J. Mater. Sci. Technol. ›› 2020, Vol. 36: 167-175.DOI: 10.1016/j.jmst.2019.05.065
• Research Article • Previous Articles Next Articles
Junyuan Baia, Xueyong Pangab*(), Xiangying Menga, Hongbo Xiea, Hucheng Panab, Yuping Renab, Min Jiangab, Gaowu Qinab*(
)
Received:
2019-01-23
Revised:
2019-04-13
Accepted:
2019-05-05
Published:
2020-01-01
Online:
2020-02-11
Contact:
Pang Xueyong,Qin Gaowu
Junyuan Bai, Xueyong Pang, Xiangying Meng, Hongbo Xie, Hucheng Pan, Yuping Ren, Min Jiang, Gaowu Qin. Anomalous crystal structure of γ″ phase in the Mg-RE-Zn(Ag) series alloys: Causality clarified by ab initio study[J]. J. Mater. Sci. Technol., 2020, 36: 167-175.
Alloys | Refs | Alloy Composition (at.%) | Gd:Zn atomic ratio in alloys | Structural information |
---|---|---|---|---|
Mg-Gd-Zn | [ | Mg-2Gd-1Zn | 2:1 | Ordered G.P zone, a = 5.56 Å, c = 5.21 Å, (0001)α plate |
[ | Mg-1Gd-0.4Zn-0.2 Zr | 2.5:1 | γ″ (Mg70Gd15Zn15*) ordered hcp,P$\bar{6}$2m, a = 5.60 Å, c = 4.44 Å | |
[ | Mg-2.5Gd-1Zn | 2.5:1 | γ″ phase, a = 4.44 Å, c≈ 4.0 Å | |
[ | Mg-1.2Gd-1.8Zn | 2:3 | γ″ (Mg70Gd15Zn15*), a = 5.56 Å, c≈ 3.90 Å | |
Mg-Gd-Ag | [ | Mg-2.4Gd-0.4Ag-0.1 Zr | 6:1 | γ″ (Mg4Gd2Zn3), a = 5.48 Å, c = 4.17 Å, (0001)α plate |
Mg-Y-Zn-Ag | [ | Mg-1.76Y-0.48Ag-0.4Zn-0.17Zr | 3.67:1 | γ″ (Mg4Y2Ag3), P6/mmm, a = 5.56 Å, c = 4.24 Å, (0001)α plate |
Mg-Nd-Zn | [ | Mg-1Nd-1Zn | 1:1 | γ″ (Mg5(Nd,Zn)) hcp,P$\bar{6}$2m, a = 5.50 Å, c = 5.20 Å, (0001)α plate |
[ | Mg-0.6Nd-0.4La-0.3Zn | 2:1 | γ″ ((Mg0.8Zn0.2)5Nd) hcp,P$\bar{6}$2m | |
Mg-Sm-Zn | [ | Mg-1.74Sm-1Zn-Zr | 1.74:1 | γ″ ordered hexagonal G.P zones, a = 5.56 Å, c = 4.14 Å, (0001)α plate |
Table 1 Summary of crystal structure of the γ″ phase reported in literatures.
