J. Mater. Sci. Technol. ›› 2021, Vol. 84: 124-132.DOI: 10.1016/j.jmst.2020.11.073
• Research Article • Previous Articles Next Articles
Ning Liua, Heng Maa, Lu Wanga, Yan Zhaoa,*(), Zhumabay Bakenovb, Xin Wangc,*(
)
Received:
2020-09-16
Revised:
2020-11-22
Accepted:
2020-11-27
Published:
2021-09-10
Online:
2021-02-05
Contact:
Yan Zhao,Xin Wang
About author:
wangxin@scnu.edu.cn (X. Wang).Ning Liu, Heng Ma, Lu Wang, Yan Zhao, Zhumabay Bakenov, Xin Wang. Dealloying-derived nanoporous deficient titanium oxide as high-performance bifunctional sulfur host-catalysis material in lithium-sulfur battery[J]. J. Mater. Sci. Technol., 2021, 84: 124-132.
Fig. 1. (a) Schematics of synthesis route of S/TiO2-x. (b) Backscattered electron micrograph, (c) Ti element, and (d) Al element distributions of Ti10Al90 ribbons.
Fig. 2. (a) XRD patterns, (b) N2 adsorption-desorption isotherms, (c) pore size distribution, (d) XPS spectra and (e) EPR of TiO2-x, TiO2, A and TiO2. (f) TGA curves of S/TiO2-x.
Fig. 3. (a) SEM image, (b) TEM image, (c) colored TEM image, (d) HRTEM image, fast Fourier transform (FFT) pattern in selected area and inverse FFT images of TiO2-x. (e-g) Element distribution mapping images for Ti and O of TiO2-x.
Fig. 4. (a) Cyclic voltammetry (CV) sweep at various potential scan rates of S/TiO2-x cathode. (b) Galvanostatic charge/discharge profiles of S/TiO2-x at 0.2 C. (c) Cycling performance and Coulombic efficiency of S/TiO2, S/TiO2, A and S/TiO2-x cathodes. (d) Rate capacities of S/TiO2, S/TiO2, A and S/TiO2-x cathodes. (e) Galvanostatic charge/discharge profiles of S/TiO2-x at various cycling rates. (f) Nyquist plots before and after the 100th discharge for S/TiO2, S/TiO2, A and S/TiO2-x cathodes. (g) Long-term cycling performance and Coulombic efficiency at 1 C of S/TiO2, S/TiO2, A and S/TiO2-x cathodes. (h) Specific capacity of S/TiO2-x with different areal sulfur loadings.
Fig. 5. (a) Cyclic voltammograms of symmetric cells with identical electrodes of TiO2-x, TiO2, A and TiO2 in electrolytes with 0.2 M Li2S6 at 4 mV s-1. (b) Multi-cycle voltammograms of TiO2-x symmetric cell at 4 mV s-1. (c) Electrochemical impedance spectra of symmetric cells. (d) Cyclic voltammograms of TiO2-x symmetric cell at different scan rates. (e) Potentiostatic discharge curves of Li2S8/tetraglyme solution at 2.05 V on different surfaces. (f) Calculated lithium ion diffusion coefficient for electrodes at various stages.
Fig. 6. XPS spectra of (a) Ti 2p and (b) S 2p before and after 100 cycles. (c) Ex-situ adsorption measurement (Li2S6 solution, Li2S6 + TiO2, Li2S6 + TiO2, A, Li2S6 + TiO2-x powder) at different stages: initial, 4 h, and 8 h. (d) Adsorption configuration of lithium polysulfide (Li2S6) and TiO2-x. (e) Schematic illustration of lithium polysulfides conversion on surface of TiO2-x. (f) Photograph of LEDs with an “HEBUT” pattern powered by cells with S/TiO2-x cathode.
[1] |
D.G. Wang, N. Li, Y.M. Hu, S. Wan, M. Song, G.P. Yu, Y.H. Jin, W.F. Wei, K. Han, G.C. Kuang, W. Zhang, ACS Appl. Mater. Interfaces 10 (2018), 42233.
DOI URL |
[2] |
Z. Gao, Y.Y. Zhang, N.N. Song, X.D. Li, Electrochim. Acta 246 (2017) 507-516.
DOI URL |
[3] |
S.S. Yao, C.J. Zhang, F.W. Xie, S.K. Xue, K.D. Gao, R.D. Guo, X.Q. Shen, T.B. Li, S.B. Qin, ACS Sustain. Chem. Eng. 8 (2020) 2707-2715.
