J. Mater. Sci. Technol. ›› 2021, Vol. 89: 68-87.DOI: 10.1016/j.jmst.2021.02.020
Previous Articles Next Articles
Limin Zhua,c, Zhen Lid, Guochun Dinga,c, Lingling Xieb,c,*(), Yongxia Miaoa,c, Xiaoyu Caoa,c,*(
)
Received:
2020-10-23
Revised:
2021-02-02
Accepted:
2021-02-06
Published:
2021-10-30
Online:
2021-10-30
Contact:
Lingling Xie,Xiaoyu Cao
About author:
caoxy@haut.edu.cn (X. Cao).1These authors equally contributed in this work.
Limin Zhu, Zhen Li, Guochun Ding, Lingling Xie, Yongxia Miao, Xiaoyu Cao. Review on the recent development of Li3VO4 as anode materials for lithium-ion batteries[J]. J. Mater. Sci. Technol., 2021, 89: 68-87.
Fig. 1. (a, b) Crystal structure of Li3VO4 projected along the c-axis and a-axis, (c, d) Crystal structure of Li6VO4 projected along the c-axis and a-axis, (e) Basic groups and atoms of the structure and (f) Schematic description of graphite-like Li3VO4 upon full Li insertion. Reprinted with permission [16]. Copyright 2015, Elsevier.
Fig. 2. The comparison of Li3VO4 with two typical insertion anodes of Li4Ti5O12 and graphite in terms of intercalation potential, specific capacity and energy density. Reprinted with permission [18]. Copyright 2013, Wiley-VCH.
Synthesis methods | Current density | Voltage range (V) | Initial charge capacity (mA h g-1) | Initial coulombic efficiency (%) | Cycle number | Final charge capacity (mAh g-1) | Refs. |
---|---|---|---|---|---|---|---|
solid-state process | 1C | 0.1-2.0 | 184.22 | 41.43 | 100 | 179.67 | [ |
solution-based precipitation | 1C | 0.1-2.0 | 361.22 | 68.97 | 100 | 179.67 | [ |
template-free solution method | - | 0.2-3.0 | 323 | - | - | - | [ |
hydrothermal method | 0.1C (1C = 394 mA g-1) | 0.2-3.0 | - | - | 50 | 315 | [ |
sol-gel method | 0.1C (1C = 394 mA g-1) | 0.01-3.0 | 323 | 76.5 | 75 | 373 | [ |
annealing in vacuum | 200 mA g-1 | 0.2-3.0 | 326 | 78 | 100 | 286 | [ |
annealing in hydrogen | 1 A g-1 | 0.01-3.0 | 306 (discharge) | - | 500 | 244 (discharge) | [ |
hydrothermal method | 0.1C | 0.2-2.0 | 315 | 61.4 | - | - | [ |
microwave-assisted hydrothermal method | 100 mA g-1 | 0.2-3.0 | 163 | - | 100 | 104 | [ |
Table 1 The electrochemical properties of various Li3VO4 electrodes prepared by different methods.
Synthesis methods | Current density | Voltage range (V) | Initial charge capacity (mA h g-1) | Initial coulombic efficiency (%) | Cycle number | Final charge capacity (mAh g-1) | Refs. |
---|---|---|---|---|---|---|---|
solid-state process | 1C | 0.1-2.0 | 184.22 | 41.43 | 100 | 179.67 | [ |
solution-based precipitation | 1C | 0.1-2.0 | 361.22 | 68.97 | 100 | 179.67 | [ |
template-free solution method | - | 0.2-3.0 | 323 | - | - | - | [ |
hydrothermal method | 0.1C (1C = 394 mA g-1) | 0.2-3.0 | - | - | 50 | 315 | [ |
sol-gel method | 0.1C (1C = 394 mA g-1) | 0.01-3.0 | 323 | 76.5 | 75 | 373 | [ |
annealing in vacuum | 200 mA g-1 | 0.2-3.0 | 326 | 78 | 100 | 286 | [ |
annealing in hydrogen | 1 A g-1 | 0.01-3.0 | 306 (discharge) | - | 500 | 244 (discharge) | [ |
hydrothermal method | 0.1C | 0.2-2.0 | 315 | 61.4 | - | - | [ |
microwave-assisted hydrothermal method | 100 mA g-1 | 0.2-3.0 | 163 | - | 100 | 104 | [ |
Fig. 3. In-situ XRD patterns of the Li3VO4 material in the first cycle (a) and the second cycle (b); In-situ EIS profiles of Li3VO4 at (c) initial cycle and (d) second cycle. Reprinted with permission [39]. Copyright 2016, American Chemical Society.
