Ceram. Soc. 38 (2018) 3325-3332.
DOI URL |
[41] | G.R. Li, G.J. Yang, J. Mater. Sci. Technol. 35 (2019) 231-238. |
[42] |
Y.R. Li, Y.X. Luo, Z.L. Tian, J.M. Wang, J.Y. Wang, J. Eur. Ceram. Soc. 38 (2018) 3539-3546.
DOI URL |
[43] |
Y.C. Zhou, C. Zhao, F. Wang, Y.J. Sun, L.Y. Zheng, X.H. Wang, J. Am. Ceram. Soc. 96 (2013) 3891-3900.
DOI URL |
[44] | R. Hull, Properties of Crystalline Silicon, The Institution of Engineering and Technology, London, UK, 1999. |
[45] |
M. Bartsch, B. Baufeld, S. Dalkilic, L. Chernova, M. Heinzelmann, Int. J. Fatigue 30 (2008) 211-218.
DOI URL |
[1] | Qingqing Li, Yong Zhang, Jie Chen, Bugao Guo, Weicheng Wang, Yuhai Jing, Yong Liu. Effect of ultrasonic micro-forging treatment on microstructure and mechanical properties of GH3039 superalloy processed by directed energy deposition [J]. J. Mater. Sci. Technol., 2021, 70(0): 185-196. |
[2] | Yunsheng Wu, Xuezhi Qin, Changshuai Wang, Lanzhang Zhou. Microstructural evolution and its influence on the impact toughness of GH984G alloy during long-term thermal exposure [J]. J. Mater. Sci. Technol., 2021, 60(0): 61-69. |
[3] | Yuriy G. Denisenko, Victor V. Atuchin, Maxim S. Molokeev, Naizheng Wang, Xingxing Jiang, Aleksandr S. Aleksandrovsky, Alexander S. Krylov, Aleksandr S. Oreshonkov, Alexander E. Sedykh, Svetlana S. Volkova, Zheshuai Lin, Oleg V. Andreev, Klaus Müller-Buschbaum. Negative thermal expansion in one-dimension of a new double sulfate AgHo(SO4)2 with isolated SO4 tetrahedra [J]. J. Mater. Sci. Technol., 2021, 76(0): 111-121. |
[4] | Enkang Hao, Yulong An, Jie Chen, Xiaoqin Zhao, Guoliang Hou, Jianmin Chen, Meizhen Gao, Fengyuan Yan. In-situ formation of layer-like Ag2MoO4 induced by high-temperature oxidation and its effect on the self-lubricating properties of NiCoCrAlYTa/Ag/Mo coatings [J]. J. Mater. Sci. Technol., 2021, 75(0): 164-173. |
[5] | Hong Sun, Nan Deng, Jianqiang Li, Gang He, Jiangtao Li. Highly thermal-conductive graphite flake/Cu composites prepared by sintering intermittently electroplated core-shell powders [J]. J. Mater. Sci. Technol., 2021, 61(0): 93-99. |
[6] | Lin Yuan, Jiangtao Xiong, Yajie Du, Jin Ren, Junmiao Shi, Jinglong Li. Microstructure and mechanical properties in the TLP joint of FeCoNiTiAl and Inconel 718 alloys using BNi2 filler [J]. J. Mater. Sci. Technol., 2021, 61(0): 176-185. |
[7] | Yang Bao, Lujun Huang, Shan Jiang, Rui Zhang, Qi An, Caiwei Zhang, Lin Geng, Xinxin Ma. A novel Ti cored wire developed for wire-feed arc deposition of TiB/Ti composite coating [J]. J. Mater. Sci. Technol., 2021, 83(0): 145-160. |
[8] | Dan Liu, Daoxin Liu, Junfeng Cui, Xingchen Xu, Kaifa Fan, Amin Ma, Yuting He, Sara Bagherifard. Deformation mechanism and in-situ TEM compression behavior of TB8 β titanium alloy with gradient structure [J]. J. Mater. Sci. Technol., 2021, 84(0): 105-115. |
[9] | Fu-Zhi Dai, Yinjie Sun, Bo Wen, Huimin Xiang, Yanchun Zhou. Temperature Dependent Thermal and Elastic Properties of High Entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2: Molecular Dynamics Simulation by Deep Learning Potential [J]. J. Mater. Sci. Technol., 2021, 72(0): 8-15. |
[10] | Qiang Zhu, Gang Chen, Chuanjie Wang, Lukuan Cheng, Heyong Qin, Peng Zhang. Microstructure evolution and mechanical property characterization of a nickel-based superalloy at the mesoscopic scale [J]. J. Mater. Sci. Technol., 2020, 47(0): 177-189. |
[11] | Peng Li, Shuai Wang, Yueqing Xia, Xiaohu Hao, Honggang Dong. Diffusion bonding of AlCoCrFeNi2.1 eutectic high entropy alloy to TiAl alloy [J]. J. Mater. Sci. Technol., 2020, 45(0): 59-69. |
[12] | Beiping Zhou, Wencai Liu, Guohua Wu, Liang Zhang, Xiaolong Zhang, HaoJi Wen, jiang Ding. Microstructure and mechanical properties of sand-cast Mg-6Gd-3Y-0.5Zr alloy subject to thermal cycling treatment [J]. J. Mater. Sci. Technol., 2020, 43(0): 208-219. |
[13] | Jixin Yang, Yiqiang Chen, Yongjiang Huang, Zhiliang Ning, Baokun Liu, Chao Guo, Jianfei Sun. Hierarchical microstructure of a titanium alloy fabricated by electron beam selective melting [J]. J. Mater. Sci. Technol., 2020, 42(0): 1-9. |
[14] | Oluwafunmilola Ola, Yu Chen, Qijian Niu, Yongde Xia, Tapas Mallick, Yanqiu Zhu. Ultralight three-dimensional, carbon-based nanocomposites for thermal energy storage [J]. J. Mater. Sci. Technol., 2020, 36(0): 70-78. |
[15] | Junyuan Bai, Xueyong Pang, Xiangying Meng, Hongbo Xie, Hucheng Pan, Yuping Ren, Min Jiang, Gaowu Qin. Anomalous crystal structure of γ″ phase in the Mg-RE-Zn(Ag) series alloys: Causality clarified by ab initio study [J]. J. Mater. Sci. Technol., 2020, 36(0): 167-175. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||