J. Mater. Sci. Technol. ›› 2020, Vol. 44: 237-257.DOI: 10.1016/j.jmst.2020.01.017
• Invited Review • Previous Articles
Juyan Zhangab, Xuhui Yaob, Ravi K. Misrab, Qiong Caia**(), Yunlong Zhaobc*(
)
Received:
2019-07-13
Revised:
2019-11-11
Accepted:
2019-11-11
Published:
2020-05-01
Online:
2020-05-21
Contact:
Qiong Cai,Yunlong Zhao
Juyan Zhang, Xuhui Yao, Ravi K. Misra, Qiong Cai, Yunlong Zhao. Progress in electrolytes for beyond-lithium-ion batteries[J]. J. Mater. Sci. Technol., 2020, 44: 237-257.
Fig. 1. Characteristics of promising grid-oriented batteries. (a) Elemental abundance of Li, Na, K, Mg, Ca, Zn, Al in the earth’s crust; (b) Theoretical specific and volumetric capacity of Li, Na, K, Mg, Ca, Zn, Al-metal anodes; the larger capacity (vs. Li) is due to the higher number of electrons involved in the electrochemical process. (c) Representative operational voltage and discharge specific capacity of recently developed battery systems and the types of electrolyte applied.
Fig. 2. (a) Composition and design principle of conventional liquid electrolytes. (b) Different physical and electrochemical characteristics of electrolytes. The height of the rectangle represents the weight of the influence of these factors: metal salts (blue), solvent (red) and additives (green).
Polymer host | Ionic conductivity at room temperature (S cm-1) | Advantages | Disadvantages | Refs. |
---|---|---|---|---|
PEO | 2.6×10-4 | Good dimensional stability; high capacity in salt complexation; high ionic conductivity in the amorphous state; good corrosion resistance; acceptable commercial cost; mechanical flexibility and chemical stability | Low ionic conductivity at ambient temperature; loss of dimensional stability above melting point; relative high degree of crystallisation | [ |
PVdF | 4.5×10-3 | Good affinity to electrolyte solution; good electrochemical stability; high dielectric constant; high anodic stability | Hindered ions transport by crystalline part (high degree of crystallinity) and caused low charge/discharge capacities | [ |
PVdF-HFP | 4.3×10-3 | High ionic conductivity; good mechanical strength | Poor compatibility of the LiBF4 with the lithium anode | [ |
PMMA | 7.3×10-6 | Low mechanical integrity; high brittleness | Its proportion significantly influence the viscosity and cause low ionic conductivity | [ |
PVC | 2.83×10-6 | Low cost; good compatibility with most of the additives | Low ionic conductivity at room temperature | [ |
PVA | 4.75×10-2 | Good tensile and mechanical strength; non-toxicity; cost-effectiveness; good optical properties; high-temperature resistance and high hydrophilicity; good flexibility; biocompatibility; excellent chemical and thermal stabilities; high dielectric constant | [ | |
PAA | 2.15×10-4 | Superior mechanical strength; good processability; biodegradability; environmentally friendly | [ | |
PAN | 5.7×10-4 | High thermal stability; high ionic conductivity; good morphology for electrolyte; mechanical stability; minimisation of dendrite growth | Poor compatibility with lithium metal anode (lead to poor cyclability and safety hazards) | [ |
Table 1 General properties of commonly used polymer hosts and their advantages and disadvantages.
Polymer host | Ionic conductivity at room temperature (S cm-1) | Advantages | Disadvantages | Refs. |
---|---|---|---|---|
PEO | 2.6×10-4 | Good dimensional stability; high capacity in salt complexation; high ionic conductivity in the amorphous state; good corrosion resistance; acceptable commercial cost; mechanical flexibility and chemical stability | Low ionic conductivity at ambient temperature; loss of dimensional stability above melting point; relative high degree of crystallisation | [ |
PVdF | 4.5×10-3 | Good affinity to electrolyte solution; good electrochemical stability; high dielectric constant; high anodic stability | Hindered ions transport by crystalline part (high degree of crystallinity) and caused low charge/discharge capacities | [ |
PVdF-HFP | 4.3×10-3 | High ionic conductivity; good mechanical strength | Poor compatibility of the LiBF4 with the lithium anode | [ |
PMMA | 7.3×10-6 | Low mechanical integrity; high brittleness | Its proportion significantly influence the viscosity and cause low ionic conductivity | [ |
PVC | 2.83×10-6 | Low cost; good compatibility with most of the additives | Low ionic conductivity at room temperature | [ |
PVA | 4.75×10-2 | Good tensile and mechanical strength; non-toxicity; cost-effectiveness; good optical properties; high-temperature resistance and high hydrophilicity; good flexibility; biocompatibility; excellent chemical and thermal stabilities; high dielectric constant | [ | |
PAA | 2.15×10-4 | Superior mechanical strength; good processability; biodegradability; environmentally friendly | [ | |
PAN | 5.7×10-4 | High thermal stability; high ionic conductivity; good morphology for electrolyte; mechanical stability; minimisation of dendrite growth | Poor compatibility with lithium metal anode (lead to poor cyclability and safety hazards) | [ |
Electrolyte types | Battery types | Electrolyte compositions | Refs. | ||
---|---|---|---|---|---|
Salts | Solvents | Additives | |||
Non-aqueous organic liquid electrolytes | NIBs | NaPF6, NaClO4, NaTFSI, NaFSI, NaFTSI, NaCF3SO3 | EC, PC, EMC, DEC, DMC, DME, Triglyme, PC:EMC (1:1 vol.%), EC:DMC (2:1 wt%), EC:PC:DMC (45:45:10 vol%), EC:PC (1:1 vol.%), EC:DEC (1:1 wt%) EC:DME (1:1 wt%), Ec:triglyme (1:1 wt%) | FEC FEC-PST, FEC-PST-DTD SiO2-IL-ClO4 FEC, InI3 | [ |
KIBs | KPF6, KFSA, KTFSA, KFSI | PC, DME, GBL, diglyme TMP | [ | ||
MIBs | HMDSMgCl, Mg[B(hfip)4]2, Mg(HMDS) 2, [Mg(DG)2][HMDSAlCl3]2, Mg(TFSI)2 | THF, diglyme, tetraglyme, DME | DEME?TFSIMgCl2, AlCl3 | [ | |
AIBs | Dialkylsufones-AlCl3 (EiPS, EnPS, DnPS or EsBS) | toluene | [ | ||
CIBs | Ca(BF4)2, Ca(PF4)2, Ca(BH4)2 | EC:PC(1:1 wt%) EC:PC:DMC:EMC (2:2:3:3 vol.%), THF | [ | ||
Aqueous liquid electrolytes | KIBs | Potassium acetate (KAc) | H2O | [ | |
ZIBs | ZnSO4, Zn(CF3SO3)2 | H2O | MnSO2 | [ | |
CIBs | Ca(NO3)2, Ca(ClO4)2, Ca(TFSI)2, Ca(PF6)2 | H2O | [ | ||
Ionic liquid electrolytes | NIBs | NaBr -NaAlCl4, NaFSA-KFSA, BMPTFSI- NaClO4, EMIBF4- NaBF4, (Pyr14TFSI)-NaFTSI | EC:PC EC | [ | |
MIBs | MgCl3-AlCl3 | Mg | [ | ||
AIBs | MCl-AlCl3 (M = Li+, Na+, K+, [BMIM]+, [EMIm]+, Et3NH | [ | |||
ZIBs | LiTFSI -Zn(Tfo)2, ZnBr2-KI | [ | |||
Solid electrolytes | NIBs | NaClO4, Na2-x(CB11H12)x(B12H12)1-x | P(VdF-co-HFP), PMA-PEG | [ | |
MIBs | Mg(ClO4)2 | PVdF-HFP, PEC, PVAc | [ | ||
AIBs | [EMIm]Cl-AlCl3 | acrylamide | [ |
Table 2 Compositions of recently widely reported different types of electrolytes for different metal ion batteries.