Modification method | materials | Current density | Voltage range (V) | Initial charge capacity (mAh g-1) | Initial coulombic efficiency (%) | Cycle number | Final charge capacity (mAh g-1) | Refs. |
---|---|---|---|---|---|---|---|---|
carbon-coating | 6.12 % carbon-coated Li3VO4 | 0.18C (1C = 500 mA g-1) | 0.1-2.5 | 485.1 | 71.7 | - | - | [ |
carbon-coating | Li3VO4/C | 90 mA g-1 | 0.1-3.0 | 312 (discharge, -20 °C) 600 (discharge, 0 °C) 760 (discharge, 25 °C) 721 (discharge, 50 °C) | 40.45 72.09 74.34 73.41 | - | - | [ |
carbon-coating | Li3VO4/C | 0.2C (1C = 400 mA g-1) | 0.1-3.0 | 547.1 | 78.0 | 100 | 394 (1C) | [ |
carbon-coating | Li3VO4-BMC | 20 mA g-1 | 0.05-3.0 | 315 | 79.5 | 50 | 245 | [ |
carbon-encapsulated | Li3VO4/C | 0.1C (1C = 400 mA g-1) | 0.2-3.0 | 392 (discharge) | - | 50 | 401 | [ |
carbon-coating | Li3VO4/C | 0.1C (1C = 400 mA g-1) | 0.2-3.0 | 469 (discharge) | - | 50 | 415 (0.5C) | [ |
carbon-coating | LVO/C@EG | 100 mA g-1 | 0.2-3.0 | 415 | 72.2 | 200 | 360 | [ |
carbon-coating | LVO⊂C submicron sphere | 0.2C (1C = 400 mA g-1) | - | 402 | 79.3 | - | - | [ |
carbon-coating | C@LVO rods | 0.2C (1C = 400 mA g-1) | 0.2-3.0 | 403.4 | 78.13 | 300 | 440 (discharge) | [ |
carbon-coating | LVO@C | 0.5C | 0.05-3.0 | 496.9 | 70 | 1000 | 399 (10C) | [ |
carbon-coating | LVO/C hollow spheres | 0.2C (1C = 400 mA g-1) | 0.2-3.0 | 429.4 | 64.5 | 100 | 400 | [ |
graphitized carbon-coating | HP-Li3VO4/C | 200 mA g-1 | 0.01-3.0 | 390 | 86.7 | 300 | 381 | [ |
nitrogen-doped carbon coating | NC-LVO | 197 mA g-1 | 0.01-3.0 | 538.1 (discharge) | - | 100 | 426.6(discharge) | [ |
LiVO2-coating | LL@C-600 | 100 mA g-1 | 0.01-3.0 | 678 | 65.4 | 100 | 689(discharge) | [ |
composite | Li3VO4/C-Ni | 10C (1C = 180 mA g-1) | 0.02-3.0 | 265 | 84.1 | 2000 | 325 | [ |
composite | Li3VO4/N-C | 0.15 A g-1 | 0.02-3.0 | 540 | 78.7 | 800 | 544 | [ |
composite | Li3VO4/C | 150 mA g-1 | 0.02-3.0 | 594 | 70.8 | 300 | 549 | [ |
composite | Li3VO4@C | 40 mA g-1 | 0.05-3.0 | 451 | 82.3 | 100 | 394 | [ |
composite | LVO@C NW | 0.2 A g-1 | 0.2-3.0 | 417.7 | 64.6 | 200 | 404.9 | [ |
composite | LVO/CS | 0.1 A g-1 | 0.01-3.0 | 599 | 59.2 | 100 | 716 | [ |
composite | Li3VO4/N-doped C | 150 mA g-1 | 0.02-3.0 | 472 | 78.7 | 100 | 460 | [ |
composite | LVO-m/c | 0.1 A g-1 | 0.2-3.0 | 413.4 | 73.2 | 1000 | 236.6 (4 A g-1) | [ |
