J. Mater. Sci. Technol. ›› 2020, Vol. 44: 237-257.DOI: 10.1016/j.jmst.2020.01.017

• Invited Review • Previous Articles    

Progress in electrolytes for beyond-lithium-ion batteries

Juyan Zhangab, Xuhui Yaob, Ravi K. Misrab, Qiong Caia**(), Yunlong Zhaobc*()   

  1. a Faculty of Engineering and Physical Sciences, Department of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH, UK
    b Advanced Technology Institute, University of Surrey, Guildford, GU2 7XH, UK
    c National Physical Laboratory, Teddington, Middlesex, TW11 0LW, UK
  • Received:2019-07-13 Revised:2019-11-11 Accepted:2019-11-11 Published:2020-05-01 Online:2020-05-21
  • Contact: Qiong Cai,Yunlong Zhao

Abstract:

The constant increase in global energy demand and stricter environmental standards are calling for advanced energy storage technologies that can store electricity from intermittent renewable sources such as wind, solar, and tidal power, to allow the broader implementation of the renewables. The grid-oriented sodium-ion batteries, potassium ion batteries and multivalent ion batteries are cheaper and more sustainable alternatives to Li-ion, although they are still in the early stages of development. Additional optimisation of these battery systems is required, to improve the energy and power density, and to solve the safety issues caused by dendrites growth in anodes. Electrolyte, one of the most critical components in these batteries, could significantly influence the electrochemical performances and operations of batteries. In this review, the definitions and influences of three critical components (salts, solvents, and additives) in electrolytes are discussed. The significant advantages, challenges, recent progress and future optimisation directions of various electrolytes for monovalent and multivalent ions batteries (i.e. organic, ionic liquid and aqueous liquid electrolytes, polymer and inorganic solid electrolytes) are summarised to guide the practical application for grid-oriented batteries.

Key words: Electrolytes, Organic liquid electrolyte, Aqueous electrolyte, Ionic liquid electrolyte, Solid-state electrolyte, Sodium-ion batteries, Potassium ion batteries, Multivalent ion batteries