Electrolyte types | Battery types | Electrolyte compositions | Refs. | ||
---|---|---|---|---|---|
Salts | Solvents | Additives | |||
Non-aqueous organic liquid electrolytes | NIBs | NaPF6, NaClO4, NaTFSI, NaFSI, NaFTSI, NaCF3SO3 | EC, PC, EMC, DEC, DMC, DME, Triglyme, PC:EMC (1:1 vol.%), EC:DMC (2:1 wt%), EC:PC:DMC (45:45:10 vol%), EC:PC (1:1 vol.%), EC:DEC (1:1 wt%) EC:DME (1:1 wt%), Ec:triglyme (1:1 wt%) | FEC FEC-PST, FEC-PST-DTD SiO2-IL-ClO4 FEC, InI3 | [ |
KIBs | KPF6, KFSA, KTFSA, KFSI | PC, DME, GBL, diglyme TMP | [ | ||
MIBs | HMDSMgCl, Mg[B(hfip)4]2, Mg(HMDS) 2, [Mg(DG)2][HMDSAlCl3]2, Mg(TFSI)2 | THF, diglyme, tetraglyme, DME | DEME?TFSIMgCl2, AlCl3 | [ | |
AIBs | Dialkylsufones-AlCl3 (EiPS, EnPS, DnPS or EsBS) | toluene | [ | ||
CIBs | Ca(BF4)2, Ca(PF4)2, Ca(BH4)2 | EC:PC(1:1 wt%) EC:PC:DMC:EMC (2:2:3:3 vol.%), THF | [ | ||
Aqueous liquid electrolytes | KIBs | Potassium acetate (KAc) | H2O | [ | |
ZIBs | ZnSO4, Zn(CF3SO3)2 | H2O | MnSO2 | [ | |
CIBs | Ca(NO3)2, Ca(ClO4)2, Ca(TFSI)2, Ca(PF6)2 | H2O | [ | ||
Ionic liquid electrolytes | NIBs | NaBr -NaAlCl4, NaFSA-KFSA, BMPTFSI- NaClO4, EMIBF4- NaBF4, (Pyr14TFSI)-NaFTSI | EC:PC EC | [ | |
MIBs | MgCl3-AlCl3 | Mg | [ | ||
AIBs | MCl-AlCl3 (M = Li+, Na+, K+, [BMIM]+, [EMIm]+, Et3NH | [ | |||
ZIBs | LiTFSI -Zn(Tfo)2, ZnBr2-KI | [ | |||
Solid electrolytes | NIBs | NaClO4, Na2-x(CB11H12)x(B12H12)1-x | P(VdF-co-HFP), PMA-PEG | [ | |
MIBs | Mg(ClO4)2 | PVdF-HFP, PEC, PVAc | [ | ||
AIBs | [EMIm]Cl-AlCl3 | acrylamide | [ |
Fig. 3. (a) Conductivity (black bars and left-hand side y-axis) and viscosity (green bars and right-hand side y-axis) values of electrolytes based on 1 M NaClO4 dissolved in various solvents and solvent mixtures; (b) Electrochemical potential window stability (black bars and upper y-axis) and thermal range (green bars and lower y-axis) values of: PC based electrolytes with 1 M of various Na salts (top) and electrolytes based on 1 M NaClO4 dissolved in various solvents and solvent mixtures (bottom), reprinted from Ref. [31] with permission; (c) Na/S @MPCF cells containing 2 M NaTFSI in PC:FEC solvent with various FEC proportion and with/without InI3, reprinted from Ref. [97] with permission; (d) Electrochemical stability windows of the CPE measured by LSV at 0.1 V s-1, reprinted from Ref. [107] with permission; (e) Schematic summary on the role of PST and DTD additives in HC/NFM full cell, reprinted from Ref [62]. with permission; (f) Galvanostatic voltage profile of Na-Sn|Na4/3(CB11H12)2/3(B12H12)1/3|Na-Sn cell, reprinted from Ref. [111] with permission.
Fig. 4. (a) Molality vs. ionic conductivity plots of KFSA in DME, GBL and PC, and KTFSA/DME solutions measured at 28 °C, reprinted from Ref. [16] with permission; (b) Cycling performance of graphite anode in different salt-concentration electrolytes KFSI-DME at a current rate of 0.5 C (1 C corresponds to 280 mA h g-1), reprinted from Ref. [115] with permission; (c) Flammability tests in 1 M KPF6/EC-DEC electrolyte (left side) and 3.3 M KFSI/TMP electrolyte (right side) reprinted from Ref. [117] with permission; (d) The graphite anodes storage potassium mechanism in different salt concentrations. Between 3 mol/kg and 7 mol/kg, it is a combination of K+ and [K-DMEx]+ co-insertion behaviour, reprinted from Ref. [115] with permission; (e) Linear voltammetry curves recorded at 1 mV/s in 1 M, 10 M, 30 M KAc electrolyte reprinted from Ref [118]. with permission.
Fig. 5. (a) Cyclic voltammograms for THF-based electrolyte of Mg(HMDS)2 complexed with AlCl3, reprinted from Ref. [130] with permission; Cyclic voltammograms with Pt electrodes of THF solution containing Mg(HMDS)2 and MgCl2 in the different ratio: (b) 0.5 M 2 Mg(HMDS)2 - MgCl2; (c) 0.5 M Mg(HMDS)2 2 MgCl2; (d) 0.5 M Mg(HMDS)2-4MgCl2; reprinted from Ref. [131] with permission; (e) ionic conductivity of 0.625 M solutions of Mg(HMDS)2-MgCl2 in THF containing a different concentration of DEME/TFSI; reprinted from Ref. [132] with permission; (f) Cycling behaviour of a symmetrical cell with electrolyte [Mg(DG)2][(HMDSAlCl3)]2-DG from 50 μA cm-2 to 5 mA cm-2. Reprinted from Ref. [133] with permission; (g) cyclic voltammograms for MMAC-DME electrolyte with in situ Mg powder (red) and without Mg treatment (black); reprinted from Ref. [134] with permission; the cycling efficiencies and selected voltage profiles (inset) of (h) 0.5 M Mg(TFSI)2 + 0.15 M Mg[B(OPh)3H]2 in diglyme; (i) 0.5 M Mg(TFSI)2 + 0.15 M Mg[B(OPh)3H]2 + 0.1 M MgCl2 in diglyme; reprinted from Ref. [140]with permission.
