J. Mater. Sci. Technol. ›› 2021, Vol. 85: 106-117.DOI: 10.1016/j.jmst.2020.12.045
• Research Article • Previous Articles Next Articles
Yan Zoua, Xiaodong Wua,*(), Songbai Tanga, Qianqian Zhua, Hui Songa, Mingxing Guob, Lingfei Caoa,c,**(
)
Received:
2020-09-16
Revised:
2020-12-09
Published:
2021-09-20
Online:
2021-02-01
Contact:
Xiaodong Wu,Lingfei Cao
About author:
**International Joint Laboratory for Light Alloys (Ministry of Education), College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China. caolingfei@cqu.edu.cn (L. Cao).Yan Zou, Xiaodong Wu, Songbai Tang, Qianqian Zhu, Hui Song, Mingxing Guo, Lingfei Cao. Investigation on microstructure and mechanical properties of Al-Zn-Mg-Cu alloys with various Zn/Mg ratios[J]. J. Mater. Sci. Technol., 2021, 85: 106-117.
wt.% | at.% | |||||||
---|---|---|---|---|---|---|---|---|
Zn | Mg | Cu | Zn/Mg | Zn | Mg | Cu | Zn/Mg | |
A1 | 4.2 | 2.8 | 1.0 | 1.50 | 1.78 | 3.20 | 0.44 | 0.56 |
A2 | 5.6 | 2.5 | 1.6 | 2.24 | 2.41 | 2.89 | 0.74 | 0.83 |
A3 | 8.0 | 2.8 | 1.0 | 2.86 | 3.48 | 3.27 | 0.45 | 1.06 |
A4 | 8.0 | 1.8 | 1.0 | 4.44 | 3.48 | 2.11 | 0.45 | 1.65 |
A5 | 8.0 | 0.8 | 1.0 | 10.0 | 3.48 | 0.94 | 0.45 | 3.72 |
Table 1 Nominal chemical compositions of the investigated alloys.
wt.% | at.% | |||||||
---|---|---|---|---|---|---|---|---|
Zn | Mg | Cu | Zn/Mg | Zn | Mg | Cu | Zn/Mg | |
A1 | 4.2 | 2.8 | 1.0 | 1.50 | 1.78 | 3.20 | 0.44 | 0.56 |
A2 | 5.6 | 2.5 | 1.6 | 2.24 | 2.41 | 2.89 | 0.74 | 0.83 |
A3 | 8.0 | 2.8 | 1.0 | 2.86 | 3.48 | 3.27 | 0.45 | 1.06 |
A4 | 8.0 | 1.8 | 1.0 | 4.44 | 3.48 | 2.11 | 0.45 | 1.65 |
A5 | 8.0 | 0.8 | 1.0 | 10.0 | 3.48 | 0.94 | 0.45 | 3.72 |
Alloy | Number density (m-3) | Volume fraction (%) | Phase fraction | T' | η' | |||
---|---|---|---|---|---|---|---|---|
T' | η' | Radius (nm) | Radius (nm) | Thickness (nm) | Aspect ratio | |||
A1 | 4.43 × 1022 | 2.61 | 100 % | 0% | 5.2 ± 1.1 | - | - | - |
A2 | 1.61 × 1023 | 5.10 | 82% | 18 % | 4.2 ± 0.9 | 5.5 ± 1.1 | 3.5 ± 0.9 | 3.3 ± 0.8 |
A3 | 7.48 × 1023 | 2.18 | 64% | 36 % | 1.9 ± 0.4 | 2.3 ± 0.7 | 1.7 ± 0.5 | 2.8 ± 0.5 |
A4 | 5.62 × 1023 | 3.67 | 49% | 51 % | 2.3 ± 0.5 | 3.2 ± 0.7 | 2.3 ± 0.6 | 2.9 ± 0.6 |
A5 | 9.03 × 1022 | 8.99 | 19 % | 81 % | 5.1 ± 1.0 | 11.6 ± 3.4 | 2.6 ± 0.7 | 9.7 ± 3.9 |
Table 2 Precipitates information of peak aged alloys at 150 °C.