Alloys | Refs | Alloy Composition (at.%) | Gd:Zn atomic ratio in alloys | Structural information |
---|---|---|---|---|
Mg-Gd-Zn | [ | Mg-2Gd-1Zn | 2:1 | Ordered G.P zone, a = 5.56 Å, c = 5.21 Å, (0001)α plate |
[ | Mg-1Gd-0.4Zn-0.2 Zr | 2.5:1 | γ″ (Mg70Gd15Zn15*) ordered hcp,P$\bar{6}$2m, a = 5.60 Å, c = 4.44 Å | |
[ | Mg-2.5Gd-1Zn | 2.5:1 | γ″ phase, a = 4.44 Å, c≈ 4.0 Å | |
[ | Mg-1.2Gd-1.8Zn | 2:3 | γ″ (Mg70Gd15Zn15*), a = 5.56 Å, c≈ 3.90 Å | |
Mg-Gd-Ag | [ | Mg-2.4Gd-0.4Ag-0.1 Zr | 6:1 | γ″ (Mg4Gd2Zn3), a = 5.48 Å, c = 4.17 Å, (0001)α plate |
Mg-Y-Zn-Ag | [ | Mg-1.76Y-0.48Ag-0.4Zn-0.17Zr | 3.67:1 | γ″ (Mg4Y2Ag3), P6/mmm, a = 5.56 Å, c = 4.24 Å, (0001)α plate |
Mg-Nd-Zn | [ | Mg-1Nd-1Zn | 1:1 | γ″ (Mg5(Nd,Zn)) hcp,P$\bar{6}$2m, a = 5.50 Å, c = 5.20 Å, (0001)α plate |
[ | Mg-0.6Nd-0.4La-0.3Zn | 2:1 | γ″ ((Mg0.8Zn0.2)5Nd) hcp,P$\bar{6}$2m | |
Mg-Sm-Zn | [ | Mg-1.74Sm-1Zn-Zr | 1.74:1 | γ″ ordered hexagonal G.P zones, a = 5.56 Å, c = 4.14 Å, (0001)α plate |
Fig. 1. The proposed sandwiched model of γ″ phase. (a) Projection of γ″ sandwiched model along the [10 $\bar{1}$ 0] γ″ direction, the left panel shows a unit cell structure and the right panel shows its 3 × 3 supercell. And the yellow, gray and dark blue balls represent the RE, Mg and Zn (Ag) atoms, respectively; (b) Schematic illustration of 3 × 3 supercell (stoichiometry: Mg5RE), where Arabic numerals represent the varied substitutional Mg atomic sites; (c) Schematic diagram of the calculated mechanical parameters for γ″ phase, the upper figure exhibits the (0001) basal plane and (2 $\bar{11}$0), (01 $\bar{1}$0) two prismatic planes, and the lower figure shows the angle (θ degrees) of the normal N to the plane (xyz) with respect to the [0001] direction.
layers | a (Å) | c (Å) | Alloys | a (Å) | c (Å) | |
---|---|---|---|---|---|---|
3 | 5.53 | 3.50 | Mg-Gd-Ag | Exp [ | 5.48 | 4.17 |
5 | 5.55 | 3.48 | Calc* | 5.65 | 3.51 | |
7 | 5.53 | 3.52 | Mg-Y-Zn-Ag | Exp [ | 5.56 | 4.24 |
9 | 5.56 | 3.43 | Calc*(Mg-Y-Ag) | 5.64 | 3.51 | |
11 | 5.55 | 3.48 | Calc*(Mg-Y-Zn) | 5.54 | 3.45 | |
13 | 5.55 | 3.44 | Mg-Nd-Zn | Exp [ | 5.50 | 5.20 |
15 | 5.54 | 3.45 | Calc* | 5.58 | 3.60 | |
17 | 5.53 | 3.46 | Mg-Sm-Zn | Exp [ | 5.56 | 4.14 |
+U | 5.53 | 3.49 | Calc* | 5.57 | 3.50 |
Table 2 The α-Mg atomic layers test for the γ″ phase in Mg-Gd-Zn alloy and other optimized results of Mg-RE-Zn(Ag) alloys by the five-layer structural model.
layers | a (Å) | c (Å) | Alloys | a (Å) | c (Å) | |
---|---|---|---|---|---|---|
3 | 5.53 | 3.50 | Mg-Gd-Ag | Exp [ | 5.48 | 4.17 |
5 | 5.55 | 3.48 | Calc* | 5.65 | 3.51 | |
7 | 5.53 | 3.52 | Mg-Y-Zn-Ag | Exp [ | 5.56 | 4.24 |
9 | 5.56 | 3.43 | Calc*(Mg-Y-Ag) | 5.64 | 3.51 | |
11 | 5.55 | 3.48 | Calc*(Mg-Y-Zn) | 5.54 | 3.45 | |
13 | 5.55 | 3.44 | Mg-Nd-Zn | Exp [ | 5.50 | 5.20 |
15 | 5.54 | 3.45 | Calc* | 5.58 | 3.60 | |
17 | 5.53 | 3.46 | Mg-Sm-Zn | Exp [ | 5.56 | 4.14 |
+U | 5.53 | 3.49 | Calc* | 5.57 | 3.50 |
Fig. 2. Schematic illustration of the relaxed sandwiched model. The figure successively shows the projection of sandwiched model along the [1000 ] γ″, [11 $\bar{2}$0] γ″ and [$\bar{1}$100] γ″ directions, respectively.