composite | Li3VO4/CNT | 0.1 A g-1 | 0.2-3.0 | 453 (discharge) | - | 2000 | 250 (2 A g-1) | [ |
composite | Li3VO4/C/CNT | 0.5C | 0.2-2.0 | 397 | 60.4 | 500 | 272 (10C) | [ |
composite | Li3VO4/graphene nanosheets | 20 mA g-1 | 0.2-3.0 | - | - | 50 | 394 | [ |
composite | Li3VO4 nanoribbon/graphene | 0.2C (1C = 400 mA g-1) | 0.2-3.0 | 335.5 | 59.1 | 200 | 452.5 | [ |
composite | Li3VO4/3D graphene | 200 mA g-1 | 0.2-3.0 | 519 | 65 | 2500 | 259 (2 A g-1) | [ |
composite | Li3VO4@GNS | 0.5C | 0.2-3.0 | 486 | 65.3 | 5000 | 163 (5C) | [ |
composite | Li3VO4/N-doped graphene | 0.15 A g-1 | 0.02-3.0 | 429 | 78 | 100 | 476 | [ |
composite | LVO/CRGO | 0.2C | 0.2-3.0 | 487.5 | 78.9 | 100 | 476.0 | [ |
composited | LVO/rGO | 4 A g-1 | 0.2-3.0 | 343.8 | - | 1500 | 257.9 | [ |
composite | LVO/C/rGO | 0.25C (1C = 400 mA g-1) | 0.2-3.0 | 399.5 | 94 | 5000 | 325 (10C) | [ |
composite | LVO/C/rGO | 100 mA g-1100 mA g -1 | 0.2-3.00.02-3.0 | 402.6 591 | 69.6 71.2 | 100 100 | 378 560 | [ |
composite | HC-LVO/C/G | 0.5C (1C = 400 mA g-1) | 0.2-3.0 | 436 | 61.2 | 200 | 387 | [ |
composite | Li3VO4/MoS2 | 100 mA g-1 | 0.02-3.0 | 607 | 77 | 100 | 679 | [ |
composite | Li3VO4/MoS2 | 100 mA g-1 | 0.02-3.0 | 735 | 77.3 | 100 | 781.2 | [ |
composite | Li3VO4@LiVO2 | 150 mA g-1 | 0.02-3.0 | 448 | 78.7 | 100 | 468 | [ |
composite | Li3VO4/NiO/Ni | 70 mA g-1 | 0.02-3.0 | 631 | 73.4 | 100 | 604 | [ |
composite | Ag@Li3VO4 | 0.15A g-1 | 0.02-3.0 | 492 | 73.6 | 150 | 492 | [ |
composite | LVO/Ti3C2Tx MXene | 2000 mA g-1 | 0.01-3.0 | 187 (discharge) | - | 1000 | 146 (discharge) | [ |
doping | Li2.95Na0.05VO4 | 0.1C (1C = 394 mA g-1) | 0.05-3.0 | 523.4 | 73.7 | 150 | 398.3 (1C) | [ |
doping | Li2.97Ca0.03VO4 | 0.1C (1C = 394 mA g-1) | 0.05-3.0 | 526.7 | 75 | - | - | [ |
doping | Ni2+-doped LVO | 200 mA g-1 | 0.01-3.0 | 535 (discharge) | - | - | - | [ |
doping | Li3V0.99Mo0.01O4 | 5C (1C = 590 mA g-1) | 0.1-3.0 | 439 (discharge) | - | 100 | 413 (discharge) | [ |
doping | Li3.05Ti0.05V0.95O4 | 1000 mA g-1 | 0.2-3.0 | - | - | 500 | ∼328 | [ |
doping | Li3Nb0.02V0.98O4 | 30 mA g-1 | 0.1-3.0 | 549.4 | 76.4 | 100 | 410.7 (200 mA g-1) | [ |
doping | Li3V0.99Fe0.01O4-δ | 100 mA g-1 | 0.01-3.0 | 482 | 76.8 | 100 | 484 | [ |
Table 2 A comparison with previously reported Li3VO4 anode for LIBs synthesized by different modification methods.