Fig. 6. Scheme of the proposed degradation mechanisms of Mg metal anodes at high current density; Optical images of a Mg metal anode and the electrolyte, reprinted from Ref. [138] with permission.
Fig. 7. (a) HOMO and LUMO plots of [EMIm]+AlCl4- and [Et3NH]+AlCl4- calculated by DFT. reprinted from Ref. [165] with permission; (b) Cyclic voltammogram of AlCl3/[BMIM]Cl ionic liquids with different mole ratios; (c) SEM images of Al metal foil immersed in AlCl3/[BMIM]Cl ionic liquid s with different mole ratios for 24 h: (1) initial; (2) 0.8:1; (3) 1:1; (4) 1.1:1; (5) 1.5:1; and (6) 2:1. reprinted from Ref. [163] with permission.
Fig. 8. (a) The CV of Zn/MnO2 batteries in with and without 0.1 M MnSO4 additive in a 2 M ZnSO4 aqueous electrolyte at C/3 and 1 C, respectively; (b) The long-term cyclic performance of Zn/MnO2 battery using an electrolyte with a MnSO4 additive. Reprinted from Ref. [68] with permission; (c) Schematic showing the structure of gum Zn-MnO2 battery; (d) SEM image of the MnO2/CNT hybrid film; Reprinted from Ref. [175] with permission; (e) Cyclic voltammograms of Zn electrode in aqueous electrolyte of (e) 1 M Zn(CF3SO3)2 and (f) 1 M ZnSO4 at the scan rate of 0.5 mV s-1 between -0.2 and 2.0 V; Reprinted from Ref. [177] with permission; (g) Illustration of the overcharging and self-healing process. Reprinted from Ref [182]. with permission.
Fig. 9. (a) Work schematics of the proposed CIB; (b) Corresponding dQ/dV curve of the charge-discharge profile; (c) X-ray diffraction; Reprinted from Ref. [19] with permission; Electrochemical results of calcium plating/stripping in 1.5 M Ca(BH4)2 in THF; (d) Cyclic voltammogram of calcium plating/stripping; (e) Galvanostatic calcium plating/stripping at a rate of 1 mA cm-2 Reprinted from Ref. [184] with permission.
Fig. 10. The special properties of various types of electrolytes, as well as their future work, and the mean development fields of different types of metal ion batteries in the future.
[1] |
C. Wadia, P. Albertus, V. Srinivasan, J. Power Sources 196 (2011) 1593-1598.
DOI URL |
[2] |
T.M. Gür, Energy Environ. Sci. 11(2018) 2696-2767.
DOI URL |
[3] |
S. Chu, A. Majumdar, Nature 488 (2012) 294-303.
DOI URL PMID |
[4] |
B. Dunn, H. Kamath, J. Tarascon, Science 334 (2011) 928-935.
DOI URL PMID |
[5] | D.H. Doughty, P.C. Butler, A.A. Akhil, N.H. Clark, J.D. Boyes, Electrochem. Soc. Interf. Fall. 19(2010) 49-53. |
[6] |
G.L. Soloveichik, Annu. Rev. Chem. Biomol. Eng. 2(2011) 503-527.
DOI URL PMID |
[7] |
J.Y. Hwang, S.T. Myung, Y.K. Sun, Chem. Soc. Rev. 46(2017) 3529-3614.
DOI URL PMID |
[8] |
C. Vaalma, D. Buchholz, M. Weil, S. Passerini, Nat. Rev. Mater. 3 (1-11) (2018) 18013
DOI URL |
[9] |
H.D. Yoo, I. Shterenberg, Y. Gofer, G. Gershinsky, N. Pour, D. Aurbach, Energy Environ. Sci. 6(2013) 2265-2279.
DOI URL |
[10] |
J. Muldoon, C.B. Bucur, T. Gregory, Chem. Rev. 114(2014), 11683-11672.
DOI URL PMID |
[11] |
A. Ponrouch, C. Frontera, F. Bardé, M.R. Palacín, Nat. Mater. 15(2016) 169-172.
DOI URL PMID |
[12] |
K.B. Hueso, M. Armand, T. Rojo, Energy Environ. Sci. 6(2013) 734-749.
DOI URL |
[13] |
T. Oshima, M. Kajita, A. Okuno, Int. J. Appl. Ceram. Technol. 1(2004) 269-276.
DOI URL |
[14] |
H. Pan, Y.S. Hu, L. Chen, Energy Environ. Sci. 6(2013) 2338-2360.
DOI URL |
[15] |
A. Eftekhari, J. Power Sources 126 (2004) 221-228.
DOI URL |
[16] |
T. Hosaka, K. Kubota, H. Kojima, S. Komaba, Chem. Commun. 54(2018) 8387-8390.
DOI URL PMID |
[17] |
Y.S. Guo, F. Zhang, J. Yang, F.F. Wang, Y. Nuli, S.I. Hirano, Energy Environ. Sci. 5(2012) 9100-9106.
DOI URL |
[18] |
G.A. Elia, K. Marquardt, K. Hoeppner, S. Fantini, R. Lin, E. Knipping, W. Peters, J.F. Drillet, S. Passerini, R. Hahn, Adv. Mater. 28(2016) 7564-7579.
DOI URL PMID |
[19] |
M. Wang, C. Jiang, S. Zhang, X. Song, Y. Tang, H.M. Cheng, Nat. Chem. 10(2018) 667-672.
DOI URL PMID |
[20] |
X. Xu, M. Duan, Y. Yue, Q. Li, X. Zhang, L. Wu, P. Wu, B. Song, L. Mai, ACS Energy Lett. 4(2019) 1328-1335.
DOI URL |
[21] |
Z. Zhao, J. Zhao, Z. Hu, J. Li, J. Li, Y. Zhang, C. Wang, G. Cui, Energy Environ. Sci. 12(2019) 1938-1949.
DOI URL |
[22] | Y. Guo, F. Zhang, J. Yang, F. Wang, S. Hirano, Energy Environ. Sci. Sci. 5(2012) 9100-9106. |
[23] |
M. Wang, C. Jiang, S. Zhang, X. Song, Y. Tang, H.M. Cheng, Nat. Chem. 10(2018) 667-672.
DOI URL PMID |
[24] |
P. He, Y. Quan, X. Xu, M. Yan, W. Yang, Q. An, L. He, L. Mai,Small 13 (2017), 1702551.
DOI URL |
[25] |
J. Luo, Y. Bi, L. Zhang, X. Zhang, T.L. Liu, Angew. Chemie Int. Ed. 58(2019) 6967-6971.
DOI URL PMID |
[26] |
K.B. Hueso, M. Armand, T. Rojo, Energy Environ. Sci. 6(2013) 734-749.
DOI URL |
[27] |
A. Ponrouch, D. Monti, A. Boschin, B. Steen, P. Johansson, M.R. Palacín, J. Mater. Chem. A 3 (2015) 22-42.
DOI URL |
[28] |
G.G. Eshetu, M. Martinez-Ibañez, E. Sánchez-Diez, I. Gracia, C. Li, L.M. Rodriguez-Martinez, T. Rojo, H. Zhang, M. Armand, Chem. Asi. J. 13(2018) 2770-2780.
