J. Mater. Sci. Technol. ›› 2021, Vol. 83: 196-207.DOI: 10.1016/j.jmst.2021.01.019
• Research Article • Previous Articles Next Articles
Peng-Cheng Zhaoa, Guang-Jian Yuana, Run-Zi Wanga, Bo Guanb, Yun-Fei Jiaa,*(), Xian-Cheng Zhanga,*(
), Shan-Tung Tua
Received:
2020-08-03
Revised:
2021-01-07
Accepted:
2021-01-10
Published:
2021-02-01
Online:
2021-02-01
Contact:
Yun-Fei Jia,Xian-Cheng Zhang
About author:
xczhang@ecust.edu.cn (X.-C. Zhang).Peng-Cheng Zhao, Guang-Jian Yuan, Run-Zi Wang, Bo Guan, Yun-Fei Jia, Xian-Cheng Zhang, Shan-Tung Tu. Grain-refining and strengthening mechanisms of bulk ultrafine grained CP-Ti processed by L-ECAP and MDF[J]. J. Mater. Sci. Technol., 2021, 83: 196-207.
Fe | C | N | H | O | Ti |
---|---|---|---|---|---|
0.28 | 0.08 | 0.03 | 0.015 | 0.25 | balance |
Table 1 Chemical composition (wt.%) of the CP-Ti.
Fe | C | N | H | O | Ti |
---|---|---|---|---|---|
0.28 | 0.08 | 0.03 | 0.015 | 0.25 | balance |
Fig. 1. As-received CP-Ti: (a) EBSD IPF orientation map; (b) grain boundary misorientation distribution; (c) IAMA map showing the distribution of substructured grains (yellow) relative to the deformed (red) and recrystallized (blue) ones; (d) KAM map showing the non-uniformly distributed local misorientations. (c) and (d) were both derived from the EBSD map.
Fig. 4. EBSD/TKD crystal-orientation maps and grain boundary misorientation distributions of CP-Ti after L-ECAP/MDF for different number of passes/cycles: (a) and (b) 8-pass L-ECAP; (c) and (d) 12-pass L-ECAP; (e) and (f) 2-cyc MDF; (g) and (h) 3-cyc MDF.
Fig. 5. TEM micrographs and grain size distribution of the L-ECAP billets: longitudinal plane of 8-pass (a) and 12-pass (c) samples; cross-sectional plane of 8-pass (b) and 12-pass (d) samples; grain size distribution of 8-pass (e) and 12-pass (f) samples.
Fig. 6. Recrystallized nano-grains with iron purities surrounded by the matrix: (a) typical bimodal microstructure; (b) nano-clustered area; (c) EDS results of the matrix; (d) EDS results of the nano-clustered area.
Fig. 8. Uniaxial tensile properties and strain hardening behavior of the as-received and L-ECAP/MDF samples: (a) Engineering stress?strain (σe?εe) curves at a constant displacement rate of 1 mm/min; (b) True stress?strain (σT?εT) curves, converted using standard equations (up to the maximum stress point where non-uniform elongation onsets) from the corresponding curves in (a); (c) Strain hardening rate (Θ = dσ/dε) vs. true strain (εT) curves.
Fig. 9. Microhardness (HV) and yield strength (σ0.2) of the as-received and deformed samples as a function of the inverse square root of average grain size (d-1/2) showing a fit to the Hall-Petch relationship.
Fig. 11. Grain segmentation by dislocation tangle during the dynamic recovery process and the hexagonal dislocation networks morphology: (a) a segmented grain by dislocation tangles; (b) gradually formed dislocation tangles in a grain; hexagonal dislocation networks formed internal grain (c) and at grain boundary (d).
Sample ID | Calculated strength (MPa) | Measured YS (MPa) | |||
---|---|---|---|---|---|
ΔσD | ΔσG | Δσ0 | σYS | ||
8-pass L-ECAP | 346 | 234 | 290 | 508 | 521 |
12-pass L-ECAP | 326 | 257 | 290 | 506 | 557 |
2-cycle MDF | 353 | 256 | 290 | 524 | 556 |
3-cycle MDF | 455 | 331 | 290 | 632 | 602 |
Table 2 Calculated contributions of dislocation accumulation (ΔσD) and grain refinement (ΔσG) to YS of the L-ECAP/MDF samples.
