J. Mater. Sci. Technol. ›› 2021, Vol. 85: 95-105.DOI: 10.1016/j.jmst.2021.02.003
• Research Article • Previous Articles Next Articles
Nana Kwabena Adomakoa, Giseung Shina,b, Nokeun Parkc, Kyoungtae Parkd,*(), Jeoung Han Kima,*(
)
Received:
2020-06-28
Revised:
2020-10-19
Accepted:
2020-11-13
Published:
2021-09-20
Online:
2021-02-09
Contact:
Kyoungtae Park,Jeoung Han Kim
About author:
jhkim@hanbat.ac.kr (J.H. Kim).Nana Kwabena Adomako, Giseung Shin, Nokeun Park, Kyoungtae Park, Jeoung Han Kim. Laser dissimilar welding of CoCrFeMnNi-high entropy alloy and duplex stainless steel[J]. J. Mater. Sci. Technol., 2021, 85: 95-105.
Fig. 2. (a) Microstructures of CoCrFeMnNi-HEA before and after PWHT. (b) Microstructure of DSS before and after PWHT. Red arrows point to the CrMn oxides.
Fig. 4. SEM/EDS mapping image of the HAZ with the as-welded joint at the (a) CoCrFeMnNi-HEA and (b) DSS side. (c) XRD data showing patterns of the CoCrFeMnNi-HEA, DSS, as-welded joint, and PWHT joint at 800 °C and 1000 °C. EBSD phase map of the (c-i) as-welded joint, (c-ii) PWHT joint at 800 °C, and (c-iii) PWHT joint at 1000 °C.
Chemical Composition (wt.%) | Cr-equivalents = %Cr + %Mo + 1.5%Si + 0.5%Nb + 2%Ti | Ni-equivalents = %Ni + 30%C + 0.5%Mn | ||||||
---|---|---|---|---|---|---|---|---|
Region | Fe | Cr | Ni | Co | Mn | Si | ||
① | 50.0 | 19.9 | 10.6 | 9.9 | 9.5 | 0.14 | 20.11 | 15.35 |
② | 45.3 | 20.8 | 11.4 | 9.6 | 12.6 | 0.21 | 21.12 | 17.70 |
③ | 52.2 | 19.1 | 9.8 | 9.3 | 9.4 | 0.17 | 19.36 | 14.50 |
Table 1 EDS analysis of the different regions in the FZ of the as-welded joint in Fig. 3(a).
Chemical Composition (wt.%) | Cr-equivalents = %Cr + %Mo + 1.5%Si + 0.5%Nb + 2%Ti | Ni-equivalents = %Ni + 30%C + 0.5%Mn | ||||||
---|---|---|---|---|---|---|---|---|
Region | Fe | Cr | Ni | Co | Mn | Si | ||
① | 50.0 | 19.9 | 10.6 | 9.9 | 9.5 | 0.14 | 20.11 | 15.35 |
② | 45.3 | 20.8 | 11.4 | 9.6 | 12.6 | 0.21 | 21.12 | 17.70 |
③ | 52.2 | 19.1 | 9.8 | 9.3 | 9.4 | 0.17 | 19.36 | 14.50 |
Regions and average grain size (μm) | ||||
---|---|---|---|---|
Sample | HEA-HAZ | FZ-HEA Side | FZ-DSS side | DSS-HAZ |
As-weld | 21.5 ±6 | 140.3 ± 47 | 414.8 ± 130 | 37.4 ±12 |
PWHT at 800 °C | 22.6 ± 7 | 327.9 ± 81 | 365.7± 100 | 31.1±10 |
PWHT at 1000 °C | 69.0±24 | 315.5 ± 102 | 268.0 ±93 | 32.4 ± 10 |
Table 2 Grain size analysis in the joints.
Regions and average grain size (μm) | ||||
---|---|---|---|---|
Sample | HEA-HAZ | FZ-HEA Side | FZ-DSS side | DSS-HAZ |
As-weld | 21.5 ±6 | 140.3 ± 47 | 414.8 ± 130 | 37.4 ±12 |
PWHT at 800 °C | 22.6 ± 7 | 327.9 ± 81 | 365.7± 100 | 31.1±10 |
PWHT at 1000 °C | 69.0±24 | 315.5 ± 102 | 268.0 ±93 | 32.4 ± 10 |
Average micro-hardness value (HV) | |||||
---|---|---|---|---|---|
Samples | CoCrFeMnNiHEA | CoCrFeMnNi HEA (HAZ) | FZ | DSS (HAZ) | DSS |
As-welded | 320 | 230 | 170 | 240 | 250 |
PWHT at 800 °C | 150 | 150 | 160 | 235 | 240 |
PWHT at 1000 °C | 120 | 120 | 150 | 225 | 230 |
Table 3 The hardness of the welded joint and parent metal before and after PWHT.