DOI URL PMID |
[29] |
D. Aurbach, Y. Talyosef, B. Markovsky, E. Markevich, E. Zinigrad, L. Asraf, J.S. Gnanaraj, H.J. Kim, Electrochim. Acta 50 (2004) 247-254.
DOI URL |
[30] |
S.Y. Hong, Y. Kim, Y. Park, A. Choi, N. Choi, K.T. Lee, Energy Environ. Sci. 6(2013) 2067-2081.
DOI URL |
[31] |
A. Ponrouch, E. Marchante, M. Courty, J.M. Tarascon, M.R. Palacin, Energy Environ. Sci. 5(2012) 8572-8583.
DOI URL |
[32] |
M. Okoshi, Y. Yamada, S. Komaba, A. Yamada, H. Nakai, J. Electrochem. Soc. 164(2017) A54-A60.
DOI URL |
[33] |
K. Kubota, M. Dahbi, T. Hosaka, S. Kumakura, S. Komaba, Chem. Rec. 18(2018) 459-479.
DOI URL PMID |
[34] |
E.N. Keyzer, P.D. Matthews, Z. Liu, A.D. Bond, C.P. Grey, D.S. Wright, Chem. Commun. 53(2017) 4573-4576.
DOI URL PMID |
[35] | C. Lee, S.K. Jeong, Chem. Lett. 45(2016) 1447-1449. |
[36] |
D. Aurbach, Y. Gofer, Z. Lu, A. Schechter, O. Chusid, H. Gizbar, Y. Cohen, V. Ashkenazi, M. Moshkovich, R. Turgeman, E. Levi, J. Power Sources 97-98(2001) 28-32.
DOI URL |
[37] |
D. Kim, Y. Lim, B. Roy, Y.G. Ryu, S.S. Lee, Phys. Chem. Chem. Phys. 16(2014) 25789-25798.
DOI URL PMID |
[38] |
R. Mohtadi, F. Mizuno, Beilstein J. Nanotechnol. 5(2014) 1291-1311.
DOI URL PMID |
[39] |
R. Mohtadi, M. Matsui, T.S. Arthur, S. Hwang, Angew. Chem. Int. Edit. 51(2012) 9780-9783.
DOI URL |
[40] |
Y. Shao, T. Liu, G. Li, M. Gu, Z. Nie, M. Engelhard, J. Xiao, D. Lv, C. Wang, J. Zhang, J. Liu, Sci. Rep. 10(2013) 3130.
DOI URL PMID |
[41] | J. Muldoon, C.B. Bucur, A.G. Oliver, J. Zajicek, G.D. Allred, W.C. Boggess, Energy Environ. Sci. 6(2013) 482-487. |
[42] | D. Aurbach, G.S. Suresh, E. Levi, A. Mitelman, O. Mizrahi, O. Chusid, M. Brunelli, Adv. Mater. 19(2007) 4260-4267. |
[43] |
H.S. Kim, T.S. Arthur, G.D. Allred, J. Zajicek, J.G. Newman, A.E. Rodnyansky, A.G. Oliver, W.C. Boggess, J. Muldoon, Nat. Commun. 2(2011) 426-427.
DOI URL PMID |
[44] |
T. Liu, Y. Shao, G. Li, M. Gu, J. Hu, S. Xu, Z. Nie, X. Chen, C. Wang, J. Liu, J. Mater. Chem. A 2 (2014) 3430-3438.
DOI URL |
[45] |
R.E. Doe, R. Han, J. Hwang, A.J. Gmitter, I. Shterenberg, H.D. Yoo, N. Pour, D. Aurbach, Chem. Commun. 50(2014) 243-245.
DOI URL |
[46] |
E.G. Nelson, J.W. Kampf, B.M. Bartlett, Chem. Commun. 50(2014) 5193-5195.
DOI URL PMID |
[47] | Z. Zhao-Karger, M.E. Gil Bardaji, O. Fuhr, M. Fichtner, J. Mater. Chem. A 5 (2017) 10815-10820. |
[48] |
T.J. Carter, R. Mohtadi, T.S. Arthur, F. Mizuno, R. Zhang, S. Shirai, J.W. Kampf, Angew. Chem. Int. Edit. 53(2014) 3173-3177.
DOI URL PMID |
[49] |
Y. Wang, W.H. Zhong, ChemElectroChem 2 (2015) 22-36.
DOI URL |
[50] |
M. Park, J. Kim, Y. Kim, N. Choi, J. Kim, Isr. J. Chem. 55(2015) 570-585.
DOI URL |
[51] | A. Ponrouch, M.R. Palacin, Curr. Opin. Electrochem. 9(2018) 1-7. |
[52] |
A. Bhide, J. Hofmann, A. Katharina Dürr, J. Janek, P. Adelhelm, Phys. Chem. Chem. Phys. 16(2014) 1987-1998.
DOI URL PMID |
[53] |
M. Gali´nski, A. Lewandowski, I. Stepniak, Electrochim. Acta 51 (2006) 5567-5580.
DOI URL |
[54] |
D. Monti, E. Jónsson, M.R. Palacín, P. Johansson, J. Power Sources 245 (2014) 630-636.
DOI URL |
[55] |
F. Wu, N. Zhu, Y. Bai, L. Liu, H. Zhou, C. Wu, ACS Appl. Mater. Interf. 8(2016) 21381-21386.
DOI URL PMID |
[56] |
M.C. Buzzeo, R.G. Evans, R.G. Compton, ChemPhysChem 5 (2004) 1106-1120.
DOI URL PMID |
[57] |
J. Wang, X. Zhang, W. Chu, S. Liu, H. Yu, Chem. Commun. 55(2019) 2138-2141.
DOI URL PMID |
[58] |
H. Jiao, C. Wang, J. Tu, D. Tian, S. Jiao, Chem. Commun. 53(2017) 2331-2334.
DOI URL PMID |
[59] |
K.S. Ngai, S. Ramesh, K. Ramesh, J.C. Juan, Ionics 22 (2016) 1259-1279.
DOI URL |
[60] |
S. Ramesh, C. Liew, E. Morris, R. Durairaj, Thermochim. Acta 511 (2010) 140-146.
DOI URL |
[61] |
Z. Wen, T. Itoh, T. Uno, M. Kubo, O. Yamamoto, Solid State Ion. 160(2003) 141-148.
DOI URL |
[62] |
H. Che, X. Yang, H. Wang, X.Z. Liao, S.S. Zhang, C. Wang, Z.F. Ma, J. Power Sources 407 (2018) 173-179.
DOI URL |
[63] |
K. Yoshida, M. Nakamura, Y. Kazue, N. Tachikawa, S. Tsuzuki, S. Seki, K. Dokko, M. Watanabe, J. Am. Chem. Soc. 133(2011) 13121-13129.
