J. Mater. Sci. Technol. ›› 2021, Vol. 78: 176-182.DOI: 10.1016/j.jmst.2020.10.047
• Review Article • Previous Articles Next Articles
Shao-Fang Lia, Zhen-Yi Gub, Jin-Zhi Guob, Xian-Kun Houa, Xu Yanga, Bo Zhaoa, Xing-Long Wua,b,*()
Received:
2020-07-22
Revised:
2020-10-17
Accepted:
2020-10-19
Published:
2021-07-10
Online:
2020-11-22
Contact:
Xing-Long Wu
About author:
*National & Local United Engineering Laboratory forPower Batteries, Faculty of Chemistry, Northeast Normal University, Changchun,130024, China.E-mail address:xinglong@nenu.edu.cn(X.-L. Wu).Shao-Fang Li, Zhen-Yi Gu, Jin-Zhi Guo, Xian-Kun Hou, Xu Yang, Bo Zhao, Xing-Long Wu. Enhanced electrode kinetics and electrochemical properties of low-cost NaFe2PO4(SO4)2 via Ca2+ doping as cathode material for sodium-ion batteries[J]. J. Mater. Sci. Technol., 2021, 78: 176-182.
Fig. 2. SEM images of (a) NFPS, (b) NFPS-Ca0.06, (c) NFPS-Ca0.08, (d) NFPS-Ca0.10 and (e) HR-TEM and (f) TEM images of NFPS-Ca0.08. (g) EDS element analysis of NFPS-Ca0.08.
Fig. 3. (a) GCD curves of Na1-2xCaxFe2PO4(SO4)2 (x=0, 0.06, 0.08 and 0.10) at 25mA g-1; (b) rate performance from current density 25mA g-1 to 500mA g-1; (c) cycle testing of NFPS and NFPS-Ca0.08 at the current density of 50mA g-1.
Fig. 4. CV curves of (a) NFPS and (d) NFPS-Ca0.08 at a sweep rate of 0.1mV s-1; the CV curves of (b) NFPS and (e) NFPS-Ca0.08 at various scan rates of 0.1, 0.15, 0.2, 0.3, 0.4 and 0.5mV s-1; the dependence of current of the peak on the square root of the scan rate (v1/2) for (c) NFPS and (f) NFPS-Ca0.08. The potential range is 2.0-4.4V.
Fig. 5. (a) Representation of τ vs. E profile for a single GITT titration on the charge process; (b) corresponding linear behavior of τ1/2 vs. E; (c) GITT test result showing the DNa+ of charge and discharge process of NFPS and NFPS-Ca0.08.
[1] |
Z.Y. Gu, J.Z. Guo, Z.H. Sun, X.X. Zhao, W.H. Li, X. Yang, H.J. Liang, C.D. Zhao, X.L. Wu, Sci. Bull. 65(2020) 702-710.
DOI URL |
[2] |
H.J. Liang, B.H. Hou, W.H. Li, Q.L. Ning, X. Yang, Z.Y. Gu, X.J. Nie, G. Wang, X.L. Wu, Energy Environ. Sci. 12(2019) 3575-3584.
DOI URL |
[3] |
X. Yang, Y.Y. Wang, B.H. Hou, H.J. Liang, X.X. Zhao, H. Fan, G. Wang, X.L. Wu, Acta Metall. Sin.(Engl. Lett.) 34(2021) 390-400.
DOI URL |
[4] |
J. Bai, X. Chen, E. Olsson, H. Wu, S. Wang, Q. Cai, C. Feng, J. Mater. Sci. Technol. 50(2020) 92-102.
DOI URL |
[5] |
M.D. Slater, D. Kim, E. Lee, C.S. Johnson, Adv. Funct. Mater. 23(2013) 947-958.