Modification method | materials | Current density | Voltage range (V) | Initial charge capacity (mAh g-1) | Initial coulombic efficiency (%) | Cycle number | Final charge capacity (mAh g-1) | Refs. |
---|---|---|---|---|---|---|---|---|
carbon-coating | 6.12 % carbon-coated Li3VO4 | 0.18C (1C = 500 mA g-1) | 0.1-2.5 | 485.1 | 71.7 | - | - | [ |
carbon-coating | Li3VO4/C | 90 mA g-1 | 0.1-3.0 | 312 (discharge, -20 °C) 600 (discharge, 0 °C) 760 (discharge, 25 °C) 721 (discharge, 50 °C) | 40.45 72.09 74.34 73.41 | - | - | [ |
carbon-coating | Li3VO4/C | 0.2C (1C = 400 mA g-1) | 0.1-3.0 | 547.1 | 78.0 | 100 | 394 (1C) | [ |
carbon-coating | Li3VO4-BMC | 20 mA g-1 | 0.05-3.0 | 315 | 79.5 | 50 | 245 | [ |
carbon-encapsulated | Li3VO4/C | 0.1C (1C = 400 mA g-1) | 0.2-3.0 | 392 (discharge) | - | 50 | 401 | [ |
carbon-coating | Li3VO4/C | 0.1C (1C = 400 mA g-1) | 0.2-3.0 | 469 (discharge) | - | 50 | 415 (0.5C) | [ |
carbon-coating | LVO/C@EG | 100 mA g-1 | 0.2-3.0 | 415 | 72.2 | 200 | 360 | [ |
carbon-coating | LVO⊂C submicron sphere | 0.2C (1C = 400 mA g-1) | - | 402 | 79.3 | - | - | [ |
carbon-coating | C@LVO rods | 0.2C (1C = 400 mA g-1) | 0.2-3.0 | 403.4 | 78.13 | 300 | 440 (discharge) | [ |
carbon-coating | LVO@C | 0.5C | 0.05-3.0 | 496.9 | 70 | 1000 | 399 (10C) | [ |
carbon-coating | LVO/C hollow spheres | 0.2C (1C = 400 mA g-1) | 0.2-3.0 | 429.4 | 64.5 | 100 | 400 | [ |
graphitized carbon-coating | HP-Li3VO4/C | 200 mA g-1 | 0.01-3.0 | 390 | 86.7 | 300 | 381 | [ |
nitrogen-doped carbon coating | NC-LVO | 197 mA g-1 | 0.01-3.0 | 538.1 (discharge) | - | 100 | 426.6(discharge) | [ |
LiVO2-coating | LL@C-600 | 100 mA g-1 | 0.01-3.0 | 678 | 65.4 | 100 | 689(discharge) | [ |
composite | Li3VO4/C-Ni | 10C (1C = 180 mA g-1) | 0.02-3.0 | 265 | 84.1 | 2000 | 325 | [ |
composite | Li3VO4/N-C | 0.15 A g-1 | 0.02-3.0 | 540 | 78.7 | 800 | 544 | [ |
composite | Li3VO4/C | 150 mA g-1 | 0.02-3.0 | 594 | 70.8 | 300 | 549 | [ |
composite | Li3VO4@C | 40 mA g-1 | 0.05-3.0 | 451 | 82.3 | 100 | 394 | [ |
composite | LVO@C NW | 0.2 A g-1 | 0.2-3.0 | 417.7 | 64.6 | 200 | 404.9 | [ |
composite | LVO/CS | 0.1 A g-1 | 0.01-3.0 | 599 | 59.2 | 100 | 716 | [ |
composite | Li3VO4/N-doped C | 150 mA g-1 | 0.02-3.0 | 472 | 78.7 | 100 | 460 | [ |
composite | LVO-m/c | 0.1 A g-1 | 0.2-3.0 | 413.4 | 73.2 | 1000 | 236.6 (4 A g-1) | [ |
composite | Li3VO4/CNT | 0.1 A g-1 | 0.2-3.0 | 453 (discharge) | - | 2000 | 250 (2 A g-1) | [ |
composite | Li3VO4/C/CNT | 0.5C | 0.2-2.0 | 397 | 60.4 | 500 | 272 (10C) | [ |
composite | Li3VO4/graphene nanosheets | 20 mA g-1 | 0.2-3.0 | - | - | 50 | 394 | [ |