DOI URL PMID |
[64] |
L. Suo, O. Borodin, T. Gao, M. Olguin, J. Ho, X. Fan, C. Luo, C. Wang, K. Xu, Science 350 (2015) 938-943.
DOI URL PMID |
[65] |
W. Li, J.R. Dahn, D.S. Wainwright, Science 264 (1994) 1115-1118.
DOI URL PMID |
[66] |
J.Y. Luo, W.J. Cui, P. He, Y.Y. Xia, Nat. Chem. 2(2010) 760-765.
DOI URL PMID |
[67] |
Z. Hou, X. Zhang, X. Li, Y. Zhu, J. Liang, Y. Qian, J. Mater. Chem. A 5 (2017) 730-738.
DOI URL |
[68] |
H. Pan, Y. Shao, P. Yan, Y. Cheng, K.S. Han, Z. Nie, C. Wang, J. Yang, X. Li, P. Bhattacharya, K.T. Mueller, J. Liu, Nat. Energy 1 (2016) 16039.
DOI URL |
[69] |
L.D. Chen, J.K. Nørskov, A.C. Luntz, J. Phys. Chem. Lett. 6(2015) 175-179.
DOI URL PMID |
[70] | J. Lee, N. Jäckel, D. Kim, M. Widmaier, S. Sathyamoorthi, P. Srimuk, C. Kim, S. Fleischmann, M. Zeiger, V. Presser, Electrochim. Acta 222 (2016) 1800-1805. |
[71] |
S. Chen, J. Zheng, D. Mei, K.S. Han, M.H. Engelhard, W. Zhao, W. Xu, J. Liu, J.G. Zhang,Adv. Mater. 30(2018), 1706102.
DOI URL |
[72] |
S. Jiao, X. Ren, R. Cao, M.H. Engelhard, Y. Liu, D. Hu, D. Mei, J. Zheng, W. Zhao, Q. Li, N. Liu, B.D. Adams, C. Ma, J. Liu, J.G. Zhang, W. Xu, Nat. Energy 3 (2018)739-746.
DOI URL |
[73] |
J. Qian, W.A. Henderson, W. Xu, P. Bhattacharya, M. Engelhard, O. Borodin, J.G. Zhang, Nat. Commun. 6(2015) 6362.
DOI URL PMID |
[74] |
L. Suo, Y.S. Hu, H. Li, M. Armand, L. Chen, Nat. Commun. 4(2013) 1481.
DOI URL PMID |
[75] |
J. Wang, Y. Yamada, K. Sodeyama, C.H. Chiang, Y. Tateyama, A. Yamada, Nat. Commun. 7(2016) 12032.
DOI URL PMID |
[76] |
M.H. Lee, S.J. Kim, D. Chang, J. Kim, S. Moon, K. Oh, K.Y. Park, W.M. Seong, H. Park, G. Kwon, B. Lee, K. Kang, Mater. Today 29 (2019) 26-36.
DOI URL |
[77] |
C.H. Wang, Y.W. Yeh, N. Wongittharom, Y.C. Wang, C.J. Tseng, S.W. Lee, W.S. Chang, J.K. Chang, J. Power Sources 274 (2015) 1016-1023.
DOI URL |
[78] |
S.A. Mohd Noor, H. Yoon, M. Forsyth, D.R. Macfarlane, Electrochim. Acta 169 (2015) 376-81.
DOI URL |
[79] |
L. Xue, Y. Furusawa, D. Yu, DNA Repair 34 (2015) 1-8.
DOI URL PMID |
[80] |
L. Chancelier, A.O. Diallo, C.C. Santini, G. Marlair, T. Gutel, S. Mailley, C. Len, Phys. Chem. Chem. Phys. 16(2014) 1967-1976.
DOI URL PMID |
[81] |
H. Sakaebe, H. Matsumoto, K. Tatsumi, Electrochim. Acta 53 (2007) 1048-1054.
DOI URL |
[82] |
X.G. Sun, S. Dai, Electrochim. Acta 55 (2010) 4618-4626.
DOI URL |
[83] |
A. Lewandowski, A. ´Swiderska-Mocek, J. Power Sources 194 (2009) 601-609.
DOI URL |
[84] |
L. Fan, S. Wei, S. Li, Q. Li, Y. Lu,Adv. Energy Mater. 8(2018), 1702657.
DOI URL |
[85] |
J.J. Kim, K. Yoon, I. Park, K. Kang,Small Methods 1 (2017), 1700219.
DOI URL |
[86] |
G. Chen, J. Lu, L. Li, L. Chen, X. Jiang, J. Alloys Compd. 673(2016) 295-301.
DOI URL |
[87] |
C. Zhu, Y. Hong, P. Huang, J. Alloys Compd. 688(2016) 746-751.
DOI URL |
[88] |
G. Chen, J. Lu, X. Zhou, L. Chen, X. Jiang, Ceram. Int. 42(2016) 16055-16062.
DOI URL |
[89] |
G. Kamath, R.W. Cutler, S.A. Deshmukh, M. Shakourian-Fard, R. Parrish, J. Huether, D.P. Butt, H. Xiong, S.K.R.S. Sankaranarayanan, J. Phys. Chem. C 118 (2014) 13406-13416.
DOI URL |
[90] | A. Ponrouch, R. Dedryvere, D. Monti, A.E. Demet, J.M.A. Mba, L. Croguennec, C. Masquelier, P. Johanssoncf, P.M. Rosa, Energy Environ. Sci. 66(2013) 2361-2369. |
[91] |
M. Dahbi, T. Nakano, N. Yabuuchi, S. Fujimura, K. Chihara, K. Kubota, J.Y. Son, Y.T. Cui, H. Oji, S. Komaba, ChemElectroChem 3 (2016) 1856-1867.
DOI URL |
[92] |
J. Hur, I.T. Kim, Bull. Kor. Chem. Soc. 36(2015) 1625-1630.
DOI URL |
[93] |
X. Li, A.L. Hector, J.R. Owen, S.I.U. Shah, J. Mater. Chem. A 4 (2016) 5081-5087.
DOI URL |
[94] | Y. Wen, B. Wang, B. Luo, L. Wang, Eur. J. Inorg. Chem. 2016 (2016) 2051-2055. |
[95] |
S.A. Pervez, D. Kim, S.M. Lee, C.H. Doh, S. Lee, U. Farooq, M. Saleem, J. Power Sources 315 (2016) 218-223.
DOI URL |
[96] |
S. Komaba, T. Ishikawa, N. Yabuuchi, W. Murata, A. Ito, Y. Ohsawa, ACS Appl. Mater. Interf. 3(2011) 4165-4168.
DOI URL PMID |
[97] |
X. Xu, D. Zhou, X. Qin, K. Lin, F. Kang, B. Li, D. Shanmukaraj, T. Rojo, M. Armand, G. Wang, Nat. Commun. 9(2018) 3870.
DOI URL PMID |
[98] | D. Reber, R.S. Kühnel, C. Battaglia, ACS Mater. Lett. 1(2019) 44-51. |
[99] |
M. Arnaiz, P. Huang, J. Ajuria, T. filo Rojo, E. Goikolea, A. Balducci, P. Huang, A. Balducci, T. Rojo, E. Goikolea, Batteries Supercaps 1 (2018) 1-6.
