J. Mater. Sci. Technol. ›› 2021, Vol. 82: 227-238.DOI: 10.1016/j.jmst.2020.10.086
• Research Article • Previous Articles Next Articles
Hui Fua,1, Xiaoye Zhouc,1, Bo Wua, Lei Qiana, Xu-Sheng Yanga,b,*()
Received:
2020-08-21
Revised:
2020-10-09
Accepted:
2020-10-11
Published:
2021-08-20
Online:
2021-01-27
Contact:
Xu-Sheng Yang
About author:
∗ State Key Laboratory of Ultra-precision Machining Technology, Advanced Manufacturing Technology Research Centre, Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China. E-mail address: xsyang@polyu.edu.hk (X.-S. Yang).1These authors contributed equally to this work.
Hui Fu, Xiaoye Zhou, Bo Wu, Lei Qian, Xu-Sheng Yang. Atomic-scale dissecting the formation mechanism of gradient nanostructured layer on Mg alloy processed by a novel high-speed machining technique[J]. J. Mater. Sci. Technol., 2021, 82: 227-238.
Fig. 2. Cross-sectional OM images of the (a) original and (b) SPDT L4 alloy. (c) EBSD map of the cross-sectional surface of SPDT L4 alloy. (d) XRD patterns of original and SPDT alloy at different depths of 80?μm, 50?μm, 30?μm, and surface, respectively. (e) Variation of both hardness and grain size against the distance from the topmost surface to the CG matrix of the SPDT L4 alloy.
Fig. 3. Typical longitudinal section BF TEM images of the SPDT L4 alloy at different depths: (a) 65?μm, (b) 50?μm, (c) 30?μm, (d) 15?μm, (e) 5?μm. (f) Topmost surface. Insets are the corresponding HRTEM image, SAED patterns and grain size distribution.
Fig. 6. (a) TEM image of UFG. (b) HRTEM image of UFG, inset is the FFT pattern. (c), (d) Fourier-filtered image of SF marked by the white dashed square in (b). (e) TEM image of NG. (f) HRTEM image of SF from the marked region in (e) and high density of dislocations existing in the GBs.
Fig. 7. (a-c) Microstructure evolution of the MD simulation model at three different stages during cutting, from (a) stage 1, (b) intermediate stage 2, to (c) stage 3. Inset is the enlarged image of the red dash region in (c). The atoms are colored using common neighbor analysis.
Fig. 8. (a) Contour map distributions of equivalent stress in SPDT sample. (b) The statistics of varied equivalent stress with depth calculated by FEA in SPDT processing.
Fig. 9. Atomic structure evolutions show the nucleation and growth processes of TTW and CTW, respectively. (a)-(c) Nucleation and growth process of TTW. (d)-(e) Nucleation and growth process of CTW.
Fig. 10. Schematic of twinning nucleation and growth of (a) $\left\{ 10\bar{1}1 \right\}$CTW. Summary of twinning nucleation and growth in GNS L4 alloy based on HRTEM and MD results: (b) partial dislocations pile up at GBs, (c) nucleation of twinning, (d) growth of twinning.
Fig. 11. (a) Effective stresses of various Mg alloys plotted against grain size showing Hall-Petch relationship and corresponding dominated plastic deformation mechanisms for the refinement process. (b) Schematic illustration of grain refinement process in the L4 GNS layer from the matrix to surface.
[1] |
E. Ma, T. Zhu, Mater. Today 20 (2017) 323-331.
DOI URL |
[2] |
K. Lu, Science 345 (2014) 1455-1456.
DOI PMID |
[3] |
X. Wu, P. Jiang, L. Chen, F. Yuan, Y.T. Zhu, Proc. Natl. Acad. Sci. U. S. A. 111 (2014) 7197-7201.
DOI URL |
[4] | Z. Cheng, H. Zhou, Q. Lu, H. Gao, L. Lu, Science 362 (2018). |
[5] |
X. Chen, Z. Han, X. Li, K. Lu, Sci. Adv. 2 (2016), e1601942.
DOI URL |
[6] |
X. Zhou, X.Y. Li, K. Lu, Science 360 (2018) 526.
DOI PMID |
[7] |
J.Y. Kang, J.G. Kim, H.W. Park, H.S. Kim, Sci. Rep. 6 (2016) 26590.
