J. Mater. Sci. Technol. ›› 2021, Vol. 89: 167-178.DOI: 10.1016/j.jmst.2021.02.023
Previous Articles Next Articles
Ning Zhanga,b, Ying Lia,b,*(), Yifan Qiaoa,b
Received:
2020-11-23
Revised:
2021-01-26
Accepted:
2021-02-06
Published:
2021-10-30
Online:
2021-10-30
Contact:
Ying Li
About author:
*School of Metallurgy, Northeastern University, Shenyang 110819, China.E-mail address: liying@mail.neu.edu.cn (Y. Li).Ning Zhang, Ying Li, Yifan Qiao. Boosting the electrochemical performance of LiNi0.6Mn0.2Co0.2O2 through a trace amount of Mg-B co-doping[J]. J. Mater. Sci. Technol., 2021, 89: 167-178.
Sample ID | Ni | Mn | Co | Mg | B | |||||
---|---|---|---|---|---|---|---|---|---|---|
Target | Real | Target | Real | Target | Real | Target | Real | Target | Real | |
NMC622 | 0.6 | 0.595 | 0.2 | 0.201 | 0.2 | 0.204 | 0 | NA | 0 | NA |
1% Mg | 0.6 | 0.589 | 0.2 | 0.203 | 0.19 | 0.201 | 0.01 | 0.007 | 0 | NA |
1% B | 0.6 | 0.590 | 0.2 | 0.201 | 0.19 | 0.203 | 0 | NA | 0.01 | 0.006 |
0.5 % Mg-0.5 % B | 0.6 | 0.594 | 0.2 | 0.195 | 0.19 | 0.203 | 0.005 | 0.004 | 0.005 | 0.004 |
1% Mg-0.5 % B | 0.6 | 0.593 | 0.2 | 0.197 | 0.185 | 0.198 | 0.01 | 0.008 | 0.005 | 0.004 |
Table 1 ICP-OES data of NMC622, 1% Mg, 1% B, 0.5 % Mg-0.5 % B, and 1% Mg-0.5 % B samples. All by atomic ratio.
Sample ID | Ni | Mn | Co | Mg | B | |||||
---|---|---|---|---|---|---|---|---|---|---|
Target | Real | Target | Real | Target | Real | Target | Real | Target | Real | |
NMC622 | 0.6 | 0.595 | 0.2 | 0.201 | 0.2 | 0.204 | 0 | NA | 0 | NA |
1% Mg | 0.6 | 0.589 | 0.2 | 0.203 | 0.19 | 0.201 | 0.01 | 0.007 | 0 | NA |
1% B | 0.6 | 0.590 | 0.2 | 0.201 | 0.19 | 0.203 | 0 | NA | 0.01 | 0.006 |
0.5 % Mg-0.5 % B | 0.6 | 0.594 | 0.2 | 0.195 | 0.19 | 0.203 | 0.005 | 0.004 | 0.005 | 0.004 |
1% Mg-0.5 % B | 0.6 | 0.593 | 0.2 | 0.197 | 0.185 | 0.198 | 0.01 | 0.008 | 0.005 | 0.004 |
Fig. 1. (a) XRD patterns of NMC622, 1% Mg, 1% B, and 1% Mg-0.5 % B. (b) Expanded view of (018/110) peaks. (c) Expanded view of (003) peaks. (d) Possible surface impurity region from XRD.
Fig. 2. (a) Lattice parameter-a and c, (b) Li+/Ni2+ mixing data of selected samples. (c) Williamson-Hall plots of selected samples. Diffraction angle θ and FWHM are obtained from Rietica, Cu Kα data of each peaks were selected in this study.
Fig. 5. (a) Voltage versus specific capacity and (b) dQ/dV versus V profiles of NMC622, 1% Mg, 1% B, 0.5 % Mg-0.5 % B, and 1% Mg-0.5 % B. Cells were tested at 30 °C with a current of 10 mA/g.
Fig. 6. (a) Cycle life and (b) normalized capacity retention of selected samples. Cells were cycled at 30 °C with a current of 40 mA/g (except for the initial 2 cycles at 10 mA/g) between 3.0 and 4.4 V vs. Li+/Li. (c, d) Discharge voltage curves of NMC622 and 1% Mg-0.5 % B cells at 3rd, 10th, 20th, 30th, 40th, and 50th cycle. (e, f) Differential capacity curves of NMC622 and 1% Mg-0.5 % B cells at 3rd, 10th, 20th, 30th, 40th, and 50th cycle.