DOI URL |
[6] | Y. Yuan, Z. Chen, H. Yu, X. Zhang, T. Liu, M. Xia, R. Zheng, M. Shui, J. Shu, Energy Storage Mater. 32(2020) 65-90. |
[7] | M. Chen, Q. Liu, S.W. Wang, E. Wang, X. Guo, S.L. Chou, Adv. Energy Mater. 9(2019), 1803609. |
[8] |
Q. Li, Z.G. Liu, F. Zheng, R. Liu, J. Lee, G.L. Xu, G.M. Zhong, X. Hou, R.Q. Fu, Z.H. Chen, K. Amine, J.X. Mi, S.Q. Wu, C.P. Grey, Y. Yang, Angew. Chem. Int. Ed. 57(2018) 11918-11923.
DOI URL |
[9] |
R. Tripathi, S.M. Wood, M.S. Islam, L.F. Nazar, Energy Environ. Sci. 6(2013) 2257.
DOI URL |
[10] | J.Z. Guo, P.F. Wang, X.L. Wu, X.H. Zhang, Q. Yan, H. Chen, J.P. Zhang, Y.G. Guo, Adv. Mater. 29(2017), 1702968. |
[11] |
M. Peng, B. Li, H. Yan, D. Zhang, X. Wang, D. Xia, G. Guo, Angew. Chem. Int. Ed. 54(2015) 6452-6456.
DOI URL |
[12] |
M. Nose, H. Nakayama, K. Nobuhara, H. Yamaguchi, S. Nakanishi, H. Iba, J. Power Sources 234(2013) 175-179.
DOI URL |
[13] |
K. Shiva, P. Singh, W. Zhou, J.B. Goodenough, Energy Environ. Sci. 9(2016) 3103-3106.
DOI URL |
[14] |
H. Ben Yahia, R. Essehli, R. Amin, K. Boulahya, T. Okumura, I. Belharouak, J. Power Sources 382(2018) 144-151.
DOI URL |
[15] | N. Yabuuchi, S. Komaba, Sci. Technol. Adv. Mater. 15(2014), 043501. |
[16] |
J. Zhao, L.W. Zhao, N. Dimov, S. Okada, T. Nishida, J. Electrochem. Soc. 165(2013) A3077-A3081.
DOI URL |
[17] |
N. Yabuuchi, M. Kajiyama, J. Iwatate, H. Nishikawa, S. Hitomi, R. Okuyama, R. Usui, Y. Yamada, S. Komaba, Nat. Mater. 11(2012) 512-517.
DOI PMID |
[18] |
X. Li, D. Wu, Y.N. Zhou, L. Liu, X.Q. Yang, G. Ceder, Electrochem. Commun. 49(2014) 51-54.
DOI URL |
[19] |
Y. You, X.L. Wu, Y.X. Yin, Y.G. Guo, Energy Environ. Sci. 7(2014) 1643-1647.
DOI URL |
[20] |
L. Wang, Y.H. Lu, J. Liu, M.W. Xu, J.G. Cheng, D.W. Zhang, J.B. Goodenough, Angew. Chem. Int. Ed. 52(2013) 1964-1967.
DOI URL |
[21] |
H.W. Lee, R.Y. Wang, M. Pasta, S. Woo Lee, N. Liu, Y. Cui, Nat. Commun. 5(2014) 5280.
DOI URL |
[22] |
M. Lee, J. Hong, J. Lopez, Y.M. Sun, D.W. Feng, K. Lim, W.C. Chueh, M.F. Toney, Y. Cui, Z.N. Bao, Nat. Energy 2(2017) 861-868.
DOI URL |
[23] |
D. Li, W. Tang, C.Y. Yong, Z.H. Tan, C. Wang, C. Fan, ChemSusChem 13(2020) 1991-1996.
DOI URL |
[24] | B. Senthilkumar, C. Murugesan, L. Sharma, S. Lochab, P. Barpanda, Small Methods 3(2018), 1800253. |
[25] | Y. Li, M. Chen, B. Liu, Y. Zhang, X. Liang, X. Xia, Adv. Energy Mater. (2020), 2000927. |
[26] |
W.L. Pang, X.H. Zhang, J.Z. Guo, J.Y. Li, X. Yan, B.H. Hou, H.Y. Guan, X.L. Wu, J. Power Sources 356(2017) 80-88.