Average micro-hardness value (HV) | |||||
---|---|---|---|---|---|
Samples | CoCrFeMnNiHEA | CoCrFeMnNi HEA (HAZ) | FZ | DSS (HAZ) | DSS |
As-welded | 320 | 230 | 170 | 240 | 250 |
PWHT at 800 °C | 150 | 150 | 160 | 235 | 240 |
PWHT at 1000 °C | 120 | 120 | 150 | 225 | 230 |
Samples | Ultimate Tensile Strength (MPa) | Yield Strength (MPa) | Ductility (%) |
---|---|---|---|
As-welded | 584 | 397 | 8.2 |
PWHT at 800 °C | 515 | 252 | 23.5 |
PWHT at 1000 °C | 492 | 186 | 36.1 |
Table 4 Tensile properties of the weld joint before and after PWHT.
Samples | Ultimate Tensile Strength (MPa) | Yield Strength (MPa) | Ductility (%) |
---|---|---|---|
As-welded | 584 | 397 | 8.2 |
PWHT at 800 °C | 515 | 252 | 23.5 |
PWHT at 1000 °C | 492 | 186 | 36.1 |
Fig. 11. ECCI and EBSD (IPF and KAM) images of the tip of the fracture specimen of the (a) as-weld, (b) PWHT at 800 °C, and (c) PWHT at 1000 °C joints.
Welding method | Materials joined | Tensile strength (MPa) | Failure region | References |
---|---|---|---|---|
Electron beam | Rolled HEA | 565 | FZ | [ |
Gas Tungsten Arc | Rolled HEA | 530 | FZ | [ |
Electron beam | Rolled HEA | 617 | FZ | [ |
Gas Tungsten Arc | Rolled HEA | 519 | FZ | [ |
Laser beam | Rolled HEA | 640 | FZ | [ |
Laser beam | Cast and Rolled HEA | 360 | Cast BM | [ |
Table 5 Tensile strength of welded CoCrFeMnNi-HEA from the literature.
Welding method | Materials joined | Tensile strength (MPa) | Failure region | References |
---|---|---|---|---|
Electron beam | Rolled HEA | 565 | FZ | [ |
Gas Tungsten Arc | Rolled HEA | 530 | FZ | [ |
Electron beam | Rolled HEA | 617 | FZ | [ |
Gas Tungsten Arc | Rolled HEA | 519 | FZ | [ |
Laser beam | Rolled HEA | 640 | FZ | [ |
Laser beam | Cast and Rolled HEA | 360 | Cast BM | [ |
[1] |
B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345 (2014) 1153-1158.
DOI PMID |
[2] |
B. Cantor, Entropy 16 (2014) 4749-4768.
DOI URL |
[3] |
N.K. Adomako, J.H. Kim, Y.T. Hyun, J. Therm. Anal. Calorim. 133 (2018) 13-26.
DOI URL |
[4] |
H.S. Cho, S.J. Bae, Y.S. Na, K.S. Lee, J.H. Kim, D.G. Lee, J. Alloy. Compd. 821 (2020), 153526.
DOI URL |
[5] |
Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Prog. Mater. Sci. 61 (2014) 1-93.
DOI URL |
[6] |
J.H. Kim, Y.S. Na, Met. Mater. Int. 25 (2019) 296-303.
DOI URL |
[7] |
J.H. Kim, K.R. Lim, J.W. Won, Y.S. Na, H.S. Kim, Mater. Sci. Eng. A 712 (2018) 108-113.
DOI URL |
[8] |
S.W. Kim, J.H. Kim, Mater. Sci. Eng. A 718 (2018) 321-325.
DOI URL |
[9] |
K. Jin, C. Lu, L.M. Wang, J. Qu, W.J. Weber, Y. Zhang, H. Bei, Scr. Mater. 119 (2016) 65-70.
DOI URL |
[10] |
A. Ayyagari, R. Salloom, S. Muskeri, S. Mukherjee, Materialia 4 (2018) 99-103.
DOI URL |
[11] |
N.A.P.K. Kumar, C. Li, K.J. Leonard, H. Bei, S.J. Zinkle, Acta Mater. 113 (2016) 230-244.
DOI URL |
[12] |
T. Egami, M. Ojha, O. Khorgolkhuu, D.M. Nicholson, G.M. Stocks, JOM 67 (2015) 2345-2349.
DOI URL |
[13] |
L.R. Owen, N.G. Jones, J. Mater. Res. 33 (2018) 2954-2969.
DOI URL |
[14] |
J.D. Tucker, M.K. Miller, G.A. Young, Acta Mater. 87 (2015) 15-24.