Alloy | Number density (m-3) | Volume fraction (%) | Phase fraction | T' | η' | |||
---|---|---|---|---|---|---|---|---|
T' | η' | Radius (nm) | Radius (nm) | Thickness (nm) | Aspect ratio | |||
A1 | 4.43 × 1022 | 2.61 | 100 % | 0% | 5.2 ± 1.1 | - | - | - |
A2 | 1.61 × 1023 | 5.10 | 82% | 18 % | 4.2 ± 0.9 | 5.5 ± 1.1 | 3.5 ± 0.9 | 3.3 ± 0.8 |
A3 | 7.48 × 1023 | 2.18 | 64% | 36 % | 1.9 ± 0.4 | 2.3 ± 0.7 | 1.7 ± 0.5 | 2.8 ± 0.5 |
A4 | 5.62 × 1023 | 3.67 | 49% | 51 % | 2.3 ± 0.5 | 3.2 ± 0.7 | 2.3 ± 0.6 | 2.9 ± 0.6 |
A5 | 9.03 × 1022 | 8.99 | 19 % | 81 % | 5.1 ± 1.0 | 11.6 ± 3.4 | 2.6 ± 0.7 | 9.7 ± 3.9 |
Fig. 1. (a) Age hardening curves of five alloys aged at 150 °C, (b) locally enlarged view of ageing curves of alloys A3 and A4 near peak hardness, (c) the peak hardness and time to peak ageing for alloys with different Zn/Mg ratios.
Fig. 2. Mechanical properties of peak aged samples: (a) engineering stress?strain curves, (b) strength and elongation values as a function of Zn/Mg ratios.
Fig. 6. BF images of peak aged samples viewed along [100]Al and corresponding SADPs: (a) A1, (b) A2, (c) A3, (d) A4, (e) A5, (f) schematic illustration of SADP of η′ and T′ phase in aluminium matrix along the [100]Al zone axis.
Fig. 10. The parameters of precipitates in five alloys as a function of Zn/Mg ratios: (a) total solute content; (b) precipitate number density; (c) precipitate phase fraction; (d) radius of T′ phase; (e) radius and thickness of η' phase; (f) aspect ratio of η' phase.
Fig. 11. The reconstruction of representative precipitates in peak aged condition with corresponding concentration profiles: (a) T′ phase in alloy A1, (b) η′ phase in alloy A5, (c) T′ phase in alloy A5.
[1] |
A. Heinz, A. Haszler, C. Keidel, S. Moldenhauer, R. Benedictus, W.S. Miller, Mater. Sci. Eng. A 280 (2000) 102-107.
DOI URL |
[2] |
P.A. Rometsch, Y. Zhang, S. Knight, Trans. Nonferrous Met. Soc. China 24 (2014) 2003-2017.
DOI URL |
[3] |
A. Azarniya, A.K. Taheri, K.K. Taheri, J. Alloys. Compd. 781 (2019) 945-983.
DOI URL |
[4] |
V.M. Segal, J. Mater. Process. Technol. 231 (2016) 50-57.
DOI URL |
[5] |
Q. Zhu, L. Cao, X. Wu, Y. Zou, M.J. Couper, Mater. Sci. Eng. A 754 (2019) 265-268.
DOI URL |
[6] |
H. Li, F. Cao, S. Guo, Z. Ning, Z. Liu, Y. Jia, S. Scudino, J. Alloys. Compd. 691 (2017) 482-488.
DOI URL |
[7] |
H. Xiang, Q.L. Pan, X.H. Yu, X. Huang, X. Sun, X.D. Wang, M.J. Li, Z.M. Yin, Mater. Sci. Eng. A 676 (2016) 128-137.
DOI URL |
[8] |
W.X. Shu, L.G. Hou, C. Zhang, F. Zhang, J.C. Liu, J.T. Liu, L.Z. Zhuang, J.S. Zhang, Mater. Sci. Eng. A 657 (2016) 269-283.