DOI PMID |
[8] |
M.N. Hasan, Y.F. Liu, X.H. An, J. Gu, M. Song, Y. Cao, Y.S. Li, Y.T. Zhu, X.Z. Liao, Int. J. Plast. 123 (2019) 178-195.
DOI URL |
[9] |
J.Z. Lu, K.Y. Luo, Y.K. Zhang, C.Y. Cui, G.F. Sun, J.Z. Zhou, L. Zhang, J. You, K.M. Chen, J.W. Zhong, Acta Mater. 58 (2010) 3984-3994.
DOI URL |
[10] |
W. Guo, Z. Pei, X. Sang, J.D. Poplawsky, S. Bruschi, J. Qu, D. Raabe, H. Bei, Acta Mater. 170 (2019) 176-186.
DOI URL |
[11] |
W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P. De Smet, A. Haszler, A. Vieregge, Mater. Sci. Eng. A 280 (2000) 37-49.
DOI URL |
[12] | Z. Zurecki, R. Ghosh, J.H. Frey, in: ASME 2003 International Mechanical Engineering Congress and Exposition, 2003. |
[13] |
J.J. Wang, N.R. Tao, K. Lu, Acta Mater. 180 (2019) 231-242.
DOI |
[14] | J. Azadmanjiri, C.C. Berndt, A. Kapoor, C. Wen, Crit. Rev. Solid State Mater.Sci. 40 (2015) 164-181. |
[15] |
Y. Wei, Y. Li, L. Zhu, Y. Liu, X. Lei, G. Wang, Y. Wu, Z. Mi, J. Liu, H. Wang, H. Gao, Nat. Commun. 5 (2014) 3580.
DOI URL |
[16] |
A.Y. Chen, H.H. Ruan, J. Wang, H.L. Chan, Q. Wang, Q. Li, J. Lu, Acta Mater. 59 (2011) 3697-3709.
DOI URL |
[17] |
X.S. Yang, S. Sun, T.Y. Zhang, Acta Mater. 95 (2015) 264-273.
DOI URL |
[18] |
X.S. Yang, S. Sun, H.H. Ruan, S.Q. Shi, T.Y. Zhang, Acta Mater. 136 (2017) 347-354.
DOI URL |
[19] |
M. Yoo, Metall. Trans. A 12 (1981) 409-418.
DOI URL |
[20] |
H.Q. Sun, Y.N. Shi, M.X. Zhang, K. Lu, Acta Mater. 55 (2007) 975-982.
DOI URL |
[21] |
X.Y. Shi, Y. Liu, D.J. Li, B. Chen, X.Q. Zeng, J. Lu, W.J. Ding, Mater. Sci. Eng. A 630 (2015) 146-154.
DOI URL |
[22] |
L. Chen, F. Yuan, P. Jiang, J. Xie, X. Wu, Mater. Sci. Eng. A 694 (2017) 98-109.
DOI URL |
[23] | S. Suet To, V.H. Wang, W.B. Lee, Single Point Diamond Turning Technology, Springer Berlin Heidelberg, Berlin, Heidelberg, 2018. |
[24] |
T. Al-Samman, Acta Mater. 57 (2009) 2229-2242.
DOI URL |
[25] | Y.M. Kim, I.H. Jung, B.J. Lee, Model. Numer. Simul. Mater. Sci. 20 (2012), 035005. |
[26] |
G.R. Johnson, W.H. Cook, Eng. Fract. Mech. 21 (1985) 31-48.