composite | Li3VO4 nanoribbon/graphene | 0.2C (1C = 400 mA g-1) | 0.2-3.0 | 335.5 | 59.1 | 200 | 452.5 | [ |
composite | Li3VO4/3D graphene | 200 mA g-1 | 0.2-3.0 | 519 | 65 | 2500 | 259 (2 A g-1) | [ |
composite | Li3VO4@GNS | 0.5C | 0.2-3.0 | 486 | 65.3 | 5000 | 163 (5C) | [ |
composite | Li3VO4/N-doped graphene | 0.15 A g-1 | 0.02-3.0 | 429 | 78 | 100 | 476 | [ |
composite | LVO/CRGO | 0.2C | 0.2-3.0 | 487.5 | 78.9 | 100 | 476.0 | [ |
composited | LVO/rGO | 4 A g-1 | 0.2-3.0 | 343.8 | - | 1500 | 257.9 | [ |
composite | LVO/C/rGO | 0.25C (1C = 400 mA g-1) | 0.2-3.0 | 399.5 | 94 | 5000 | 325 (10C) | [ |
composite | LVO/C/rGO | 100 mA g-1100 mA g -1 | 0.2-3.00.02-3.0 | 402.6 591 | 69.6 71.2 | 100 100 | 378 560 | [ |
composite | HC-LVO/C/G | 0.5C (1C = 400 mA g-1) | 0.2-3.0 | 436 | 61.2 | 200 | 387 | [ |
composite | Li3VO4/MoS2 | 100 mA g-1 | 0.02-3.0 | 607 | 77 | 100 | 679 | [ |
composite | Li3VO4/MoS2 | 100 mA g-1 | 0.02-3.0 | 735 | 77.3 | 100 | 781.2 | [ |
composite | Li3VO4@LiVO2 | 150 mA g-1 | 0.02-3.0 | 448 | 78.7 | 100 | 468 | [ |
composite | Li3VO4/NiO/Ni | 70 mA g-1 | 0.02-3.0 | 631 | 73.4 | 100 | 604 | [ |
composite | Ag@Li3VO4 | 0.15A g-1 | 0.02-3.0 | 492 | 73.6 | 150 | 492 | [ |
composite | LVO/Ti3C2Tx MXene | 2000 mA g-1 | 0.01-3.0 | 187 (discharge) | - | 1000 | 146 (discharge) | [ |
doping | Li2.95Na0.05VO4 | 0.1C (1C = 394 mA g-1) | 0.05-3.0 | 523.4 | 73.7 | 150 | 398.3 (1C) | [ |
doping | Li2.97Ca0.03VO4 | 0.1C (1C = 394 mA g-1) | 0.05-3.0 | 526.7 | 75 | - | - | [ |
doping | Ni2+-doped LVO | 200 mA g-1 | 0.01-3.0 | 535 (discharge) | - | - | - | [ |
doping | Li3V0.99Mo0.01O4 | 5C (1C = 590 mA g-1) | 0.1-3.0 | 439 (discharge) | - | 100 | 413 (discharge) | [ |
doping | Li3.05Ti0.05V0.95O4 | 1000 mA g-1 | 0.2-3.0 | - | - | 500 | ∼328 | [ |
doping | Li3Nb0.02V0.98O4 | 30 mA g-1 | 0.1-3.0 | 549.4 | 76.4 | 100 | 410.7 (200 mA g-1) | [ |
doping | Li3V0.99Fe0.01O4-δ | 100 mA g-1 | 0.01-3.0 | 482 | 76.8 | 100 | 484 | [ |
Fig. 4. (a, b) HRTEM images of the carbon coated sample (Li3VO4-BMC); (c) The cases of lithium-ion diffusion and electron conduction in micro-sized Li3VO4, nano-sized Li3VO4 and fully carbon-coated nano-sized Li3VO4. (d) Cycle performances of Li3VO4-RAW, Li3VO4-BM and Li3VO4-BMC. Reprinted with permission [47]. Copyright 2015, The Royal Society of Chemistry. (e) Schematic diagram of the synthesis procedure of the hollow LVO/C microcuboid. (f) Capacity retention and Coulombic efficiency of LVO/C-600 at 0.5 C. (g) Capacity retention and Coulombic efficiency of the LVO and LVO/C-600 at 10 C (4 A g-1). Reprinted with permission [49]. Copyright 2015, American Chemical Society.