Sample ID | Calculated strength (MPa) | Measured YS (MPa) | |||
---|---|---|---|---|---|
ΔσD | ΔσG | Δσ0 | σYS | ||
8-pass L-ECAP | 346 | 234 | 290 | 508 | 521 |
12-pass L-ECAP | 326 | 257 | 290 | 506 | 557 |
2-cycle MDF | 353 | 256 | 290 | 524 | 556 |
3-cycle MDF | 455 | 331 | 290 | 632 | 602 |
[1] |
V. Segal, Mater. Sci. Eng. A 197 (1995) 157-164.
DOI URL |
[2] |
R.Z. Valiev, N.A. Krasilnikov, N.K. Tsenev, Mater. Sci. Eng. A 137 (1991) 35-40.
DOI URL |
[3] |
R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Prog. Mater. Sci. 45 (2000) 103-189.
DOI URL |
[4] |
P. Zhao, B. Chen, J. Kelleher, G. Yuan, B. Guan, X. Zhang, S. Tu, Acta Mater. 174 (2019) 29-42.
DOI |
[5] |
M. Ciemiorek, W. Chrominski, L. Olejnik, M. Lewandowska, Mater. Des. 130 (2017) 392-402.
DOI URL |
[6] |
J.A.D. Valle, F. Carre ˜ño, O.A. Ruano, Acta Mater. 54 (2006) 4247-4259.
DOI URL |
[7] |
Y.T. Zhu, T.C. Lowe, Mater. Sci. Eng. A 291 (2000) 46-53.
DOI URL |
[8] |
B. Mirzakhani, Y. Payandeh, Mater. Des. 68 (2015) 127-133.
DOI URL |
[9] |
L. Huan, C. Zhaojun, Y. Kai, Y. Jingli, B. Jing, J. Jinghua, M. Aibin, J. Mater. Sci. Technol. 32 (2016) 1274-1281.
DOI |
[10] |
K. Edalati, R. Uehiro, K. Fujiwara, Y. Ikeda, H.W. Li, X. Sauvage, R.Z. Valiev, E. Akiba, I. Tanaka, Z. Horita, Mater. Sci. Eng. A 701 (2017) 158-166.
DOI URL |
[11] |
(a) Z. Yan, Z. Zhang, X. Li, J. Xu, Y. Xue, J. Alloys Compd. 822 (2020), 153698;
DOI URL |
(b) S.F. Kai, A. Danno, J.T. Ming, B.W. Chua, J. Mater. Process. Technol. 246 (2017) 235-244.
DOI URL |
|
[12] |
A. Heczel, M. Kawasaki, J.L. Lábár, J.I. Jang, T.G. Langdon, J. Gubicza, J. Alloys Compd. 711 (2017) 143-154.
DOI URL |
[13] |
M.I.A.E. Aal, H.S. Kim, Mater. Des. 53 (2014) 373-382.
DOI URL |
[14] |
M. Hosseini, N. Pardis, H.D. Manesh, M. Abbasi, D.I. Kim, Mater. Des. 113 (2017) 128-136.
DOI URL |
[15] |
X.C. Liu, H.W. Zhang, K. Lu, Acta Mater. 96 (2015) 24-36.
DOI URL |
[16] |
F.J. Humphreys, P.B. Prangnell, J.R. Bowen, A. Gholinia, C. Harris, Philos. Trans. R. Soc. A 357 (1999) 1663-1681.
DOI URL |
[17] |
R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, Y. Zhu, JOM 68 (2016) 1216-1226.
DOI URL |
[18] |
V.V. Stolyarov, Y.T. Zhu, T.C. Lowe, R.Z. Valiev, Mater. Sci. Eng. A 303 (2001) 82-89.
DOI URL |
[19] |
D.V. Gunderov, A.V. Polyakov, I.P. Semenova, G.I. Raab, A.A. Churakova, E.I. Gimaltdinova, I. Sabirov, J. Segurado, V.D. Sitdikov, I.V. Alexandrov, Mater. Sci. Eng. A 562 (2013) 128-136.