DOI URL |
[100] |
T.C. Mendes, X. Zhang, Y. Wu, P.C. Howlett, M. Forsyth, D.R. Macfarlane, ACS Sustain. Chem. Eng. 7(2019) 3722-3726.
DOI URL |
[101] |
M.L.P. Le, L. Cointeaux, P. Strobel, J.C. Leprêtre, P. Judeinstein, F. Alloin, J. Phys. Chem. C 116 (2012) 7712-7718.
DOI URL PMID |
[102] |
L.T.M. Le, T.D. Vo, Q.D. Nguyen, S. Okada, F. Alloin, P.M.L. Le, ECS Trans. 85(2018) 215-226.
DOI URL |
[103] |
P.B. Bhargav, V.M. Mohan, A.K. Sharma, V.V.R.N. Rao, Curr. Appl. Phys. 9(2009) 165-171.
DOI URL |
[104] |
A. Boschin, P. Johansson, Electrochim. Acta 175 (2015) 124-133.
DOI URL |
[105] |
Y.L. Ni’Mah, M.Y. Cheng, J.H. Cheng, J. Rick, B.J. Hwang, J. Power Sources 278 (2015) 375-381.
DOI URL |
[106] |
C. Cao, H. Wang, W. Liu, X. Liao, L. Li, Int. J. Hydrogen Energy 39 (2014) 16110-16115.
DOI URL |
[107] |
X. Zhang, X. Wang, S. Liu, Z. Tao, J. Chen, Nano Res. 11(2018) 6244-6251.
DOI URL |
[108] |
S. Janakiraman, O. Padmaraj, S. Ghosh, A. Venimadhav, J. Electroanal. Chem. 826(2018) 142-149.
DOI URL |
[109] |
W. Hou, X. Guo, X. Shen, K. Amine, H. Yu, J. Lu, Nano Energy 52 (2018) 279-291.
DOI URL |
[110] |
Y. Lu, L. Li, Q. Zhang, Z. Niu, J. Chen, Joule 2 (2018) 1747-1770.
DOI URL |
[111] | M. Brighi, F. Murgia, Z. Łodziana, P. Schouwink, A. Wołczyk, R. ˇCern´y, J.Power Sources 404 (2018) 7-12. |
[112] |
Z. Jian, W. Luo, X. Ji, J. Am. Chem. Soc. 137(2015) 11566-11569.
DOI URL PMID |
[113] |
X. Wu, D.P. Leonard, X. Ji, Chem. Mater. 29(2017) 5031-5042.
DOI URL PMID |
[114] | X. Bie, K. Kubota, T. Hosaka, K. Chihara, S. Komaba, J. Mater. Chem. A 5 (2017) 2787-2793. |
[115] |
X. Niu, L. Li, J. Qiu, J. Yang, J. Huang, Z. Wu, J. Zou, C. Jiang, J. Gao, L. Wang,Solid State Ion. 341(2019), 115050.
DOI URL |
[116] |
N.S. Katorova, S.S. Fedotov, D.P. Rupasov, N.D. Luchinin, B. Delattre, Y.-M. Chiang, A.M. Abakumov, K.J. Stevenson, ACS Appl. Energy Mater. 2(2019)6051-6059.
DOI URL |
[117] |
G. Zeng, S. Xiong, Y. Qian, L. Ci, J. Feng, J. Electrochem. Soc. 166(2019) A1217-A1222.
DOI URL |
[118] |
D.P. Leonard, Z. Wei, G. Chen, F. Du, X. Ji, ACS Energy Lett. 3(2018) 373-374.
DOI URL |
[119] |
Q. Zhao, Y. Hu, K. Zhang, J. Chen, Inorg. Chem. 53(2014) 9000-9005.
DOI URL PMID |
[120] |
J.Y. Hwang, H.M. Kim, C.S. Yoon, Y.K. Sun, ACS Energy Lett. 3(2018) 540-541.
DOI URL |
[121] | L. Wang, J. Bao, Q. Liu, C.F. Sun, Energy Storage Mater. 18(2019) 470-475. |
[122] | R. Deivanayagam, B.J. Ingram, R. Shahbazian-Yassar, Energy Storage Mater. 21(2019) 136-153. |
[123] |
D. Aurbach, I. Weissman, Y. Gofer, E. Levi, Chem. Rec. 3(2003) 61-73.
DOI URL PMID |
[124] |
O. Tutusaus, R. Mohtadi, N. Singh, T.S. Arthur, F. Mizuno, ACS Energy Lett. 2(2017) 224-229.
DOI URL |
[125] |
C. Ling, D. Banerjee, M. Matsui, Electrochim. Acta 76 (2012) 270-274.
DOI URL |
[126] |
A.A. Aziz, Y. Tominaga, Ionics 24 (2018) 3475-3481.
DOI URL |
[127] |
M. Rajendran, S. Ulaganathan, Ionics 16 (2010) 515-521.
DOI URL |
[128] |
S. Ponmani, M.R. Prabhu, J. Mater. Sci.: Mater. Electron. 29(2018) 15086-15096.
DOI URL |
[129] |
Z. Zhao-Karger, X. Zhao, D. Wang, T. Diemant, R.J. Behm, M. Fichtner, Adv. Energy Mater. 5(2015) 1401155-1401163.
DOI URL |
[130] |
L.C. Merrill, J.L. Schaefer, Langmuir 33 (2017) 9426-9433.
DOI URL PMID |
[131] |
C. Liao, N. Sa, B. Key, A.K. Burrell, L. Cheng, L.A. Curtiss, J.T. Vaughey, J.J. Woo, L. Hu, B. Pan, Z. Zhang, J. Mater. Chem. A 3 (2015) 6082-6087.
DOI URL |
[132] | B. Pan, K.-C. Lau, J.T. Vaughey, L. Zhang, Z. Zhang, C. Liao, J. Electrochem. Soc. A 164 (2017) 902-906. |
[133] | Y. Xu, W. Li, G. Zhou, Z. Pan, Y. Zhang, Energy Storage Mater. 14(2018) 253-257. |
[134] |
S. He, J. Luo, T.L. Liu, J. Mater. Chem. A 5 (2017) 12718-12722.
DOI URL |
[135] |
Y. He, Q. Li, L. Yang, C. Yang, D. Xu, Angew. Chem. Int. Edit. 58(2019) 7615-7619.
DOI URL PMID |
[136] |
I. Shterenberg, M. Salama, Y. Gofer, E. Levi, D. Aurbach, MRS Bull. 39(2014) 453-460.
DOI URL |
[137] | Z. Ma, M. Kar, C. Xiao, M. Forsyth, D.R.MacFarlane, Electrochem.Commun. 78(2017) 29-32. |
[138] |
H.D. Yoo, S.D. Han, I.L. Bolotin, G.M. Nolis, R.D. Bayliss, A.K. Burrell, J.T. Vaughey, J. Cabana, Langmuir 33 (2017) 9398-9406.
DOI URL PMID |
[139] |
Z. Ma, M. Forsyth, D.R. MacFarlane, M. Kar, Green Energy Environ. 4(2018) 146-153.
DOI URL |
[140] |
S. Hebie, H.P.K. Ngo, J.C. Leprêtre, C. Iojoiu, L. Cointeaux, R. Berthelot, F. Alloin, ACS Appl. Mater. Interf. 9(2017) 28377-28385.