DOI URL |
[27] |
Z. Pu, D. Umbrello, O.W. Dillon, T. Lu, D.A. Puleo, I.S. Jawahir, J. Manuf. Process. 16 (2014) 335-343.
DOI URL |
[28] |
X. Wang, L. Jiang, C. Cooper, K. Yu, D. Zhang, T.J. Rupert, S. Mahajan, I.J. Beyerlein, E.J. Lavernia, J.M. Schoenung, Acta Mater. 195 (2020) 468-481.
DOI URL |
[29] |
F. Wang, S.R. Agnew, Int. J. Plast. 81 (2016) 63-86.
DOI URL |
[30] |
S.Q. Zhu, S.P. Ringer, Acta Mater. 144 (2018) 365-375.
DOI URL |
[31] |
J. Tang, H. Fan, D. Wei, W. Jiang, Q. Wang, X. Tian, X. Zhang, Int. J. Plast. 126 (2020), 102613.
DOI URL |
[32] |
R.C. Pond, D.J. Bacon, A. Serra, Philos. Mag. Lett. 71 (1995) 275-284.
DOI URL |
[33] |
Q. Zu, X.Z. Tang, H. Fu, Q.M. Peng, Y.F. Guo, Materialia 5 (2019), 100239.
DOI URL |
[34] |
M. Efe, W. Moscoso, K.P. Trumble, W. Dale Compton, S. Chandrasekar, Acta Mater. 60 (2012) 2031-2042.
DOI URL |
[35] |
Y. Guo, C. Saldana, W. Dale Compton, S. Chandrasekar, Acta Mater. 59 (2011) 4538-4547.
DOI URL |
[36] |
J. Koike, Mater. Trans. A 36 (2005) 1689-1696.
DOI URL |
[37] |
J. Wang, I.J. Beyerlein, J.P. Hirth, C.N. Tomé, Acta Mater. 59 (2011) 3990-4001.
DOI URL |
[38] | D. Tabor, The Hardness of Metals, Oxford University Press, 2000. |
[39] |
E.O. Hall, Proc. Phys. Soc. Sect. B 64 (1951) 747-753.
DOI URL |
[40] | N. Petch, J. Iron Steel Inst. Jpn. 174 (1953) 25-28. |
[41] |
M. Lentz, M. Klaus, I.J. Beyerlein, M. Zecevic, W. Reimers, M. Knezevic, Acta Mater. 86 (2015) 254-268.
DOI URL |
[42] |
H. Dong, F. Pan, B. Jiang, Y. Zeng, Mater. Des. 57 (2014) 121-127.
DOI URL |
[43] |
J. Jeong, M. Alfreider, R. Konetschnik, D. Kiener, S.H. Oh, Acta Mater. 158 (2018) 407-421.
DOI URL |
[44] |
S.M. Razavi, D.C. Foley, I. Karaman, K.T. Hartwig, O. Duygulu, L.J. Kecskes, S.N. Mathaudhu, V.H. Hammond, Scr. Mater. 67 (2012) 439-442.