DOI URL |
[4] |
S.S. Yao, C.J. Zhang, Y.P. He, Y.Y. Li, Y.Q. Wang, Y.Z. Liang, X.Q. Shen, T.B. Li, S.B. Qin, J. Xiang, ACS Sustain. Chem. Eng. 8 (2020) 7815-7824.
DOI URL |
[5] |
Y. Li, J. Zhu, R. Shi, M. Dirican, P. Zhu, Chem. Eng. J. 349 (2018) 376-387.
DOI URL |
[6] |
W. Ren, M. Wei, S. Zhang, B. Tang, Chem. Eng. J. 341 (2018) 441-449.
DOI URL |
[7] |
Z. Pan, L. Huang, X. Zhang, R. Zhang, L. Wu, Y. Chen, Chem. Eng. J. 349 (2018) 327-337.
DOI URL |
[8] |
B. Ding, L.F. Shen, G.Y. Xu, P. Nie, X.G. Zhang, Electrochim. Acta 107 (2013) 78-84.
DOI URL |
[9] |
F.G. Sun, J.T. Wang, D.H. Long, W.M. Qiao, L.C. Ling, C.X. Lv, R.A. Cai, J. Mater. Chem. A Mater. Energy Sustain. 1 (2018) 13283-13289.
DOI URL |
[10] |
Q. Fan, W. Liu, Z. Weng, Y.M. Sun, H.L. Wang, J. Am. Chem. Soc. 137 (2015) 12946-12953.
DOI PMID |
[11] |
Y.G. Zhang, Y. Zhao, A. Yermukhambetova, Z. Bakenov, P. Chen, J. Mater. Chem. A Mater. Energy Sustain. 1 (2013) 295-301.
DOI URL |
[12] |
H. Tang, S.S. Yao, M.X. Jing, X. Wu, J.L. Hou, X.Y. Qian, D.W. Rao, X.Q. Shen, X.M. Xi, K.S. Xiao, J. Alloys. Compd. 650 (2015) 351-356.
DOI URL |
[13] |
Y.G. Zhang, G.R. Li, J.Y. Wang, G.L. Cui, X.L. Wei, L.L. Shui, K. Kempa, G.F. Zhou, X. Wang, Z.W. Chen, Adv. Funct. Mater. 30 (2020), 2001165.
DOI URL |
[14] |
J.F. Zhang, G.R. Li, Y.G. Zhang, W. Zhang, X. Wang, Y. Zhao, J.D. Li, Z.W. Chen, Nano Energy 64 (2019), 103905.
DOI URL |
[15] |
Z.W. Seh, W.Y. Li, J.J. Cha, G.Y. Zheng, Y. Yang, M.T. McDowell, P.C. Hsu, Y. Cui, Nat. Commun. 4 (2013) 1331.
DOI URL |
[16] |
C.X. Li, Z.Q. Li, Q. Li, Z.W. Zhang, S.H. Dong, L.W. Yin, Electrochim. Acta 215 (2016) 689-698.
DOI URL |
[17] |
S.S. Yao, H. Tang, M.Q. Liu, L.L. Chen, M.X. Jing, X.Q. Shen, T.B. Li, J.L. Tan, J. Alloys. Compd. 788 (2019) 639-648.
DOI URL |
[18] |
S.S. Yao, S.K. Xue, S.H. Peng, M.X. Jing, X.Q. Shen, T.B. Li, Z.Z. Liu, Int. J. Energy Res. 43 (2019) 1892-1902.
DOI URL |
[19] |
Y.G. Zhang, L.C. Sun, H.P. Li, T.Z. Tan, J.D. Li, J. Alloys. Compd. 739 (2018) 290-297.
DOI URL |
[20] |
H.B. Lin, S.L. Zhang, T.R. Zhang, H.L. Ye, Q.F. Yao, G.W. Zheng, J.Y. Lee, Adv. Energy Mater. 8 (2018), 1801868.
DOI URL |
[21] |
H.B. Lin, L.Q. Yang, X. Jiang, G.C. Li, T.R. Zhang, Q.F. Yao, G.W. Zheng, J.Y. Lee, Energy Environ. Sci. 10 (2017) 1476-1486.