DOI URL |
[9] |
S. Chen, J. Li, G.Y. Hu, K. Chen, L. Huang, J. Alloys. Compd. 757 (2018) 259-264.
DOI URL |
[10] |
Y. Zou, L. Cao, X. Wu, Y. Wang, X. Sun, H. Song, M.J. Couper, J. Alloys. Compd. 823 (2020), 153792.
DOI URL |
[11] |
Z. Chen, Y. Mo, Z. Nie, Metall. Mater. Trans. A 44 (2013) 3910-3920.
DOI URL |
[12] |
G. Waterloo, V. Hansen, J. Gjønnes, S.R. Skjervold, Mater. Sci. Eng. A 303 (2001) 226-233.
DOI URL |
[13] |
L.K. Berg, J. Gjønnes, V. Hansen, X.Z. Li, M. Knutson-Wedel, G. Waterloo, D. Schryvers, L.R. Wallenberg, Acta Mater. 49 (2001) 3443-3451.
DOI URL |
[14] |
T. Marlaud, A. Deschamps, F. Bley, W. Lefebvre, B. Baroux, Acta Mater. 58 (2010) 4814-4826.
DOI URL |
[15] |
T.F. Chung, Y.L. Yang, B.M. Huang, Z. Shi, J. Lin, T. Ohmura, J.R. Yang, Acta Mater. 149 (2018) 377-387.
DOI URL |
[16] |
J.Z. Liu, J.H. Chen, Z.R. Liu, C.L. Wu, Mater. Charact. 99 (2015) 142-149.
DOI URL |
[17] |
J.Z. Liu, J.H. Chen, D.W. Yuan, C.L. Wu, J. Zhu, Z.Y. Cheng, Mater. Charact. 99 (2015) 277-286.
DOI URL |
[18] |
J. Liu, R. Hu, J. Zheng, Y. Zhang, Z. Ding, W. Liu, Y. Zhu, G. Sha, J. Alloys. Compd. 821 (2020), 153572.
DOI URL |
[19] |
A. Bigot, P. Auger, S. Chambreland, D. Blavette, A. Reeves, Microsc. Microanal. Microstruct. 8 (1997) 103-113.
DOI URL |
[20] |
M. Radomsky, O. Kabisch, H. Löffler, J. Lendvai, T. Ungár, I. Kovács, G. Honyek, J. Mater. Sci. 14 (1979) 2906-2912.
DOI URL |
[21] |
Z.W. Huang, M.H. Loretto, R.E. Smallman, J. White, Acta Metall. Mater. 42 (1994) 549-559.
DOI URL |
[22] | N. Afify, A.F. Gaber, G. Abbady, Mater. Sci. Appl. Chem. 2 (2011) 427-434. |
[23] |
N. Takata, M. Ishihara, A. Suzuki, M. Kobashi, Mater. Sci. Eng. A 739 (2019) 62-70.
DOI URL |
[24] |
H. Löffler, I. Kovács, J. Lendvai, J. Mater. Sci. 18 (1983) 2215-2240.
DOI URL |
[25] |
G. Sha, A. Cerezo, Surf. Interface Anal. 36 (2004) 564-568.
DOI URL |
[26] |
M. Chemingui, R. Ameur, V. Optasanu, M. Khitouni, J. Therm. Anal. Calorim. 136 (2019) 1887-1894.
DOI |
[27] |
X.B. Yang, J.H. Chen, J.Z. Liu, F. Qin, J. Xie, C.L. Wu, J. Alloys. Compd. 610 (2014) 69-73.
DOI URL |
[28] |
Y. Zou, X. Wu, S. Tang, Q. Zhu, H. Song, L. Cao, Mater. Charact. 169 (2020), 110610.
DOI URL |
[29] |
H.P. Tang, Q.D. Wang, C. Luo, C. Lei, T.W. Liu, Z.Y. Li, H.Y. Jiang, W.J. Ding, J. Fang, J.W. Zhang, J. Alloys. Compd. 842 (2020), 155707.
DOI URL |
[30] |
G. Sha, A. Cerezo, Acta Mater. 52 (2004) 4503-4516.
DOI URL |
[31] |
T. Marlaud, A. Deschamps, F. Bley, W. Lefebvre, B. Baroux, Acta Mater. 58 (2010) 248-260.
DOI URL |
[32] |
D. Liu, B. Xiong, F. Bian, Z. Li, X. Li, Y. Zhang, Q. Wang, G. Xie, F. Wang, H. Liu, Mater. Sci. Eng. A 639 (2015) 245-251.