DOI URL |
[45] |
G. Bhargava, W. Yuan, S.S. Webb, R.S. Mishra, Metall. Mater. Trans. A 41 (2009) 13-17.
DOI URL |
[46] |
J. Ye, R.K. Mishra, A.K. Sachdev, A.M. Minor, Scr. Mater. 64 (2011) 292-295.
DOI URL |
[47] |
Q. Yu, L. Qi, K. Chen, R.K. Mishra, J. Li, A.M. Minor, Nano Lett. 12 (2012) 887-892.
DOI URL |
[48] |
Q. Yu, Z.W. Shan, J. Li, X. Huang, L. Xiao, J. Sun, E. Ma, Nature 463 (2010) 335-338.
DOI URL |
[49] |
Q. Yu, L. Qi, R.K. Mishra, J. Li, A.M. Minor, Proc. Natl. Acad. Sci. U. S. A. 110 (2013) 13289-13293.
DOI URL |
[50] |
K. Xu, A. Wang, Y. Wang, X. Dong, X. Zhang, Z. Huang, Appl. Surf. Sci. 256 (2009) 619-626.
DOI URL |
[1] | Shixing Huang, Qinyang Zhao, Yongqing Zhao, Cheng Lin, Cong Wu, Weiju Jia, Chengliang Mao, Vincent Ji. Toughening effects of Mo and Nb addition on impact toughness and crack resistance of titanium alloys [J]. J. Mater. Sci. Technol., 2021, 79(0): 147-164. |
[2] | Chaoyu Han, Shibo Wen, Feng Ye, Wenjia Wu, Shaowei Xue, Yongfeng Liang, Binbin Liu, Junpin Lin. Deformation twinning in equiaxed-grained Fe-6.5 wt.%Si alloy after rotary swaging [J]. J. Mater. Sci. Technol., 2020, 49(0): 25-34. |
[3] | Bingqiang Wei, Song Ni, Yong Liu, Xiaozhou Liao, Min Song. Phase transformation and structural evolution in a Ti-5at.% Al alloy induced by cold-rolling [J]. J. Mater. Sci. Technol., 2020, 49(0): 211-223. |
[4] | A. Shuitcev, D.V. Gunderov, B. Sun, L. Li, R.Z. Valiev, Y.X. Tong. Nanostructured Ti29.7Ni50.3Hf20 high temperature shape memory alloy processed by high-pressure torsion [J]. J. Mater. Sci. Technol., 2020, 52(0): 218-225. |
[5] | Y.Z. Tian, Y.P. Ren, S. Gao, R.X. Zheng, J.H. Wang, H.C. Pan, Z.F. Zhang, N.T suji, G.W. Qin. Two-stage Hall-Petch relationship in Cu with recrystallized structure [J]. J. Mater. Sci. Technol., 2020, 48(0): 31-35. |
[6] | Jia Li, Li Li, Chao Jiang, Qihong Fang, Feng Liu, Yong Liu, Peter K. Liaw. Probing deformation mechanisms of gradient nanostructured CrCoNi medium entropy alloy [J]. J. Mater. Sci. Technol., 2020, 57(0): 85-91. |
[7] | H.K. Yang, K. Cao, Y. Han, M. Wen, J.M. Guo, Z.L. Tan, J. Lu, Y. Lu. The combined effects of grain and sample sizes on the mechanical properties and fracture modes of gold microwires [J]. J. Mater. Sci. Technol., 2019, 35(1): 76-83. |
[8] | Bo-Yu Liu, Nan Yang, Jian Wang, Matthew Barnett, Yun-Chang Xin, Di Wu, Ren-Long Xin, Bin Li, R.Lakshmi Narayan, Jian-Feng Nie, Ju Li, Evan Ma, Zhi-Wei Shan. Insight from in situ microscopy into which precipitate morphology can enable high strength in magnesium alloys [J]. J. Mater. Sci. Technol., 2018, 34(7): 1061-1066. |
[9] | Huihui Yu, Yunchang Xin, Maoyin Wang, Qing Liu. Hall-Petch relationship in Mg alloys: A review [J]. J. Mater. Sci. Technol., 2018, 34(2): 248-256. |
[10] | Yingjie Ma, Sabry S. Youssef, Xin Feng, Hao Wang, Sensen Huang, Jianke Qiu, Jiafeng Lei, Rui Yang. Fatigue crack tip plastic zone of α + β titanium alloy with Widmanstatten microstructure [J]. J. Mater. Sci. Technol., 2018, 34(11): 2107-2115. |
[11] | B.Q. Li, M.L. Sui, S.X. Mao. Twinnability Predication for fcc Metals [J]. J Mater Sci Technol, 2011, 27(2): 97-100. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||