Fig. 3. Formation energy of the γ″ phase in the Mg-RE-Zn(Ag) alloys. (a-f) Formation energy of the γ″ phase in the Mg-RE-Zn(Ag) alloys is plotted as a function of RE and Mg sites substituted by Zn (Ag) atoms.
Fig. 5. (a, b) The variation of c value for the γ″ phase in the Mg-Gd-Zn(Ag) alloys, and the insets represent the projection of the central layer along the [0001]γ″ direction; (c, d) Schematic illustration of the atomic arrangement of the central layer dependence on the RE:Zn (Ag) atomic ratio in alloys.
Fig. 6. Simulated SAED patterns along the [0001]α, [1$\bar{1}$00]α and [11$\bar{2}$0]α directions, respectively. (a-c) Simulated SAED patterns along the three directions above; (d-f) Simulated SAED patterns of the relaxed structural model proposed by Gu et al. [25]; (g-f) Simulated SAED patterns of structure A (Fig. 5(a)). The color of spots represents the intensity of diffraction, e.g., the red spots and dark blue spots correspond to the strongest and weakest diffraction intensity, respectively.
Fig. 7. (a) The atomic resolution HAADF-STEM image of γ″ phase in the Mg-2.4Gd-0.4Ag-0.1 Zr alloy along the [0001]γ″ direction reported by Zhang et al. [18]; (b) Schematic diagram of calibrated Gd (yellow spheres) and Ag (blue spheres) in the central layer. Region I, II and III belong to the same type structure, and except these three regions, the other Mg and Ag atoms remain partially ordered distribution.
Alloy | Bulk | C11 (GPa) | C12 (GPa) | C13 (GPa) | C44 (GPa) | C33 (GPa) | B (GPa) | G (GPa) | E (GPa) | v | A |
---|---|---|---|---|---|---|---|---|---|---|---|
Pure Mg | Exp [ | 59.3 | 25.7 | 21.4 | 16.4 | 61.5 | 35.25 | 17.3 | 44.6 | 0.289 | 0.98 |
Calc | 58 | 26 | 21 | 17 | 57 | 34 | 17 | 43.7 | 0.289 | 1.06 | |
Mg-Gd-Zn | A | 75.6 | 21.6 | 15.3 | 23.6 | 89 | 38.3 | 27 | 65.8 | 0.21 | 0.87 |
B | 75.8 | 22.5 | 16 | 23.4 | 89 | 39 | 27 | 65.4 | 0.22 | 0.88 | |
C | 76.3 | 22.6 | 17 | 23.5 | 89 | 39.4 | 26.8 | 65.5 | 0.22 | 0.87 | |
D | 75.6 | 23 | 17.4 | 22 | 89 | 39.5 | 25.8 | 63.7 | 0.23 | 0.84 | |
Mg-Gd-Ag | A1 | 83.4 | 18.2 | 18 | 32 | 79.4 | 39 | 32 | 75.7 | 0.18 | 0.98 |
B1 | 83.3 | 18.6 | 20 | 32 | 76 | 40 | 31.6 | 75 | 0.19 | 0.99 | |
C1 | 85.4 | 19.2 | 18.6 | 29.7 | 82.8 | 40.7 | 31.6 | 75.3 | 0.19 | 0.90 |
Table 3 Mechanical parameters of all the proposed sandwiched models (GPa).