DOI URL PMID |
[141] |
J.G. Connell, B. Genorio, P.P. Lopes, D. Strmcnik, V.R. Stamenkovic, N.M. Markovic, Chem. Mater. 28(2016) 8268-8277.
DOI URL |
[142] |
K. Shimokawa, H. Matsumoto, T. Ichitsubo, J. Phys. Chem. Lett. 9(2018) 4732-4737.
DOI URL PMID |
[143] |
I. Osada, H. De Vries, B. Scrosati, S. Passerini, Angew. Chem. Int. Edit. 55(2016) 500-513.
DOI URL |
[144] |
T. Watkins, A. Kumar, D.A. Buttry, J. Am. Chem. Soc. 138(2016) 641-650.
DOI URL PMID |
[145] |
S. Su, Y. NuLi, N. Wang, D. Yusipu, J. Yang, J. Wang, J. Electrochem. Soc. 163(2016) D682-D688.
DOI URL |
[146] |
O. Tutusaus, R. Mohtadi, T.S. Arthur, F. Mizuno, E.G. Nelson, Y.V. Sevryugina, Angew. Chem. Int. Edit. 54(2015) 7900-7904.
DOI URL PMID |
[147] |
Z. Zhao-Karger, M.E. Gil Bardaji, O. Fuhr, M. Fichtner, J. Mater. Chem. A 5 (2017) 10815-10820.
DOI URL |
[148] | Z. Zhang, Z. Cui, L. Qiao, J. Guan, H. Xu, X. Wang, P. Hu, H. Du, S. Li, X. Zhou, S. Dong, Z. Liu, G. Cui, L. Chen, Adv. Energy Mater. 7(2017) 1-10. |
[149] |
A. Du, Z. Zhang, H. Qu, Z. Cui, L. Qiao, L. Wang, J. Chai, T. Lu, S. Dong, T. Dong, H. Xu, X. Zhou, G. Cui, Energy Environ. Sci. 10(2017) 2616-2625.
DOI URL |
[150] | A. Du, H. Zhang, Z. Zhang, J. Zhao, Z. Cui, Y. Zhao, S. Dong, L. Wang, X. Zhou, G. Cui, Adv. Mater. 31(2019) 1-7. |
[151] |
L. Chen, J.L. Bao, X. Dong, D.G. Truhlar, Y. Wang, C. Wang, Y. Xia, ACS Energy Lett. 2(2017) 1115-1121.
DOI URL |
[152] |
F. Wang, X. Fan, T. Gao, W. Sun, Z. Ma, C. Yang, F. Han, K. Xu, C. Wang, ACS Cent. Sci. 3(2017) 1121-1128.
DOI URL PMID |
[153] |
S. Zaromb, J. Electrochem. Soc. 109(1962) 1125-1130.
DOI URL |
[154] |
D.R. Egan, C. Ponce De León, R.J.K. Wood, R.L. Jones, K.R. Stokes, F.C. Walsh, J. Power Sources 236 (2013) 293-310.
DOI URL |
[155] |
R.D. Armstrong, V.J. Braham, Corros. Sci. 38(1996) 1463-1471.
DOI URL |
[156] |
Y. Liu, Q. Sun, W. Li, K.R. Adair, J. Li, X. Sun, Green Energy Environ. 2(2017) 246-277.
DOI URL |
[157] |
R. Mori, RSC Adv. 7(2017) 6389-6395.
DOI URL |
[158] |
H. Moghanni-Bavil-Olyaei, J. Arjomandi, RSC Adv. 5(2015) 91273-91279.
DOI URL |
[159] | B.A. Abd-El-Nabey, A.M. Abdel-Gaber, G.Y. Elawady, S. El-Housseiny, Int. J. Electrochem. Sci. 7(2012) 7823-7839. |
[160] |
M. Pino, J. Chacón, E. Fatás, P. Ocón, J. Power Sources 299 (2015) 195-201.
DOI URL |
[161] | M. Mokhtar, M.Z.M. Talib, E.H. Majlan, S.M. Tasirin, W.M.F.W. Ramli, W.R.W. Daud, J. Sahari, J. Ind. Eng. Chem. 32(2015) 1-20. |
[162] |
Y. Nakayama, Y. Senda, H. Kawasaki, N. Koshitani, S. Hosoi, Y. Kudo, H. Morioka, M. Nagamine, Phys. Chem. Chem. Phys. 17(2015)5758-5766.
DOI URL PMID |
[163] |
H. Wang, S. Gu, Y. Bai, S. Chen, N. Zhu, C. Wu, F. Wu, J. Mater. Chem. A 3 (2015) 22677-22686.
DOI URL |
[164] |
C. Ferrara, V. Dall’Asta, V. Berbenni, E. Quartarone, P. Mustarelli, J. Phys. Chem. C 121 (2017) 26607-26614.
DOI URL |
[165] | H. Xu, T. Bai, H. Chen, F. Guo, J. Xi, T. Huang, S. Cai, X. Chu, J. Ling, W. Gao, Z. Xu, C. Gao, Energy Storage Mater. 17(2019) 38-45. |
[166] |
H. Wang, Y. Bai, S. Chen, X. Luo, C. Wu, F. Wu, J. Lu, K. Amine, ACS Appl. Mater. Interf. 7(2015) 80-84.
DOI URL |
[167] |
M.C. Lin, M. Gong, B. Lu, Y. Wu, D.Y. Wang, M. Guan, M. Angell, C. Chen, J. Yang, B.J. Hwang, H. Dai, Nature 520 (2015) 324-328.
DOI URL PMID |
[168] |
H. Sun, W. Wang, Z. Yu, Y. Yuan, S. Wang, S. Jiao, Chem. Commun. 51(2015) 11892-11895.
DOI URL PMID |
[169] |
Y. Song, S. Jiao, J. Tu, J. Wang, Y. Liu, H. Jiao, X. Mao, Z. Guo, D.J. Fray, J. Mater. Chem. A 5 (2017) 1282-1291.
DOI URL |
[170] |
X.G. Sun, Y. Fang, X. Jiang, K. Yoshii, T. Tsuda, S. Dai, Chem. Commun. 52(2016) 292-295.
DOI URL |
[171] | Q. Zhao, M.J. Zachman, W.I. Al Sadat, J. Zheng, L.F. Kourkoutis, L. Archer, Sci. Adv. 4(2018) 1-8. |
[172] |
C. Wu, S. Gu, Q. Zhang, Y. Bai, M. Li, Y. Yuan, H. Wang, X. Liu, Y. Yuan, N. Zhu, F. Wu, H. Li, L. Gu, J. Lu, Nat. Commun. 10(2019) 1-10.
DOI URL PMID |
[173] |
M. Song, H. Tan, D. Chao, H.J. Fan,Adv. Funct. Mater. 28 (1-27) (2018), 1802564.
DOI URL |
[174] |
W. Sun, F. Wang, S. Hou, C. Yang, X. Fan, Z. Ma, T. Gao, F. Han, R. Hu, M. Zhu, C. Wang, J. Am. Chem. Soc. 139(2017) 9775-9778.