DOI URL |
[20] |
X. Zhao, X. Yang, X. Liu, C.T. Wang, Y. Huang, T.G. Langdon, Mater. Sci. Eng. A 607 (2014) 482-489.
DOI URL |
[21] |
V.V. Stolyarov, Y.T. Zhu, I.V. Alexandrov, T.C. Lowe, R.Z. Valiev, Mater. Sci. Eng. A 343 (2003) 43-50.
DOI URL |
[22] |
W. Song, P.F. Thomson, Int. J. Adv. Manuf. Technol. 97 (2018) 4031-4041.
DOI URL |
[23] |
D. Jinfang, D. Qing, D. Yongbing, X. Hui, H. Yanfeng, M. Jianbo, Z. Jiao, W. Jun, S. Baode, J. Mater. Res. 31 (2016) 3420-3427.
DOI URL |
[24] |
A. Loucif, R.B. Figueiredo, T. Baudin, F. Brisset, R. Chemam, T.G. Langdon, Mater. Sci. Eng. A 532 (2012) 139-145.
DOI URL |
[25] |
Z.Y. Liang, Y.Z. Li, M.X. Huang, Scr. Mater. 112 (2016) 28-31.
DOI URL |
[26] |
S.W. Choi, J.S. Jeong, J.W. Won, J.K. Hong, Y.S. Choi, J. Mater. Sci. Technol. 66 (2021) 193-201.
DOI URL |
[27] |
J.K. Mackenzie, Biometrica 45 (1958) 229-240.
DOI URL |
[28] |
P.C. Zhao, B. Chen, Z.G. Zheng, B. Guan, X.C. Zhang, S.T. Tu, Metall. Mater. Trans. A 52 (2021) 394-412.
DOI URL |
[29] |
Y. Nishida, H. Arima, J.C. Kim, T. Ando, Scr. Mater. 45 (2001) 261-266.
DOI URL |
[30] |
Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, T.G. Langdon, Scr. Mater. 35 (1996) 143-146.
DOI URL |
[31] |
P.W. Trimby, Ultramicroscopy 120 (2012) 16-24.
DOI URL |
[32] |
M. Ferry, N. Burhan, Acta Mater. 55 (2007) 3479-3491.
DOI URL |
[33] |
H. Sharma, D. Parfitt, A.K. Syed, D. Wimpenny, E. Muzangaza, G.J. Baxter, B. Chen, Mater. Sci. Eng. A 744 (2019) 182-194.
DOI URL |
[34] |
A. Popov, I.Y. Pyshmintsev, S.L. Demakov, A.G. Illarionov, T.C. Lowe, A.V. Sergeyeva, R.Z. Valiev, Scr. Mater. 37 (1997) 1089-1094.
DOI URL |
[35] |
G.V. Nurislamova, X. Sauvage, M.Y. Murashkin, R.K. Islamgaliev, R.Z. Valiev, Philos. Mag. Lett. 88 (2008) 459-466.
DOI URL |
[36] |
I. Gutierrez-Urrutia, D. Raabe, Scr. Mater. 66 (2012) 992-996.
DOI URL |
[37] |
L. Su, C. Lu, H. Li, G. Deng, K. Tieu, Mater. Sci. Eng. A 614 (2014) 148-155.
DOI URL |
[38] |
C. Kwan, Z. Wang, S.B. Kang, Mater. Sci. Eng. A 480 (2008) 148-159.
DOI URL |
[39] |
S.O. Gashti, A. Fattah-alhosseini, Y. Mazaheri, M.K. Keshavarz, J. Alloys Compd. 658 (2016) 854-861.
DOI URL |
[40] |
X. Wu, P. Jiang, L. Chen, F. Yuan, Y.T. Zhu, Proc. Natl. Acad. Sci. U. S. A. 111 (20)(2014) 7197-7201.
DOI URL |
[41] |
X. Wu, F. Yuan, M. Yang, P. Jiang, C. Zhang, L. Chen, Y. Wei, E. Ma, Sci. Rep. 5 (2015) 11728.
DOI URL |
[42] |
F.H.D. Torre, P. Spatig, R. Schaublin, M. Victoria, Acta Mater. 53 (2005) 2337-2349.