Alloy | Bulk | C11 (GPa) | C12 (GPa) | C13 (GPa) | C44 (GPa) | C33 (GPa) | B (GPa) | G (GPa) | E (GPa) | v | A |
---|---|---|---|---|---|---|---|---|---|---|---|
Pure Mg | Exp [ | 59.3 | 25.7 | 21.4 | 16.4 | 61.5 | 35.25 | 17.3 | 44.6 | 0.289 | 0.98 |
Calc | 58 | 26 | 21 | 17 | 57 | 34 | 17 | 43.7 | 0.289 | 1.06 | |
Mg-Gd-Zn | A | 75.6 | 21.6 | 15.3 | 23.6 | 89 | 38.3 | 27 | 65.8 | 0.21 | 0.87 |
B | 75.8 | 22.5 | 16 | 23.4 | 89 | 39 | 27 | 65.4 | 0.22 | 0.88 | |
C | 76.3 | 22.6 | 17 | 23.5 | 89 | 39.4 | 26.8 | 65.5 | 0.22 | 0.87 | |
D | 75.6 | 23 | 17.4 | 22 | 89 | 39.5 | 25.8 | 63.7 | 0.23 | 0.84 | |
Mg-Gd-Ag | A1 | 83.4 | 18.2 | 18 | 32 | 79.4 | 39 | 32 | 75.7 | 0.18 | 0.98 |
B1 | 83.3 | 18.6 | 20 | 32 | 76 | 40 | 31.6 | 75 | 0.19 | 0.99 | |
C1 | 85.4 | 19.2 | 18.6 | 29.7 | 82.8 | 40.7 | 31.6 | 75.3 | 0.19 | 0.90 |
Alloy | Single | C11 | C12 | C13 | C44 | C33 | E(01$\bar{1}$0) | E(0001) | G(01$\bar{1}$0) | G(0001) |
---|---|---|---|---|---|---|---|---|---|---|
Mg-Gd-Zn | A | 115 | 16 | 9.1 | 39 | 175.7 | 112.3 | 175.4 | 43.7 | 39.2 |
B | 116 | 17.8 | 10.3 | 38.6 | 174 | 112.3 | 172.4 | 43.2 | 38.6 | |
C | 117.8 | 18 | 12.1 | 39 | 174 | 114.9 | 172.4 | 43.8 | 39.0 | |
D | 115 | 18.8 | 12.8 | 33 | 174 | 111.1 | 172.4 | 39.2 | 33.1 | |
Mg-Gd-Ag | A1 | 142 | 10.2 | 13.9 | 77 | 133 | 140.8 | 129.9 | 71.4 | 76.9 |
B1 | 146 | 10.8 | 18.5 | 77 | 120 | 142.8 | 114.9 | 71.9 | 76.9 | |
C1 | 154.7 | 11.8 | 15.3 | 66.2 | 147.2 | 151.5 | 144.9 | 68.7 | 66.2 |
Table 4 Calculated elastic constants, Young’s modulus and shear modulus of γ″ phase (GPa).
Alloy | Single | C11 | C12 | C13 | C44 | C33 | E(01$\bar{1}$0) | E(0001) | G(01$\bar{1}$0) | G(0001) |
---|---|---|---|---|---|---|---|---|---|---|
Mg-Gd-Zn | A | 115 | 16 | 9.1 | 39 | 175.7 | 112.3 | 175.4 | 43.7 | 39.2 |
B | 116 | 17.8 | 10.3 | 38.6 | 174 | 112.3 | 172.4 | 43.2 | 38.6 | |
C | 117.8 | 18 | 12.1 | 39 | 174 | 114.9 | 172.4 | 43.8 | 39.0 | |
D | 115 | 18.8 | 12.8 | 33 | 174 | 111.1 | 172.4 | 39.2 | 33.1 | |
Mg-Gd-Ag | A1 | 142 | 10.2 | 13.9 | 77 | 133 | 140.8 | 129.9 | 71.4 | 76.9 |
B1 | 146 | 10.8 | 18.5 | 77 | 120 | 142.8 | 114.9 | 71.9 | 76.9 | |
C1 | 154.7 | 11.8 | 15.3 | 66.2 | 147.2 | 151.5 | 144.9 | 68.7 | 66.2 |
Fig. 8. (a, b) Angular variation of E and G values of the γ″ phase in the Mg-Gd-Zn alloy; (c, d) Angular variation of E and G values of the γ″ phase in the Mg-Gd-Ag alloy; (e, f) Comparison of the E and G values between the structure A and structure A1.