DOI URL |
[15] |
Y.Q. Wang, B. Yang, J. Han, F. Dong, Y.L. Wang, Procedia Eng. 36 (2012) 88-95.
DOI URL |
[16] |
A.N. Ashong, M.Y. Na, H.C. Kim, S.H. Noh, T. Park, H.J. Chang, J.H. Kim, Mater. Des. 182 (2019), 107997.
DOI URL |
[17] | M.P. Groover, Fundamentals of Modern Manufacturing, fourth ed., 2008. |
[18] |
Z. Wu, S.A. David, Z. Feng, H. Bei, Scr. Mater. 124 (2016) 81-85.
DOI URL |
[19] |
H. Nam, S. Park, E.J. Chun, H. Kim, Y. Na, N. Kang, Sci. Technol. Weld. Join. 25 (2020) 127-134.
DOI URL |
[20] | R. Sokkalingam, V. Muthupandi, K. Sivaprasad, K.G. Prashanth, J. Mater. Res. (2019) 1-12. |
[21] | A. Aloraier, R. Ibrahim, P. Thomson, Int. J. Press. Vessel. Pip. 83 (2006) 394-398. |
[22] |
W. Chen, P. Ackerson, P. Molian, Mater. Des. 30 (2009) 245-251.
DOI URL |
[23] | F. Yusof, M.F. Jamaluddin, Compr. Mater. Process. (2014) 125-134. |
[24] | S. Kou, Welding Metallurgy, Wiley Interscience, New Jersey, 2003. |
[25] |
Z. Wu, S.A. David, Z. Feng, H. Bei, Scr. Mater. 124 (2016) 81-85.
DOI URL |
[26] |
H. Nam, C. Park, C. Kim, H. Kim, N. Kang, Sci. Technol. Weld. Join. 23 (2018) 420-427.
DOI URL |
[27] |
E.J. Pickering, R. Muñoz-Moreno, H.J. Stone, N.G. Jones, Scr. Mater. 113 (2016) 106-109.
DOI URL |
[28] |
Y.K. Kim, G.S. Ham, H.S. Kim, K.A. Lee, Intermetallics 111 (2019), 106486.
DOI URL |
[29] |
A. Gali, E.P. George, Intermetallics 39 (2013) 74-78.
DOI URL |
[30] |
C.S. Lee, R.S. Chandel, H.P. Seow, Mater. Manuf. Process. 15 (2000) 649-666.
DOI URL |
[31] | B.M. Sim, T.S. Hong, M.A.A. Hanim, E.J.N. Tchan, M.K. Talari, Materials 12(2019). |
[32] |
V. Raghavan, Metall. Mater. Trans. A 26 (1995) 237-242.
DOI URL |
[33] | A.L. Schaeffler, Met. Prog. 56 (1949) 680. |
[34] |
Z. Wu, S.A. David, D.N. Leonard, Z. Feng, H. Bei, Sci. Technol. Weld. Join. 23 (2018) 585-595.
DOI URL |
[35] |
S.K. Dinda, M. Basiruddin Sk, G.G. Roy, P. Srirangam, Mater. Sci. Eng. A 677 (2016) 182-192.
DOI URL |
[36] |
P.P. Bhattacharjee, G.D. Sathiaraj, M. Zaid, J.R. Gatti, C. Lee, C.W. Tsai, J.W. Yeh, J. Alloy. Compd. 587 (2014) 544-552.
DOI URL |
[37] |
G. Laplanche, O. Horst, F. Otto, G. Eggeler, E.P. George, J. Alloy. Compd. 647 (2015) 548-557.
DOI URL |
[38] |
Y.C. Huang, C.H. Su, S.K. Wu, C. Lin, Entropy 21 (2019) 297.
DOI URL |
[39] |
H. Shahmir, J. He, Z. Lu, M. Kawasaki, T.G. Langdon, Mater. Sci. Eng. A 676 (2016) 294-303.
DOI URL |
[40] |
G. Laplanche, O. Horst, F. Otto, G. Eggeler, E.P. George, J. Alloy. Compd. 647 (2015) 548-557.
DOI URL |
[41] |
N. Park, B.J. Lee, N. Tsuji, J. Alloy. Compd. 719 (2017) 189-193.
DOI URL |
[42] | J.P. Oliveira, T.M. Curado, Z. Zeng, J.G. Lopes, E. Rossinyol, J. Min, N. Schell, F.M.B. Fernandes, H. Seop,Mater. Des. 189 (2020), 108505. |
[43] |
X. Zhao, Z. Shi, C. Deng, Y. Liu, X. Li, Metals 10 (2020) 1138.
DOI URL |
[44] |
K.D. Ramkumar, R. Sridhar, S. Periwal, S. Oza, V. Saxena, P. Hidad, N. Arivazhagan, Mater. Des. 68 (2015) 158-166.