Fig. 7. Nyquist plots of EIS of cells with selected samples (a) before and (c) after 50 cycles, and Zre as a function of ω-1/2 (b) before and (d) after 50 cycles. Impedance was measured at 3.9 V vs. Li+/Li at room temperature.
Fig. 8. (a) Rate performance and (b) cycle life at 55 °C. Cells were tested between 3.0 and 4.4 V vs. Li+/Li at various C-rate in which 1 C equals 180 mA/g. XRD patterns and Rietveld refinement of (c) NMC622, (d) 1% Mg, and (e) 1% Mg-0.5 % B doped samples after cycling at 55 °C at 1 C.
[1] |
X. Wang, Y.L. Ding, Y.P. Deng, Z. Chen, Adv. Energy Mater. 10 (2020) 1903864-1903891.
DOI URL |
[2] | H.H. Sun, H.H. Ryu, U.H. Kim, J.A. Weeks, A. Heller, Y.K. Sun, C.B. Mullins, ACSEnergy Lett. 5 (2020) 1136-1146. |
[3] |
W. Li, X. Liu, Q. Xie, Y. You, M. Chi, A. Manthiram, Chem. Mater. 32 (2020) 7796-7804.
DOI URL |
[4] | J.E. Harlow, X. Ma, J. Li, E. Logan, Y. Liu, N. Zhang, L. Ma, S.L. Glazier, M.M.E.Cormier, M. Genovese, S.Buteau, A. Cameron, J.E. Stark, J.R. Dahn, J.Electrochem. Soc. 166 (2019) A3031-A3044. |
[5] | E.R. Logan, H. Hebecker, X. Ma, J. Quinn, S. Kumakura, J. Paulsen, J.R. Dahn, J.Electrochem. Soc. 167 (2020) 060530-060544. |
[6] | W. Zhao, J. Zheng, L. Zou, H. Jia, B. Liu, H. Wang, M.H. Engelhard, C. Wang, W. Xu, Y. Yang, J.-G. Zhang, Adv.Energy Mater. 8 (2018) 1800297-1800305. |
[7] |
Y. Li, W. Xiang, Z. Wu, C. Xu, Y. Xu, Y. Xiao, Z.-G. Yang, C.-J. Wu, G.P. Lv, X. D.Guo , Electrochim. Acta 291 (2018) 84-94.
DOI URL |
[8] |
S. Woo, S. Myung, H. Bang, D. Kim, Y. Sun, Electrochim. Acta 54 (2009) 3851-3856.
DOI URL |
[9] |
W. Li, H.Y. Asl, Q. Xie, A. Manthiram, , J. Am. Chem. Soc. 141 (2019) 5097-5101.
DOI URL |
[10] |
H. Li, A. Liu, N. Zhang, Y. Wang, S. Yin, H. Wu, J.R. Dahn, Chem. Mater. 31 (2019) 7574-7583.
DOI URL |
[11] | M. Jeong, H. Kim, W. Lee, S. Ahn, E. Lee, W. Yoon, J. Power Sources 474 (2020),228592. |
[12] |
N. Zhang, L. Ai, L. Mao, Y. Feng, Y. Xie, S. Wang, Y. Liang, X. Cui, S. Li, Electrochim. Acta 319 (2019) 822-831.
DOI URL |
[13] | L. You, J. Tang, Q. Wu, C. Zhang, D. Liu, T. Huang, A. Yu, RSC Adv. 4 (2020) 37916-37922. |
[14] | Y. Sun, S. Myung, M. Kim, J. Prakash, K. Amine, , J. Am. Chem. Soc. 8 (2005) 13411-13418. |
[15] |
L. Ni, C. Mn, O. Cathode, C.S. Yoon, S.J. Kim, U. Kim, K. Park, H. Ryu, H. Kim, Y. Sun , Adv. Funct. Mater. 28 (2018) 1802090-1802096.