DOI URL |
[22] |
L.L. Zhang, X. Chen, F. Wan, Z.Q. Niu, Y.J. Wang, Q. Zhang, J. Chen, ACS Nano 12 (2018) 9578-9586.
DOI URL |
[23] |
X.Y. Tao, J.G. Wang, Z.G. Ying, Q.X. Cai, G.Y. Zheng, Y.P. Gan, H. Huang, Y. Xia, C. Liang, W.K. Zhang, Y. Cui, Nano Lett. 14 (2014) 5288-5294.
DOI URL |
[24] |
Q. Pang, D. Kundu, M. Cuisinier, L.F. Nazar, Nat. Commun. 5 (2014) 4759.
DOI URL |
[25] |
Z. Li, J.T. Zhang, B.Y. Guan, D. Wang, L.M. Liu, X.W. Lou, Nat. Commun. 7 (2016) 13065.
DOI URL |
[26] |
L.H. Zhuang, L. Ge, Y.S. Yang, M.R. Li, Y. Jia, X.D. Yao, Z.H. Zhu, Adv. Mater. 29 (2017), 1606793.
DOI URL |
[27] |
G.H. Lee, S. Lee, J.C. Kim, D.W. Kim, Y. Kang, D.W. Kim, Adv. Energy Mater. 7 (2017), 1601741.
DOI URL |
[28] |
D.Y. Zhao, Q. Hao, C.X. Xu, Electrochim. Acta 211 (2016) 83-91.
DOI URL |
[29] |
C.X. Xu, R.Y. Wang, Y. Zhang, Y. Ding, Nanoscale 2 (2010) 906-909.
DOI URL |
[30] |
J.J. Ye, D.Y. Zhao, Q. Hao, C.X. Xu, Electrochim. Acta 222 (2016) 1402-1409.
DOI URL |
[31] |
X.J. Jiang, Y.Y. Wang, L.S. Yang, D.W. Li, H.Y. Xu, Y. Ding, J. Power Sources 274 (2015) 862-868.
DOI URL |
[32] |
G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6 (1996) 15-50.
DOI URL |
[33] |
G. Kresse, J. Furthmüller, Phys. Rev. B 54 (1996) 11169.
PMID |
[34] |
J.Y. Zhao, J.X. Yao, Y.Z. Zhang, M.N. Guli, L. Xiao, J. Power Sources 255 (2014) 16-23.
DOI URL |
[35] |
J.S. Luo, X.H. Xia, Y.S. Luo, C. Guan, J.L. Liu, X.Y. Qi, C.F. Ng, T. Yu, H. Zhang, H.J. Fan, Adv. Energy Mater. 3 (2013) 737-743.
DOI URL |
[36] |
X.H. Lu, G.M. Wang, T. Zhai, M.H. Yu, J.Y. Gan, Y.X. Tong, Y. Li, Nano Lett. 12 (2012) 1690-1696.
DOI URL |
[37] |
O.I. Micic, Y. Zhang, K.R. Cromack, A.D. Trifunac, M.C. Thurnauer, J. Phys. Chem. 97 (1993) 7277-7283.
DOI URL |
[38] |
T. Berger, O. Diwald, E. Knozinger, F. Napoli, M. Chiesa, E. Giamello, Chem. Phys. 339 (2007) 138-145.
DOI URL |
[39] |
G.J. Hu, C. Xu, Z.H. Sun, S.G. Wang, H.M. Cheng, F. Li, W.C. Ren, Adv. Mater. 28 (2016) 1603-1609.
DOI URL |
[40] |
X. Luo, X.B. Lu, G.Y. Zhou, X.Y. Zhao, Y. Ouyang, X.B. Zhu, Y.E. Miao, T.X. Liu, ACS Appl. Mater. Interfaces 10 (2018) 42198-42206.
DOI URL |
[41] |
J.H. Liu, W.F. Li, L.M. Duan, X. Li, L. Ji, Z.B. Geng, K.K. Huang, L.H. Lu, L.S. Zhou, Z.R. Liu, W. Chen, L.W. Liu, S.H. Feng, Y.G. Zhang, Nano Lett. 15 (2015)5137-5142.
DOI URL |
[42] |
L.Y. Luo, X.Y. Qin, J.X. Wu, G.M. Liang, Q. Li, M. Liu, F.Y. Kang, G.H. Chen, B.H. Li, J. Mater. Chem. A Mater. Energy Sustain. 6 (2018) 8612-8619.