DOI URL |
[1] | H.T. Jeong, W.J. Kim. Microstructure tailoring of Al0.5CoCrFeMnNi to achieve high strength and high uniform strain using severe plastic deformation and an annealing treatment [J]. J. Mater. Sci. Technol., 2021, 71(0): 228-240. |
[2] | Xiao Zhang, Pei Wang, Dianzhong Li, Yiyi Li. Multi-scale study on the heterogeneous deformation behavior in duplex stainless steel [J]. J. Mater. Sci. Technol., 2021, 72(0): 180-188. |
[3] | Feng He, Bin Han, Zhongsheng Yang, Da Chen, Guma Yeli, Yang Tong, Daixiu Wei, Junjie Li, Zhijun Wang, Jincheng Wang, Ji-jung Kai. Elemental partitioning as a route to design precipitation-hardened high entropy alloys [J]. J. Mater. Sci. Technol., 2021, 72(0): 52-60. |
[4] | Jiang Yang, Honggang Dong, Yueqing Xia, Peng Li, Xiaohu Hao, Yaqiang Wang, Wei Wu, Baosen Wang. Carbide precipitates and mechanical properties of medium Mn steel joint with metal inert gas welding [J]. J. Mater. Sci. Technol., 2021, 75(0): 48-58. |
[5] | Zhihua Dong, Shuo Huang, Valter Ström, Guocai Chai, Lajos Károly Varga, Olle Eriksson, Levente Vitos. MnxCr0.3Fe0.5Co0.2Ni0.5Al0.3 high entropy alloys for magnetocaloric refrigeration near room temperature [J]. J. Mater. Sci. Technol., 2021, 79(0): 15-20. |
[6] | J. Tang, J.L. Xu, Z.G. Ye, X.B. Li, J.M. Luo. Microwave sintered porous CoCrFeNiMo high entropy alloy as an efficient electrocatalyst for alkaline oxygen evolution reaction [J]. J. Mater. Sci. Technol., 2021, 79(0): 171-177. |
[7] | Yanying Hu, Huijie Liu, Dongrui Li. Contribution of ultrasonic to microstructure and mechanical properties of tilt probe penetrating friction stir welded joint [J]. J. Mater. Sci. Technol., 2021, 85(0): 205-217. |
[8] | Jianxiong Li, Anupam Vivek, Glenn Daehn. Improved properties and thermal stability of a titanium-stainless steel solid-state weld with a niobium interlayer [J]. J. Mater. Sci. Technol., 2021, 79(0): 191-204. |
[9] | Ahmad Ostovari Moghaddam, Nataliya A. Shaburova, Marina N. Samodurova, Amin Abdollahzadeh, Evgeny A. Trofimov. Additive manufacturing of high entropy alloys: A practical review [J]. J. Mater. Sci. Technol., 2021, 77(0): 131-162. |
[10] | Liang-Liang Zhang, Lin-Jie Zhang, Jian Long, Xiang-Dong Ding, Jun Sun, Yuan-Jun Sun. Improvement in the weldability of molybdenum alloy by pre-welding solid carburising [J]. J. Mater. Sci. Technol., 2021, 80(0): 1-12. |
[11] | H. Niu, H.C. Jiang, M.J. Zhao, L.J. Rong. Effect of interlayer addition on microstructure and mechanical properties of NiTi/stainless steel joint by electron beam welding [J]. J. Mater. Sci. Technol., 2021, 61(0): 16-24. |
[12] | Xiaoming Sun, Lingzhong Du, Hao Lan, Jingyi Cui, Liang Wang, Runguang Li, Zhiang Liu, Junpeng Liu, Weigang Zhang. Mechanical, corrosion and magnetic behavior of a CoFeMn1.2NiGa0.8 high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 73(0): 139-144. |
[13] | P.L. Niu, W.Y. Li, D.L. Chen. Tensile and cyclic deformation response of friction-stir-welded dissimilar aluminum alloy joints: Strain localization effect [J]. J. Mater. Sci. Technol., 2021, 73(0): 91-100. |
[14] | Xiaopei Wang, Yoshiaki Morisada, Hidetoshi Fujii. Interface strengthening in dissimilar double-sided friction stir spot welding of AZ31/ZK60 magnesium alloys by adjustable probes [J]. J. Mater. Sci. Technol., 2021, 85(0): 158-168. |
[15] | Xiaopei Wang, Yoshiaki Morisada, Hidetoshi Fujii. Flat friction stir spot welding of low carbon steel by double side adjustable tools [J]. J. Mater. Sci. Technol., 2021, 66(0): 1-9. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||