DOI URL |
[43] |
N.A. Krasilnikov, W. Lojkowski, Z. Pakiela, R.Z. Valiev, Mater. Sci. Eng. A 397 (2005) 330-337.
DOI URL |
[44] | F.J. Humphreys, M. Hatherly, Recrystallisation and Related Annealing Phenomena, Elsevier Science Ltd., Oxford, 1995. |
[45] |
D. Hughes, N. Hansen, D. Bammann, Scr. Mater. 48 (2003) 147-153.
DOI URL |
[46] |
Y. Liu, Y. Cao, Q. Mao, H. Zhou, Y. Zhao, W. Jiang, Y. Liu, J.T. Wang, Z.S. You, Y.T. Zhu, Acta Mater. 189 (2020) 129-144.
DOI URL |
[47] |
J. Pesicka, R. Kuˇzel, A. Dronhofer, G. Eggeler, Acta Mater. 51 (2003) 4847-4862.
DOI URL |
[48] |
X. Ma, C. Huang, J. Moering, M. Ruppert, H.W. Hoppel, M. Goken, J. Narayan, Y.T. Zhu, Acta Mater. 116 (2016) 43-52.
DOI URL |
[49] |
G.S. Dyakonov, E.G. Zemtsova, S. Mironov, I.P. Semenova, R.Z. Valiev, S.L. Semiatin, Mater. Sci. Eng. A 648 (2015) 305-310.
DOI URL |
[50] | G. Gottstein, Mater. Today 7 (2004) 55. |
[51] |
H. Conrad, Prog. Mater. Sci. 26 (1981) 123-403.
DOI URL |
[52] |
S.X. Li, P.C. Zhao, Y.N. He, S.R. Yu, Mater. Sci. Eng. A 662 (2016) 46-53.
DOI URL |
[53] |
A. Marchand, J. Duffy, J. Mech. Phys. Solids 36 (1988) 251-283.
DOI URL |
[54] | S.P. Agrawal, G.A. Sargent, H. Conrad, Metall. Trans. 5 (1974) 2415-2422. |
[55] |
K. Wang, N. Tao, G. Liu, J. Lu, K. Lu, Acta Mater. 54 (2006) 5281-5291.
DOI URL |
[56] |
K. Huang, R. Logé, Mater. Des. 111 (2016) 548-574.
DOI URL |
[57] | Y. Zhu, X. Liao, X. Wu, JOM 60 (2008) 60. |
[58] |
C.M. Cepeda-Jiménez, J.M. Molina-Aldareguia, M.T. Pérez-Prado, Acta Mater. 88 (2015) 232-244.
DOI URL |
[59] |
N. Hansen, Scr. Mater. 51 (2004) 801-806.
DOI URL |
[60] |
A. Fattahalhosseini, M.K. Keshavarz, Y. Mazaheri, A.R. Ansari, M. Karimi, Mater. Sci. Eng. A 693 (2017) 164-169.
DOI URL |
[61] |
J.E. Bailey, P.B. Hirsch, Philos. Mag. 5 (1960) 485-497.
DOI URL |
[62] |
H. Mecking, U.F. Kocks, Acta Metall. 29 (1981) 1865-1875.
DOI URL |
[63] |
J.L. Milner, F. Abufarha, C. Bunget, T.R. Kurfess, V.H. Hammond, Mater. Sci. Eng. A 561 (2013) 109-117.