DOI URL |
[16] |
H. Li, J. Li, X. Ma, J.R. Dahn, , J. Electrochem. Soc. 165 (2018) A1038-A1045.
DOI URL |
[17] |
J. Li, W. Li, Y. You, A. Manthiram, Adv. Energy Mater. 8 (2018) 1801957-1801967.
DOI URL |
[18] | H. Li, J.E. Soc, H. Li, M. Cormier, N. Zhang, J. Inglis, J. Li, J.R. Dahn, J.Electrochem. Soc. 166 (2019) A429-A439. |
[19] |
H. Ryu, K. Park, D.R. Yoon, A. Aishova, C.S. Yoon, Adv. Energy Mater. 9 (2019) 1902698-1902704.
DOI URL |
[20] |
H. Ryu, N. Park, D.R. Yoon, U. Kim, C.S. Yoon, Adv. Energy Mater. 10 (2020) 2000495-2000503.
DOI URL |
[21] |
W. Li, X. Liu, H. Celio, P. Smith, A. Dolocan, M. Chi, Adv. Energy Mater. 8 (2018) 1703154-1703164.
DOI URL |
[22] | C. Pouillerie, L. Croguennec, P. Biensan, P. Willmann, C. Delmas, J.Electrochem. Soc. 147 (2000) 2061-2069. |
[23] |
L. Mu, R. Zhang, W.H. Kan, Y. Zhang, L. Li, C. Kuai, B. Zydlewski, M.M. Rahman, C. Sun, S. Sainio, M. Avdeev, D. Nordlund, H.L. Xin, F. Lin, Chem. Mater. 31 (2019) 9769-9776.
DOI URL |
[24] |
A. Liu, J. Li, R. Shunmugasundaram, J.R. Dahn , J. Electrochem. Soc. 164 (2017) A1655-A1664.
DOI URL |
[25] |
W.M. Seong, A. Manthiram, ACS Appl. Mater. Interfaces 12 (2020) 43653-43664.
DOI URL |
[26] |
M. Ga, B.L. Ni, C. Al, M. Ga, B.L. Ni, C. Al, J.H. Seo, , J. Electrochem. Soc. 167 (2020) 100557-100562.
DOI URL |
[27] |
J. Zhang, Q. Li, C. Ouyang, X. Yu, M. Ge, X. Huang, E. Hu, C. Ma, S. Li, R. Xiao, W. Yang Y. Chu, Y. Liu, H. Yu, X. Yang, X. Huang, L. Chen, H. Li, Nat. Energy 4 (2019) 594-603.
DOI URL |
[28] |
S. Lee, H. Kim, M. Kim, H. Youn, K. Kang, B. Cho, K. Chul, K. Kim, J. Power Sources 315 (2016) 261-268.
DOI URL |
[29] |
T. Deng, X. Fan, X. Yang, T. Deng, X. Fan, L. Cao, J. Chen, S. Hou, X. Ji, L. Chen, S. Li X. Zhou, E. Hu, D. Su, X.-Q. Yang, C. Wang, Joule 3 (2019) 1-15.
DOI URL |
[30] |
F. Schipper, H. Bouzaglo, M. Dixit, E.M. Erickson, T. Weigel, M. Talianker, J. Grinblat L. Burstein, M. Schmidt, J. Lampert, C. Erk, B. Markovsky, D.T. Major, D. Aurbach, Adv. Energy Mater. 8 (2018) 1701682-1701691.
DOI URL |
[31] |
N. Zhang, J. Li, H. Li, A. Liu, Q. Huang, Y. Li, J.R. Dahn, Chem. Mater. 30 (2018) 8852-8860.
DOI URL |
[32] | H. Ryu, N. Park, J.H. Seo, Y. Yu, R. Mücke, P. Kaghazchi, C.S. Yoon, Y. Sun, Mater.Today 36 (2020) 73-82. |
[33] |
J. Zheng, Y. Ye, T. Liu, Y. Xiao, C. Wang, F. Wang, F. Pan, Acc. Chem. Res. 52 (2019) 2201-2209.
DOI URL |
[34] | Y. Duan, L. Yang, M. Zhang, Z. Chen, J. Bai, K. Amine, F. Pan, F. Wang, J. Mater.Chem. A 7 (2019) 513-519. |
[35] |
R. Wang, G. Qian, T. Liu, M. Li, J. Liu, B. Zhang, Y. Liu, J. Yang, L. Jin, Y. Xiao, F. Pan , Nano Energy 62 (2019) 709-717.
DOI |
[36] |
S. Yanxia, H. Chunxi, S. Yue, Z. Jinbo, Z. Lijuan, L. Xiang, X. Ren, S. Dong, G. Zhang C. Sun, Y. Zhou, , J. Electrochem. Soc. 167 (2020) 020522-020529.