Fig. 5. (a) Schematic illustration of the formation process of LVO?C spheres; (b-d) SEM, TEM and HRTEM images of LVO?C spheres; (e) The first five discharge-charge voltage profiles of LVO?C at rate of 0.2C; (f) Cycle performance and CE for 1000 cycles at a current rate of 10C; (g) Rate performance at various rates from 0.2 to 30C. Reprinted with permission [51]. Copyright 2017, Wiley-VCH.
Fig. 6. (a) The formation mechanism of the mesoporous LVO/C hollow spheres, (b) SEM image of the LVO/C, (c) TEM images of the LVO/C, the inset is the corresponding SAED pattern indexed using the powder diffraction technique, (d) HRTEM image of the LVO/C, (e) Galvanostatic discharge-charge profiles of LVO/C in the voltage range of 0.2-3 V at a rate of 0.2C (1C = 400 mA g-1), (f) cycling performance of LVO/C and LVO at a current density of 0.2C, (g) discharge and charge capacities of LVO/C and LVO at various C-rates. Reprinted with permission. Copyright 2016 [54], The Royal Society of Chemistry.
Fig. 7. (a) Schematic illustration of the fabrication of HP-Li3VO4/C and its application in LIBs, (b) FE-SEM images of HP-Li3VO4/C, (c) cycling performance of HP-Li3VO4/C and Li3VO4 electrodes at a current density of 0.2 A g-1 and 1 A g-1 in the voltage range of 0.01-3.0 V (vs Li+/Li), (d) long life cycling performance of HP-Li3VO4/C and Li3VO4 electrodes at 4 A g-1 for 500 cycles. Reprinted with permission [55]. Copyright 2015, American Chemical Society.
Fig. 8. (a) A schematic illustration of the formation process of the hierarchically porous Li3VO4/C-Ni, (b) A schematic illustration of the hierarchical electron transmission and lithium ion diffusion in Li3VO4/C-Ni: (Ⅰ) The first level of the 3D porous architecture of the Ni foam, (Ⅱ) The second level of the porous architecture of the whole Li3VO4/C electrode, (Ⅲ) The third level of the porous architecture within the Li3VO4/C aggregation, (c) Discharge/charge capacity versus cycle number, (d) Discharge/charge capacity at 3 periods of various rates from 0.15C to 5.0C. Reprinted with permission [58]. Copyright 2016, The Royal Society of Chemistry.
Fig. 9. (a) SEM and (b, c) TEM images of the LVO@C NW, (d) Schematic illustration of the structural advantages and Li+ insertion mechanism of the LVO@C NW, (e) Cycling ability of the LVO@C NW and pristine LVO at 0.2 A g-1, (f) rate capability of the LVO@C NW from 0.2 A g-1 up to 32 A g-1. Reprinted with permission [62]. Copyright 2019, Wiley-VCH.
Fig. 10. (a) Schematic of the formation of the Li3VO4/CNT composite, (b) SEM image of the hollow Li3VO4/CNT composite, (c) Cycle performance of the hollow Li3VO4/CNT composite at 2 A g-1, (d) Discharge/charge curves for the hollow Li3VO4/CNT composite anode at different current densities. Reprinted with permission [66]. Copyright 2014, The Royal Society of Chemistry.