|
[1] | Hai-Le Yan, Hao-Xuan Liu, Ying Zhao, Nan Jia, Jing Bai, Bo Yang, Zongbin Li, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Impact of B alloying on ductility and phase transition in the Ni-Mn-based magnetic shape memory alloys: Insights from first-principles calculation [J]. J. Mater. Sci. Technol., 2021, 74(0): 27-34. |
[2] | Yuriy G. Denisenko, Victor V. Atuchin, Maxim S. Molokeev, Naizheng Wang, Xingxing Jiang, Aleksandr S. Aleksandrovsky, Alexander S. Krylov, Aleksandr S. Oreshonkov, Alexander E. Sedykh, Svetlana S. Volkova, Zheshuai Lin, Oleg V. Andreev, Klaus Müller-Buschbaum. Negative thermal expansion in one-dimension of a new double sulfate AgHo(SO4)2 with isolated SO4 tetrahedra [J]. J. Mater. Sci. Technol., 2021, 76(0): 111-121. |
[3] | Yifan Wang, Yanli Lu, Jing Zhang, Wenchao Yang, Changlin Yang, Pan Wang, Xiaoqing Song, Zheng Chen. Investigation of the 12 orientations variants of nanoscale Al precipitates in eutectic Si of Al-7Si-0.6Mg alloy [J]. J. Mater. Sci. Technol., 2021, 67(0): 186-196. |
[4] | Lin Gao, Kai Li, Song Ni, Yong Du, Min Song. The growth mechanisms of θ′ precipitate phase in an Al-Cu alloy during aging treatment [J]. J. Mater. Sci. Technol., 2021, 61(0): 25-32. |
[5] | Ziqi Guan, Jing Bai, Jianglong Gu, Xinzeng Liang, Die Liu, Xinjun Jiang, Runkai Huang, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. First-principles investigation of B2 partial disordered structure, martensitic transformation, elastic and magnetic properties of all-d-metal Ni-Mn-Ti Heusler alloys [J]. J. Mater. Sci. Technol., 2021, 68(0): 103-111. |
[6] | Yanli Lu, Yi Wang, Yifan Wang, Meng Gao, Yao Chen, Zheng Chen. First-principles study on the mechanical, thermal properties and hydrogen behavior of ternary V-Ni-M alloys [J]. J. Mater. Sci. Technol., 2021, 70(0): 83-90. |
[7] | Xiankai Fu, Bo Yang, Wanqi Chen, Zongbin Li, Haile Yan, Xiang Zhao, Liang Zuo. Electromagnetic wave absorption performance of Ti2O3 and vacancy enhancement effective bandwidth [J]. J. Mater. Sci. Technol., 2021, 76(0): 166-173. |
[8] | Peng Chen, Sheng Li, Yinghao Zhou, Ming Yan, Moataz M. Attallah. Fabricating CoCrFeMnNi high entropy alloy via selective laser melting in-situ alloying [J]. J. Mater. Sci. Technol., 2020, 43(0): 40-43. |
[9] | Xinzeng Liang, Jing Bai, Jianglong Gu, Haile Yan, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Probing martensitic transformation, kinetics, elastic and magnetic properties of Ni2-xMn1.5In0.5Cox alloys [J]. J. Mater. Sci. Technol., 2020, 44(0): 31-41. |
[10] | T. Cai, K.Q. Li, Z.J. Zhang, P. Zhang, R. Liu, J.B. Yang, Z.F. Zhang. Predicting the variation of stacking fault energy for binary Cu alloys by first-principles calculations [J]. J. Mater. Sci. Technol., 2020, 53(0): 61-65. |
[11] | Fu-Zhi Dai, Haiming Zhang, Huimin Xiang, Yanchun Zhou. Theoretical investigation on the stability, mechanical and thermal properties of the newly discovered MAB phase Cr4AlB4 [J]. J. Mater. Sci. Technol., 2020, 39(0): 161-166. |
[12] | Huahai Shen, Jutao Hu, Pengcheng Li, Gang Huang, Jianwei Zhang, Jinchao Zhang, Yiwu Mao, Haiyan Xiao, Xiaosong Zhou, Xiaotao Zu, Xinggui Long, Shuming Peng. Compositional dependence of hydrogenation performance of Ti-Zr-Hf-Mo-Nb high-entropy alloys for hydrogen/tritium storage [J]. J. Mater. Sci. Technol., 2020, 55(0): 116-125. |
[13] | Shijun Zhao. Defect properties in a VTaCrW equiatomic high entropy alloy (HEA) with the body centered cubic (bcc) structure [J]. J. Mater. Sci. Technol., 2020, 44(0): 133-139. |
[14] | Jinlong Wang, Jing Bai, Jianglong Gu, Haile Yan, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Investigation of martensitic transformation behavior in Ni-Mn-In Heusler alloy from a first-principles study [J]. J. Mater. Sci. Technol., 2020, 58(0): 100-106. |
[15] | Zhe Xue, Xinyu Zhang, Jiaqian Qin, Mingzhen Ma, Riping Liu. Controlling the strength of Zr (10 $\bar{1}$ 2) grain boundary by nonmetallic impurities doping: A DFT study [J]. J. Mater. Sci. Technol., 2020, 36(0): 140-148. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||