DOI URL |
[1] | Abdul Malik, Yangwei Wang, Huanwu Cheng, Faisal Nazeer, Muhammad Abubaker Khan. Microstructure evolution of Mg-Zn-Zr magnesium alloy against soft steel core projectile [J]. J. Mater. Sci. Technol., 2021, 79(0): 46-61. |
[2] | Guan-Qiang Wang, Ming-Song Chen, Hong-Bin Li, Y.C. Lin, Wei-Dong Zeng, Yan-Yong Ma. Methods and mechanisms for uniformly refining deformed mixed and coarse grains inside a solution-treated Ni-based superalloy by two-stage heat treatment [J]. J. Mater. Sci. Technol., 2021, 77(0): 47-57. |
[3] | Peng Liu, Rui Zhang, Yong Yuan, Chuanyong Cui, Faguang Liang, Xi Liu, Yuefeng Gu, Yizhou Zhou, Xiaofeng Sun. Microstructural evolution of a Ni-Co based superalloy during hot compression at γ′ sub-/super-solvus temperatures [J]. J. Mater. Sci. Technol., 2021, 77(0): 66-81. |
[4] | Sang Won Lee, Gukin Han, Tea-Sung Jun, Sung Hyuk Park. Effects of initial texture on deformation behavior during cold rolling and static recrystallization during subsequent annealing of AZ31 alloy [J]. J. Mater. Sci. Technol., 2021, 66(0): 139-149. |
[5] | C.J. Barr, K. Xia. Grain refinement in low SFE and particle-containing nickel aluminium bronze during severe plastic deformation at elevated temperatures [J]. J. Mater. Sci. Technol., 2021, 82(0): 57-68. |
[6] | Yongxiao Wang, Xinwu Ma, Guoqun Zhao, Xiao Xu, Xiaoxue Chen, Cunsheng Zhang. Microstructure evolution of spray deposited and as-cast 2195 Al-Li alloys during homogenization [J]. J. Mater. Sci. Technol., 2021, 82(0): 161-178. |
[7] | Yunwu Ma, Sizhe Niu, Huihong Liu, Yongbing Li, Ninshu Ma. Microstructural evolution in friction self-piercing riveted aluminum alloy AA7075-T6 joints [J]. J. Mater. Sci. Technol., 2021, 82(0): 80-95. |
[8] | Hui Fu, Xiaoye Zhou, Bo Wu, Lei Qian, Xu-Sheng Yang. Atomic-scale dissecting the formation mechanism of gradient nanostructured layer on Mg alloy processed by a novel high-speed machining technique [J]. J. Mater. Sci. Technol., 2021, 82(0): 227-238. |
[9] | Xiaojie Zhou, Yuan Yao, Jian Zhang, Xiaomin Chen, Weiying Huang, Jing Pan, Haoran Wang, Maopeng Weng. A high-performance Mg-4.9Gd-3.2Y-1.1Zn-0.5Zr alloy via multidirectional forging after analyzing its compression behavior [J]. J. Mater. Sci. Technol., 2021, 70(0): 156-167. |
[10] | S.Z. Wu, T. Nakata, G.Z. Tang, C. Xu, X.J. Wang, X.W. Li, X.G. Qiao, M.Y. Zheng, L. Geng, S. Kamado, G.H. Fan. Effect of forced-air cooling on the microstructure and age-hardening response of extruded Mg-Gd-Y-Zn-Zr alloy full with LPSO lamella [J]. J. Mater. Sci. Technol., 2021, 73(0): 66-75. |
[11] | L.Y. Zhao, H. Yan, R.S. Chen, En-Hou Han. Orientations of nuclei during static recrystallization in a cold-rolled Mg-Zn-Gd alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 162-167. |
[12] | Qiyu Liao, Yanchao Jiang, Qichi Le, Xingrui Chen, Chunlong Cheng, Ke Hu, Dandan Li. Hot deformation behavior and processing map development of AZ110 alloy with and without addition of La-rich Mish Metal [J]. J. Mater. Sci. Technol., 2021, 61(0): 1-15. |
[13] | Hyun Ji Kim, Sang-Cheol Jin, Jae-Gil Jung, Sung Hyuk Park. Influence of undissolved second-phase particles on dynamic recrystallization behavior of Mg-7Sn-1Al-1Zn alloy during low- and high-temperature extrusions [J]. J. Mater. Sci. Technol., 2021, 71(0): 87-97. |
[14] | Peiru Yang, Chenxi Liu, Qianying Guo, Yongchang Liu. Variation of activation energy determined by a modified Arrhenius approach: Roles of dynamic recrystallization on the hot deformation of Ni-based superalloy [J]. J. Mater. Sci. Technol., 2021, 72(0): 162-171. |
[15] | Mingxiang Liu, Changjiang Song, Zhenshan Cui. Crystallographic texture evolution and martensite transformation in the strain hardening process of a ferrite-based low density steel [J]. J. Mater. Sci. Technol., 2021, 78(0): 247-259. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||