DOI URL PMID |
[175] |
S. Zhang, N. Yu, S. Zeng, S. Zhou, M. Chen, J. Di, Q. Li, J. Mater. Chem. A 6 (2018) 12237-12243.
DOI URL |
[176] |
N. Zhang, F. Cheng, Y. Liu, Q. Zhao, K. Lei, C. Chen, X. Liu, J. Chen, J. Am. Chem. Soc. 138(2016) 12894-12901.
DOI URL PMID |
[177] |
J. Zhang, J. Zhao, H. Du, Z. Zhang, S. Wang, G. Cui, Electrochim. Acta 280 (2018) 108-113.
DOI URL |
[178] |
F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun, F. Han, A. Faraone, J.A. Dura, K. Xu, C. Wang, Nat. Mater. 17(2018) 543-549.
DOI URL PMID |
[179] |
C. Zhang, J. Holoubek, X. Wu, A. Daniyar, L. Zhu, C. Chen, D.P. Leonard, I.A. Rodríguez-Pérez, J.X. Jiang, C. Fang, X. Ji, Chem. Commun. 54(2018) 14097-14099.
DOI URL PMID |
[180] |
X. Wu, Y. Xu, C. Zhang, D.P. Leonard, A. Markir, J. Lu, X. Ji, J. Am. Chem. Soc. 141(2019) 6338-6344.
DOI URL PMID |
[181] |
J. Zhao, J. Zhang, W. Yang, B. Chen, Z. Zhao, H. Qiu, S. Dong, X. Zhou, G. Cui, L. Chen, Nano Energy 57 (2019) 625-674.
DOI URL |
[182] |
C. Xie, H. Zhang, W. Xu, W. Wang, X. Li, A Long Cycle Life, Angew.Chem. Int. Edit. 57(2018) 11171-11176.
DOI URL PMID |
[183] |
D. Aurbach, R. Skaletsky, Y. Gofer, J. Electrochem. Soc. 138(1991) 3536-3545.
DOI URL |
[184] |
D. Wang, X. Gao, Y. Chen, L. Jin, C. Kuss, P.G. Bruce, Nat. Mater. 17(2018) 16-20.
DOI URL PMID |
[185] |
T. Itoh, Y. Ichikawa, T. Uno, M. Kubo, O. Yamamoto, Solid State Ion. 156(2003) 393-399.
DOI URL |
[186] |
S. Ramesh, L.C. Wen, Ionics 16 (2010) 255-262.
DOI URL |
[187] |
S. Abbrent, J. Plestil, D. Hlavata, J. Lindgren, J. Tegenfeldt, A. Wendsjo, Polymer 42 (2001) 1407-1416.
DOI URL |
[188] |
M. Song, Y. Kim, J. Cho, B. Won, B.N. Popov, H. Rhee, J. Power Sources 125 (2004) 10-16.
DOI URL |
[189] |
A. Iyenger, P. Santhosh, K. Manian, J. Hee, S. Ho, C. Hwang, K. Lee, J. Memb. Sci. 325(2008) 683-690.
DOI URL |
[190] | K.M. Kim, K.S. Ryu, S. Kang, S.H. Chang, I.J. Chung, Chem. Phys. 202(2001) 866-872. |
[191] |
J. Kim, G. Cheruvally, X. Li, J. Ahn, K. Kim, H. Ahn, J. Power Sources 178 (2008) 815-820.
DOI URL |
[192] |
S. Rajendran, O. Mahendran, R. Kannan, J. Phys. Chem. Solids 63 (2002) 303-307.
DOI URL |
[193] |
C. Liew, S. Ramesh, J. Mater. Res. 27(2012) 2996-3004.
DOI URL |
[194] |
S. Ramesh, T.S. Yin, C. Liew, Ionics 17 (2011) 705-713.
DOI URL |
[195] |
C. Yang, S. Lin, J. Power Sources 112 (2002) 497-503.
DOI URL |
[196] |
Y. Lu, D. Wang, T. Li, X. Zhao, Y. Cao, H. Yang, Y.Y. Duan, Biomaterials 30 (2009) 4143-4151.
DOI URL |
[197] |
W. Kam, C. Liew, J.Y. Lim, S. Ramesh, Ionics 20 (2014) 665-674.
DOI URL |
[198] |
Y.W. Chen-Yang, H.C. Chen, F.J. Lin, C.C. Chen, Solid State Ion. 150(2002) 327-335.
DOI URL |
[199] |
A.M. Stephan, Eur. Polym. J. 42(2006) 21-42.
DOI URL |
[200] |
W. Li, S. Cheng, J. Wang, Y. Qiu, Z. Zheng, H. Lin, S. Nanda, Q. Ma, Y. Xu, F. Ye, M. Liu, L. Zhou, Y. Zhang, Angew. Chem. Int. Edit. 55(2016) 6406-6410.
DOI URL PMID |
[201] |
J. Luo, S. He, T.L. Liu, ACS Energy Lett. 2(2017) 1197-1202.
DOI URL |
[202] | H. Xu, T. Bai, H. Chen, F. Guo, J. Xi, T. Huang, S. Cai, Energy Storage Mater. 17(2019) 38-45. |
[203] |
X.G. Sun, Y. Fang, X. Jiang, K. Yoshii, T. Tsuda, S. Dai, Chem. Commun. 52(2015) 292-295.
DOI URL |
[1] | Shi Tao, Wei Zhou, Dajun Wu, Zhicheng Wang, Bin Qian, Wangsheng Chu, Augusto Marcelli, Li Song. Insights into the Ti4+ doping in P2-type Na0.67Ni0.33Mn0.52Ti0.15O2 for enhanced performance of sodium-ion batteries [J]. J. Mater. Sci. Technol., 2021, 74(0): 230-236. |
[2] | Chuan Wang, Hai Long, Lijiao Zhou, Chao Shen, Wei Tang, Xiaodong Wang, Bingbing Tian, Le Shao, Zhanyuan Tian, Haijun Su, Keyu Xie. A multiphase sodium vanadium phosphate cathode material for high-rate sodium-ion batteries [J]. J. Mater. Sci. Technol., 2021, 66(0): 121-127. |
[3] | Haonan Cao, Meiqi Yu, Long Zhang, Zhaoxing Zhang, Xinlin Yan, Peng Li, Chuang Yu. Stabilizing Na3SbS4/Na interface by rational design via Cl doping and aqueous processing [J]. J. Mater. Sci. Technol., 2021, 70(0): 168-175. |
[4] | Huan Du, Shihao Feng, Wen Luo, Liang Zhou, Liqiang Mai. Advanced Li-SexSy battery system: Electrodes and electrolytes [J]. J. Mater. Sci. Technol., 2020, 55(0): 1-15. |
[5] | Xiaohui Rong, Fei Gao, Feixiang Ding, Yaxiang Lu, Kai Yang, Hong Li, Xuejie Huang, Liquan Chen, Yong-Sheng Hu. Triple effects of Sn-substitution on Na0.67Ni0.33Mn0.67O2 [J]. J. Mater. Sci. Technol., 2019, 35(7): 1250-1254. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||