DOI URL |
[27] | T. Wu, J. Sun, Z.Q.J. Yap, M. Ke, C.Y.H. Lim, L. Lu, Mater. Des. 186(2020), 108287. |
[28] |
Z. Liu, Y. An, G. Pang, S. Dong, C. Xu, C. Mi, X. Zhang, Chem. Eng. J. 353(2018) 814-823.
DOI URL |
[29] | M.Y. Wang, J.Z. Guo, Z.W. Wang, Z.Y. Gu, X.J. Nie, X. Yang, X.L. Wu, Small 16 (2020), 1907645. |
[30] |
H. Li, H. Tang, C. Ma, Y. Bai, J. Alvarado, B. Radhakrishnan, S.P. Ong, F. Wua, Y.S. Meng, C. Wu, Chem. Mater. 30(2018) 2498-2505.
DOI URL |
[31] |
W. Yao, A.R. Armstrong, X. Zhou, M.T. Sougrati, P. Kidkhunthod, S. Tunmee, C. Sun, S. Sattayaporn, P. Lightfoot, B. Ji, C. Jiang, N. Wu, Y. Tang, H.M. Cheng, Nat. Commun. 10(2019) 3483.
DOI URL |
[32] |
L. Zheng, J.C. Bennett, M.N. Obrovac, J. Electrochem. Soc. 166(2019) A2058-A2064.
DOI URL |
[33] |
Y. Wen, J. Fan, C. Shi, P. Dai, Y. Hong, R. Wang, L. Wu, Z. Zhou, J. Li, L. Huang, S.G. Sun, Nano Energy 60(2019) 162-170.
DOI URL |
[34] |
Z. Ding, Y. Liu, Q. Tang, Q. Jiang, J. Lu, Z. Xiao, P. Yao, M. Monasterio, J. Wu, X. Liu, Electrochim. Acta 292(2018) 871-878.
DOI URL |
[35] |
W.H. Li, H.J. Liang, X.K. Hou, Z.Y. Gu, X.X. Zhao, J.Z. Guo, X. Yang, X.L. Wu, J. Energy Chem. 50(2020) 416-423.
DOI URL |
[36] |
Q. Zhang, X. Zhang, W. He, G. Xu, M. Ren, J. Liu, X. Yang, F. Wang, J. Mater. Sci. Technol. 35(2019) 2396-2403.
DOI URL |
[37] | J.Z. Guo, Y. Yang, D.S. Liu, X.L. Wu, B.H. Hou, W.L. Pang, K.C. Huang, J.P. Zhang, Z.M. Su, Adv. Energy Mater. 8(2018), 1702504. |
[38] |
Y. Liu, R. Rajagopalan, E. Wang, M. Chen, W. Hua, B. Zhong, Y. Zhong, Z. Wu, X. Guo, ACS Sustain. Chem. Eng. 6(2018) 16105-16112.
DOI URL |
[39] | H. Li, M. Xu, Z. Zhang, Y. Lai, J. Ma, Adv. Funct. Mater. 30(2020), 2000473. |
[1] | Shi Tao, Wei Zhou, Dajun Wu, Zhicheng Wang, Bin Qian, Wangsheng Chu, Augusto Marcelli, Li Song. Insights into the Ti4+ doping in P2-type Na0.67Ni0.33Mn0.52Ti0.15O2 for enhanced performance of sodium-ion batteries [J]. J. Mater. Sci. Technol., 2021, 74(0): 230-236. |
[2] | Wenjuan Wang, Yan Zhao, Yongguang Zhang, Ning Liu, Zhumabay Bakenov. Nickel embedded porous macrocellular carbon derived from popcorn as sulfur host for high-performance lithium-sulfur batteries [J]. J. Mater. Sci. Technol., 2021, 74(0): 69-77. |
[3] | Chuan Wang, Hai Long, Lijiao Zhou, Chao Shen, Wei Tang, Xiaodong Wang, Bingbing Tian, Le Shao, Zhanyuan Tian, Haijun Su, Keyu Xie. A multiphase sodium vanadium phosphate cathode material for high-rate sodium-ion batteries [J]. J. Mater. Sci. Technol., 2021, 66(0): 121-127. |
[4] | Chunmao Huang, Shenghong Liu, Yang Wang, Jingjie Feng, Yanming Zhao. A new active NaVMoO6 cathode material for rechargeable Li ion batteries [J]. J. Mater. Sci. Technol., 2021, 66(0): 97-102. |