DOI URL |
[43] |
Z. Liang, G.Y. Zheng, W.Y. Li, Z.W. Seh, H.B. Yao, K. Yan, D.S. Kong, Y. Cui, ACS Nano 8 (2014) 5249-5256.
DOI PMID |
[44] |
Y. Wang, Z.Q. Shi, Y. Huang, Y.F. Ma, C.Y. Wang, M.M. Chen, Y.S. Chen, J. Phys. Chem. C 113 (2009) 13103-13107.
DOI URL |
[45] |
L. Zhang, G.Q. Shi, J. Phys. Chem. C 115 (2011) 17206-17212.
DOI URL |
[46] |
Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya, L.C. Qin, Carbon 49 (2011) 2917-2925.
DOI URL |
[47] |
K.L. Xu, X.J. Liu, J.W. Liang, J.Y. Cai, K.L. Zhang, Y. Lu, X. Wu, M.G. Zhu, Y. Liu, Y.C. Zhu, G.M. Wang, Y.T. Qan, ACS Energy Lett. 3 (2018) 420-427.
DOI URL |
[48] |
G. Babu, N. Masurkar, H. Al Salem, L.M.R Arave, J. Am. Chem. Soc. 139 (2017) 171-178.
DOI URL |
[49] |
Y.R. Zhong, L.C. Yin, P. He, W. Liu, Z.S. Wu, H.L. Wang, J. Am. Chem. Soc. 140 (2018) 1455-1459.
DOI URL |
[50] |
F.Y. Fan, W.C. Carter, Y.M. Chiang, Adv. Mater. 27 (2015) 5203-5209.
DOI URL |
[51] |
L.C.H. Gerber, P.D. Frischmann, F.Y. Fan, S.E. Doris, X.H. Qu, A.M. Scheuermann, K. Persson, Y.M. Chiang, B.A. Helms, Nano Lett. 16 (2016) 549-554.
DOI PMID |
[52] |
G.M. Zhou, Y.B. Zhao, C.X. Zu, A. Manthiram, Nano Energy 12 (2015) 240-249.
DOI URL |
[53] |
K. Wu, Y. Hu, Z. Shen, R. Chen, X. He, Z. Cheng, P. Pan, J. Mater. Chem. A Mater. Energy Sustain. 6 (2018) 2693-2699.
DOI URL |
[54] |
Y. Diao, K. Xie, S.Z. Xiong, X.B. Hong, J. Power Sources 235 (2013) 181-186.
DOI URL |
[55] |
H. Martinez, C. Auriel, D. Gonbeau, G. Pfister-Guillouzo, A. Meerschaut, J. Electron Spectros. Relat. Phenomena 95 (1998) 145-158.
DOI URL |
[56] |
G.Y. Zheng, Q.F. Zhang, J.J. Cha, Y. Yang, W.Y. Li, Z.W. Seh, Y. Cui, Nano Lett. 13 (2013) 1265-1270.
DOI URL |
[1] | Yuan-Yun Zhao, Feng Qian, Chengliang Zhao, Chunxiao Xie, Jianguo Wang, Chuntao Chang, Yanjun Li, Lai-Chang Zhang. Facile fabrication of ultrathin freestanding nanoporous Cu and Cu-Ag films with high SERS sensitivity by dealloying Mg-Cu(Ag)-Gd metallic glasses [J]. J. Mater. Sci. Technol., 2021, 70(0): 205-213. |
[2] | Jing Wang, Li You, Zhibin Li, Xiongjun Liu, Rui Li, Qing Du, Xianzhen Wang, Hui Wang, Yuan Wu, Suihe Jiang, Zhaoping Lu. Self-supporting nanoporous Ni/metallic glass composites with hierarchically porous structure for efficient hydrogen evolution reaction [J]. J. Mater. Sci. Technol., 2021, 73(0): 145-150. |
[3] | Chunmao Huang, Shenghong Liu, Yang Wang, Jingjie Feng, Yanming Zhao. A new active NaVMoO6 cathode material for rechargeable Li ion batteries [J]. J. Mater. Sci. Technol., 2021, 66(0): 97-102. |
[4] | Mengmeng Zhang, Jiajun Wang, Yang Wang, Jinfeng Zhang, Xiaopeng Han, Yanan Chen, Yuesheng Wang, Zaghib Karim, Wenbin Hu, Yida Deng. Promoting the charge separation and photoelectrocatalytic water reduction kinetics of Cu2O nanowires via decorating dual-cocatalysts [J]. J. Mater. Sci. Technol., 2021, 62(0): 119-127. |