DOI URL |
[37] | S. Watanabe, T. Hosokawa, K. Morigaki, M. Kinoshita, K. Nakura, ECS Trans. 41 (2012) 65-74. |
[38] |
S. Ahmed, A. Pokle, S. Schweidler, A. Beyer, M. Bianchini, F. Walther, A. Mazilkin P. Hartmann, T. Brezesinski, J. Janek, K. Volz, ACS Nano 13 (2019)10694-10704.
DOI URL |
[39] | Y. Zheng, N. Xu, S. Chen, Y. Liao, G. Zhong, Z. Zhang, Y. Yang, ACS Appl. EnergyMater. 3 (2020) 2837-2845. |
[40] | X. Xu, H. Huo, J. Jian, L. Wang, H. Zhu, S. Xu, X. He, G. Yin, C. Du, X. Sun, Adv.Energy Mater. 9 (2019) 1803963-1803971. |
[41] |
Y. Mao, X. Wang, S. Xia, K. Zhang, C. Wei, S. Bak, Z. Shadike, X. Liu, Y. Yang, R. Xu P. Pianetta, S. Ermon, E. Stavitski, K. Zhao, Z. Xu, F. Lin, X.Q. Yang, E. Hu, Y. Liu , Adv. Funct. Mater. 29 (2019) 1900247-1900257.
DOI URL |
[42] |
Q. Liu, K. Du, H. Guo, Z.D. Peng, Y.B. Cao, G.R. Hu, Electrochim. Acta 90 (2013) 350-357.
DOI URL |
[43] | Y. Zhang, T. Ren, J. Zhang, J. Duan, X. Li, Z. Zhou, P. Dong, D. Wang, J. Alloys.Compd. 805 (2019) 1288-1296. |
[44] |
Q. Xie, A. Manthiram, Chem. Mater. 32 (2020) 7413-7424.
DOI URL |
[45] | X. Qu, Z. Yu, D. Ruan, A. Dou, M. Su, Y. Zhou, Y. Liu, D. Chu, ACS Sustain. Chem.Eng. 8 (2020) 5819-5830. |
[46] | A. Liu, N. Zhang, H. Li, J. Inglis, Y. Wang, S. Yin, H. Wu, J.R. Dahn, J. Electrochem.Soc. 166 (2019) A4025-A4033. |
[47] | C. Tian, D. Nordlund, H.L. Xin, Y. Xu, Y. Liu, D. Sokaras, F. Lin, M.M. Doeff, J.Electrochem. Soc. 165 (2018) A696-A704. |
[48] |
A.S. Keefe, R. Weber, I.G. Hill, J.R. Dahn, , J. Electrochem. Soc. 167 (2020) 120507-120521.
DOI URL |
[49] |
B. Chen, B. Zhao, J. Zhou, Z. Fang, Y. Huang, X. Zhu, Y. Sun, , J. Mater. Sci. Technol. 35 (2019) 994-1002.
DOI URL |
[50] | H. Sun, J.G. Wang, X. Zhang, C. Li, F. Liu, W. Zhu, W. Hua, Y. Li, M. Shao, ACSSustainable Chem. Eng. 7 (2019) 5346-5354. |
[51] | X.D. Zhang, J.L. Shi, J.Y. Liang, L.P. Wang, Y.X. Yin, K.C. Jiang, Y.G. Guo, J. PowerSources 426 (2019) 242-249. |
[52] |
G.W. Yoo, B.C. Jang, J.T. Son, Cream. Int. 41 (2015) 1913-1916.