[5] | Mengmeng Zhang, Jiajun Wang, Yang Wang, Jinfeng Zhang, Xiaopeng Han, Yanan Chen, Yuesheng Wang, Zaghib Karim, Wenbin Hu, Yida Deng. Promoting the charge separation and photoelectrocatalytic water reduction kinetics of Cu2O nanowires via decorating dual-cocatalysts [J]. J. Mater. Sci. Technol., 2021, 62(0): 119-127. |
[6] | Jiajia Ye, Xuting Li, Guang Xia, Guanghao Gong, Zhiqiang Zheng, Chuanzhong Chen, Cheng Hu. P-doped CoSe2 nanoparticles embedded in 3D honeycomb-like carbon network for long cycle-life Na-ion batteries [J]. J. Mater. Sci. Technol., 2021, 77(0): 100-107. |
[7] | Huan Du, Shihao Feng, Wen Luo, Liang Zhou, Liqiang Mai. Advanced Li-SexSy battery system: Electrodes and electrolytes [J]. J. Mater. Sci. Technol., 2020, 55(0): 1-15. |
[8] | Anna Basa, Sławomir Wojtulewski, Beata Kalska-Szostko, Maciej Perkowski, Elena Gonzalo, Olga Chernyayeva, Alois Kuhn, Flaviano García-Alvarado. Carbon coating of air-sensitive insulating transition metal fluorides: An example study on α-Li3FeF6 high-performance cathode for lithium ion batteries [J]. J. Mater. Sci. Technol., 2020, 55(0): 107-115. |
[9] | Juyan Zhang, Xuhui Yao, Ravi K. Misra, Qiong Cai, Yunlong Zhao. Progress in electrolytes for beyond-lithium-ion batteries [J]. J. Mater. Sci. Technol., 2020, 44(0): 237-257. |
[10] | Lei Liu, Feifei Lu, Sihao Xia, Yu Diao, Jian Tian. Improved electron capture capability of field-assisted exponential-doping GaN nanowire array photocathode [J]. J. Mater. Sci. Technol., 2020, 42(0): 54-62. |
[11] | Lei Liu, Feifei Lu, Jian Tian, Xingyue Zhangyang, Zhisheng Lv. High-efficient electron collection capability of graded Al compositional GaN nanowire arrays cathode [J]. J. Mater. Sci. Technol., 2020, 58(0): 86-94. |
[12] | Zhuosen Wang, Xijun Xu, Shaomin Ji, Zhengbo Liu, Dechao Zhang, Jiadong Shen, Jun Liu. Recent progress of flexible sulfur cathode based on carbon host for lithium-sulfur batteries [J]. J. Mater. Sci. Technol., 2020, 55(0): 56-72. |
[13] | Xiaohui Rong, Fei Gao, Feixiang Ding, Yaxiang Lu, Kai Yang, Hong Li, Xuejie Huang, Liquan Chen, Yong-Sheng Hu. Triple effects of Sn-substitution on Na0.67Ni0.33Mn0.67O2 [J]. J. Mater. Sci. Technol., 2019, 35(7): 1250-1254. |
[14] | Bozhou Chen, Bangchuan Zhao, Jiafeng Zhou, Zhitang Fang, Yanan Huang, Xuebin Zhu, Yuping Sun. Surface modification with oxygen vacancy in Li-rich layered oxide Li1.2Mn0.54Ni0.13Co0.13O2 for lithium-ion batteries [J]. J. Mater. Sci. Technol., 2019, 35(6): 994-1002. |
[15] | Xiaoyang Chen, Weijie Ni, Xiaojia Du, Zaihong Sun, Tenglong Zhu, Qin Zhong, Minfang Han. Electrochemical property of multi-layer anode supported solid oxide fuel cell fabricated through sequential tape-casting and co-firing [J]. J. Mater. Sci. Technol., 2019, 35(4): 695-701. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||