Fig. 11. (a) Schematic illustration of the fabrication of LVO/G, (b) FESEM and (c) TEM micrograph of LVO/G, (d) Cycling performance at the current density of 20 mA g-1 between 0.2 and 3 V (the inset is their cycling performance at 4 A g-1), (e) Rate performance between 0.2 and 3 V. Reprinted with permission [68]. Copyright 2013, American Chemical Society.
Fig. 12. (a) The proposed formation mechanism of the mesoporous LVO/C, (b) Schematic illustration for the synthesis procedure of the LVO/C/rGO, (c) SEM, (d) TEM images of LVO/C/rGO, (e) The first and second discharge/charge curves for the LVO/C and LVO/C/rGO at 0.1 A g-1, (f) Cycling performance of LVO/C/rGO at 4 and 20 A g-1. Reprinted with permission [75]. Copyright 2016, WILEY-VCH; (g) Schematic illustration of the synthesis process of the deflated balloon-like LVO/C/rGO microspheres, (h) SEM images of LVO/C/rGO, (i) Galvanostatic discharge/charge profiles of LVO/C/rGO at 100 mA g-1 and (j) Long-term cycling performance of LVO/C/rGO at 2000 mA g-1 in the potential window of 0.02-3.0 V. Reprinted with permission [76]. Copyright 2018, American Chemical Society.
Fig. 13. (a) The preparation procedure of the HC-LVO/C/G composite, (b) SEM and (c) TEM images of the HC-LVO/C/G composite, (d) View of the optimized crystal structure of Li3VO4, Li5VO4 and Li6VO4, (e) Typical galvanostatic charge-discharge curves and (f) Capacity retention and Coulombic efficiency of HC-LVO/C/G at 0.5C (1C = 0.4 A g-1). Reprinted with permission [77]. Copyright 2017, Elsevier.
Fig. 14. (a) Schematic illustration for the formation of Li3VO4@LiVO2, (b) Schematic advantages for the Li3VO4@LiVO2 in terms of electron transmission and lithium ion diffusion, (c) EIS spectra for pristine Li3VO4 and Li3VO4@LiVO2, (d) Typical galvanostatic charge-discharge curves at 0.15 A g-1 within a cut-off voltage window of 0.02-3.0 V. Reprinted with permission. Copyright 2018 [80], Elsevier.
Fig. 15. The crystal structure of LVO (a) and LTVO (b), (c) Schematic advantages for the LTVO, (d) cycle stability at 1000 mA g-1 and (e) rate capability of LVO and LTVO. Reprinted with permission [88]. Copyright 2017, American Chemical Society.
[1] |
T. Song, W. Yao, P. Kiadkhunthod, Y. Zheng, N. Wu, X. Zhou, S. Tunmee, S. Sattayaporn Y. Tang, Angew. Chem. Int. Edit. 59 (2020) 740-745.
DOI URL |
[2] |
L.M. Zhu, G.C. Ding, L.L. Xie, X.Y. Cao, J.P. Liu, X.F. Lei, J.X. Ma, Chem. Mater. 31 (2019) 8582-8612.
DOI URL |
[3] | X. Gao, F. Jiang, Y. Yang, Y. Zhang, G. Zou, H. Hou, Y. Hu, W. Sun, X. Ji, ACSAppl. Mater. Interfaces 12 (2020) 2432-2444. |
[4] | Y. Zhang, T. Li, S.-a. Cao, W.Luo, F. Xu,Chem. Eng. J. 387 (2020), 124125. |
[5] |
Y. Zhang, T. Li, S.-a. Cao, W.Luo, F. Xu, ACS Sustain. Chem. Eng. 8 (2020) 2964-2972.
DOI URL |
[6] |
L. Zhu, Z. Wang, L. Wang, L. Xie, J. Li, X. Cao, Chem. Eng. J. 364 (2019) 503-513.
DOI URL |
[7] |
H. Hou, C.E. Banks, M. Jing, Y. Zhang, X. Ji, Adv. Mater. 27 (2015) 7861-7866.
DOI URL |
[8] | W. Hong, Y. Zhang, L. Yang, Y. Tian, P. Ge, J. Hu, W. Wei, G. Zou, H. Hou, X. Ji, Nano Energy 65 (2019), 104038. |