[5] | Shao-Fang Li, Zhen-Yi Gu, Jin-Zhi Guo, Xian-Kun Hou, Xu Yang, Bo Zhao, Xing-Long Wu. Enhanced electrode kinetics and electrochemical properties of low-cost NaFe2PO4(SO4)2 via Ca2+ doping as cathode material for sodium-ion batteries [J]. J. Mater. Sci. Technol., 2021, 78(0): 176-182. |
[6] | Wenjuan Wang, Yan Zhao, Yongguang Zhang, Ning Liu, Zhumabay Bakenov. Nickel embedded porous macrocellular carbon derived from popcorn as sulfur host for high-performance lithium-sulfur batteries [J]. J. Mater. Sci. Technol., 2021, 74(0): 69-77. |
[7] | Weimian Guan, Jie Yuan, Hao Lv, Tao Zhu, Youtong Fang, Jiabin Liu, Hongtao Wang, Zhihui Li, Zhigong Tang, Wei Yang. Homogeneous arc ablation behaviors of CuCr cathodes improved by chromic oxide [J]. J. Mater. Sci. Technol., 2021, 81(0): 1-12. |
[8] | Yuan-Yun Zhao, Feng Qian, Wenfeng Shen, Chengliang Zhao, Jianguo Wang, Chunxiao Xie, Fengling Zhou, Chuntao Chang, Yanjun Li. Facile synthesis of metal and alloy nanoparticles by ultrasound-assisted dealloying of metallic glasses [J]. J. Mater. Sci. Technol., 2021, 82(0): 144-152. |
[9] | Yao Pang, Wence Xu, Shengli Zhu, Zhenduo Cui, Yanqin Liang, Zhaoyang Li, Shuilin Wu, Chuntao Chang, Shuiyuan Luo. Self-supporting amorphous nanoporous NiFeCoP electrocatalyst for efficient overall water splitting [J]. J. Mater. Sci. Technol., 2021, 82(0): 96-104. |
[10] | Gui-Jia Gao, Mei-Qi Zeng, En-Liang Zhang, Rong-Chang Zeng, Lan-Yue Cui, Dao-kui Xu, Feng-Qin Wang, M. Bobby Kannan. Dealloying corrosion of anodic and nanometric Mg41Nd5 in solid solution-treated Mg-3Nd-1Li-0.2Zn alloy [J]. J. Mater. Sci. Technol., 2021, 83(0): 161-178. |
[11] | Hemdan S.H. Mohamed, Mohamed Rabia, Xian-Gang Zhou, Xu-Sen Qin, Gomaa Khabiri, Mohamed Shaban, Hussein A. Younus, S. Taha, Zhi-Yi Hu, Jing Liu, Yu Li, Bao-Lian Su. Phase-junction Ag/TiO2 nanocomposite as photocathode for H2 generation [J]. J. Mater. Sci. Technol., 2021, 83(0): 179-187. |
[12] | Y.Z. Chen, X.Y. Ma, W.X. Zhang, H. Dong, G.B. Shan, Y.B. Cong, C. Li, C.L. Yang, F. Liu. Effects of dealloying and heat treatment parameters on microstructures of nanoporous Pd [J]. J. Mater. Sci. Technol., 2020, 48(0): 123-129. |
[13] | Lei Liu, Feifei Lu, Jian Tian, Xingyue Zhangyang, Zhisheng Lv. High-efficient electron collection capability of graded Al compositional GaN nanowire arrays cathode [J]. J. Mater. Sci. Technol., 2020, 58(0): 86-94. |
[14] | Zhuosen Wang, Xijun Xu, Shaomin Ji, Zhengbo Liu, Dechao Zhang, Jiadong Shen, Jun Liu. Recent progress of flexible sulfur cathode based on carbon host for lithium-sulfur batteries [J]. J. Mater. Sci. Technol., 2020, 55(0): 56-72. |
[15] | Huan Du, Shihao Feng, Wen Luo, Liang Zhou, Liqiang Mai. Advanced Li-SexSy battery system: Electrodes and electrolytes [J]. J. Mater. Sci. Technol., 2020, 55(0): 1-15. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||