DOI URL |
[53] |
J. Reed, G. Ceder, Chem. Rev. 104 (2004) 4513-4534.
DOI URL |
[1] | Mingxing Liang, Yongcong Huang, Yuda Lin, Guisheng Liang, Cihui Huang, Lan Chen, Jiaxin Li, Qian Feng, Chunfu Lin, Zhigao Huang. Micro-nano structured VNb9O25 anode with superior electronic conductivity for high-rate and long-life lithium storage [J]. J. Mater. Sci. Technol., 2021, 83(0): 66-74. |
[2] | Ji Won Kim, Kwangeun Jung, Taeeun Yim. Dually-functionalized Ni-rich layered oxides for high-capacity lithium-ion batteries [J]. J. Mater. Sci. Technol., 2021, 86(0): 70-76. |
[3] | Limin Zhu, Zhen Li, Guochun Ding, Lingling Xie, Yongxia Miao, Xiaoyu Cao. Review on the recent development of Li3VO4 as anode materials for lithium-ion batteries [J]. J. Mater. Sci. Technol., 2021, 89(0): 68-87. |
[4] | Chunmao Huang, Shenghong Liu, Yang Wang, Jingjie Feng, Yanming Zhao. A new active NaVMoO6 cathode material for rechargeable Li ion batteries [J]. J. Mater. Sci. Technol., 2021, 66(0): 97-102. |
[5] | Xiayu Lu, Li Liu, Xuan Xie, Yu Cui, Emeka E. Oguzie, Fuhui Wang. Synergetic effect of graphene and Co(OH)2 as cocatalysts of TiO2 nanotubes for enhanced photogenerated cathodic protection [J]. J. Mater. Sci. Technol., 2020, 37(0): 55-63. |
[6] | Yueni Mei, Yuyu Li, Fuyun Li, Yaqian Li, Yingjun Jiang, Xiwei Lan, Songtao Guo, Xianluo Hu. Lithium-ion insertion kinetics of Na-doped Li2TiSiO5 as anode materials for lithium-ion batteries [J]. J. Mater. Sci. Technol., 2020, 57(0): 18-25. |
[7] | Bozhou Chen, Bangchuan Zhao, Jiafeng Zhou, Zhitang Fang, Yanan Huang, Xuebin Zhu, Yuping Sun. Surface modification with oxygen vacancy in Li-rich layered oxide Li1.2Mn0.54Ni0.13Co0.13O2 for lithium-ion batteries [J]. J. Mater. Sci. Technol., 2019, 35(6): 994-1002. |
[8] | Chongjia Zhu, Zhiqiu Wu, Jian Xie, Zhen Chen, Jian Tu, Gaoshao Cao, Xinbing Zhao. Solvothermal-assisted morphology evolution of nanostructured LiMnPO4 as high-performance lithium-ion batteries cathode [J]. J. Mater. Sci. Technol., 2018, 34(9): 1544-1549. |
[9] | Jun-Rui Wang, Feng Wan, Qiu-Feng Lü, Fei Chen, Qilang Lin. Self-nitrogen-doped porous biochar derived from kapok (Ceiba insignis) fibers: Effect of pyrolysis temperature and high electrochemical performance [J]. J. Mater. Sci. Technol., 2018, 34(10): 1959-1968. |
[10] | Opra Denis P., Gnedenkov Sergey V., Sinebryukhov Sergey L., Voit Elena I., Sokolov AlexanderA., Modin Evgeny B., Podgorbunsky Anatoly B., Sushkov Yury V., Zheleznov Veniamin V.. Characterization and Electrochemical Properties of Nanostructured Zr-Doped Anatase TiO2 Tubes Synthesized by Sol-Gel Template Route [J]. J. Mater. Sci. Technol., 2017, 33(6): 527-534. |
[11] | Liu Xuelian,Chen Yuxi,Liu Hongbo,Liu Zhi-Quan. SiO2@C hollow sphere anodes for lithium-ion batteries [J]. J. Mater. Sci. Technol., 2017, 33(3): 239-245. |
[12] | Hui Yani,Cao Liyun,*,Xu Zhanwei,Huang** Jianfeng,Ouyang Haibo,Li Jiayin,Hu Hailing. In Situ Synthesis of Core-Shell Li4Ti5O12 @Polyaniline Composites with Enhanced Rate Performance for Lithium-ion Battery Anodes [J]. J. Mater. Sci. Technol., 2017, 33(3): 231-238. |
[13] | Xingxing Liang, Ying Yang, Xin Jin, Jie Cheng. Polyethylene Oxide-Coated Electrospun Polyimide Fibrous Seperator for High-Performance Lithium-Ion Battery [J]. J. Mater. Sci. Technol., 2016, 32(3): 200-206. |
[14] | Yanhong Chang, Jing Li, Bin Wang, Hui Luo, Linjie Zhi. A Facile Synthetic Approach to Reduced Graphene Oxide-Fe3O4 Composite as High Performance Anode for Lithium-ion Batteries [J]. J. Mater. Sci. Technol., 2014, 30(8): 759-764. |
[15] | Shuhe Liu, Shuchun Zhao, Yaochun Yao, Peng Dong, Chao Yang. Crystallined Hybrid Carbon Synthesized by Catalytic Carbonization of Biomass and in-situ Growth of Carbon Nanofibers [J]. J. Mater. Sci. Technol., 2014, 30(5): 466-472. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||