DOI URL |
[33] |
S. Hou, D. Zhang, Q. Ding, J. Zhang, L. Zhuang, Mater. Sci. Eng. A 759 (2019) 465-478.
DOI URL |
[34] |
H. Zhao, F. De Geuser, A. Kwiatkowski da Silva, A. Szczepaniak, B. Gault, D. Ponge, D. Raabe, Acta Mater. 156 (2018) 318-329.
DOI URL |
[35] |
F. Cao, J. Zheng, Y. Jiang, B. Chen, Y. Wang, T. Hu, Acta Mater. 164 (2019) 207-219.
DOI URL |
[36] |
W. Zhang, J.R. Smith, A.G. Evans, Acta Mater. 50 (2002) 3803-3816.
DOI URL |
[37] |
Q. Luo, Y. Guo, B. Liu, Y. Feng, J. Zhang, Q. Li, K. Chou, J. Mater. Sci. Technol. 44 (2020) 171-190.
DOI |
[38] |
Q. Luo, J. Li, B. Li, B. Liu, H. Shao, Q. Li, J. Magnesium Alloys 7 (2019) 58-71.
DOI URL |
[39] |
Y. Pang, Q. Li, Int. J. Hydrogen Energy 41 (2016) 18072-18087.
DOI URL |
[40] |
Y. Pang, Q. Li, Scr. Mater. 130 (2017) 223-228.
DOI URL |
[41] |
Y. Pang, D. Sun, Q. Gu, K.C. Chou, X. Wang, Q. Li, Cryst. Growth Des. 16 (2016) 2404-2415.
DOI URL |
[42] |
R. Ghiaasiaan, S. Shankar, Mater. Sci. Eng. A 733 (2018) 235-245.
DOI URL |
[43] |
K. Ma, H. Wen, T. Hu, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia, J.M. Schoenung, Acta Mater. 62 (2014) 141-155.
DOI URL |
[44] |
E.O. Hall, Proc. Phys. Soc. B 64 (1951) 747-753.
DOI URL |
[45] | N.J. Petch, J. Iron Steel Inst. 174 (1953) 25-28. |
[46] |
A. Deschamps, Y. Brechet, Acta Mater. 47 (1998) 293-305.
DOI URL |
[47] |
M. Dixit, R.S. Mishra, K.K. Sankaran, Mater. Sci. Eng. A 478 (2008) 163-172.
DOI URL |
[48] |
R.L. Fleischer, Acta Metall. 10 (1962) 835-842.
DOI URL |
[49] |
R.L. Fleischer, Acta Metall. 11 (1963) 203-209.
DOI URL |
[50] |
G. Liu, G.J. Zhang, X.D. Ding, J. Sun, K.H. Chen, Mater. Sci. Eng. A 344 (2003) 113-124.
DOI URL |
[51] |
H. Wen, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia, Acta Mater. 61 (2013) 2769-2782.
DOI URL |
[52] |
E. Hornbogen, E.A. Starke, Acta Metall. Mater. 41 (1993) 1-16.
DOI URL |
[53] |
A.W. Zhu, E.A. Starke, Acta Mater. 47 (1999) 3263-3269.
DOI URL |
[54] | P.M. Kelly, Scr. Metall. Mater. 6 (1972) 647-656. |
[55] |
N. Han, X. Zhang, S. Liu, B. Ke, X. Xin, Mater. Sci. Eng. A 528 (2011) 3714-3721.
DOI URL |
[1] | Hidalgo-Manrique P.,Orozco-Caballero A.,Cepeda-Jiménez C.M.,Ruano O.A.,Carreño F.. Influence of the Accumulative Roll Bonding Process Severity on the Microstructure and Superplastic Behaviour of 7075 Al Alloy [J]. J. Mater. Sci. Technol., 2016, 32(8): 774-782. |
[2] | Zhiwei DU, Tietao ZHOU, Peiying LIU, Huanxi LI, Baozhong DONG, Changqi CHEN. Small Angle X-ray Scattering Study of Precipitation Kinetics in Al-Zn-Mg-Cu Alloys [J]. J Mater Sci Technol, 2005, 21(04): 479-483. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||