[9] |
L. Zhu, W. Li, L. Xie, Q. Yang, X. Cao, Chem. Eng. J. 372 (2019) 1056-1065.
DOI URL |
[10] | J.-L. Shi, D.-D. Xiao, M. Ge, X. Yu, Y. Chu, X. Huang, X.-D. Zhang, Y.-X. Yin,X.-Q. Yang, Y.-G. Guo, L. Gu, L.-J. Wan,Adv. Mater. 30 (2018), 1705575. |
[11] |
L. Zhu, L. Xie, X. Cao, ACS Appl. Mater. Interfaces 10 (2018) 10909-10917.
DOI URL |
[12] | W. Ji, F. Wang, D. Liu, J. Qian, Y. Cao, Z. Chen, H. Yang, X. Ai, , J. Mater. Chem. A4 (2016) 11239-11246. |
[13] |
C. Zhang, H. Li, S. Wang, Y. Cao, H. Yang, X. Ai, F. Zhong, , J. Energy Chem. 44 (2020) 33-40.
DOI URL |
[14] | C. Liao, Q. Zhang, T. Zhai, H. Li, H. Zhou, Energy Storage Mater. 7 (2017) 17-31. |
[15] |
J. Mo, X. Zhang, J. Liu, J. Yu, Z. Wang, Z. Liu, X. Yuan, C. Zhou, R. Li, X. Wu, Y. Wu , Chin. J. Chem. 35 (2017) 1789-1796.
DOI URL |
[16] | Z. Liang, Z. Lin, Y. Zhao, Y. Dong, Q. Kuang, X. Lin, X. Liu, D. Yan, J. PowerSources 274 (2015) 345-354. |
[17] | J. Zeng, Y. Yang, C. Li, J.Q. Li, J.X. Huang, J. Wang, J.B. Zhao, Electrochim. Acta247 (2017) 265-270. |
[18] |
H. Li, X. Liu, T. Zhai, D. Li, H. Zhou, Adv. Energy Mater. 3 (2013) 428-432.
DOI URL |
[19] |
E. Lim, W.G. Lim, C. Jo, J. Chun, M.H. Kim, K.C. Roh, J. Lee, J. Mater. Chem. A 5 (2017) 20969-20977.
DOI URL |
[20] | L.F. Shen, H.F. Lv, S.Q. Chen, P. Kopold, P.A. van Aken, X.J. Wu, J. Maier, Y.Yu,Adv. Mater. 29 (2017), 1700142. |
[21] |
F.X. Wang, Z.C. Liu, X.H. Yuan, J. Mo, C.Y. Li, L.J. Fu, Y.S. Zhu, X.W. Wu, Y. P.Wu J. Mater. Chem. A 5 (2017) 14922-14929.
DOI URL |
[22] |
P. Rozier, E. Iwama, N. Nishio, K. Baba, K. Matsumura, K. Kisu, J. Miyamoto, W. Naoi, Y. Orikasa, P. Simon, K. Naoi, Chem. Mater. 30 (2018) 4926-4934.
DOI URL |
[23] | X.N. Xu, F. Niu, D.P. Zhang, C.X. Chu, C.S. Wang, J. Yang, Y.T. Qian, J. PowerSources 384 (2018) 240-248. |
[24] |
S. Ni, X. Lv, J. Ma, X. Yang, L. Zhang, J. Power Sources 248 (2014) 122-129.
DOI URL |
[25] |
W.-T. Kim, B.-K. Min, H.C. Choi, Y.J. Lee, Y.U. Jeong, J. Electrochem. Soc. 161 (2014) A1302-A1305.
DOI URL |
[26] |
L. Wang, Z. Wang, L. Xie, L. Zhu, X. Cao, ACS Appl. Mater. Interfaces 11 (2019) 16619-16628.
DOI URL |
[27] | L. Wang, Z. Wang, L. Xie, L. Zhu, X. Cao, Electrochim. Acta 343 (2020), 136138. |
[28] |
Z. Zhu, S. Wang, J. Du, Q. Jin, T. Zhang, F. Cheng, J. Chen, Nano Lett. 14 (2014) 153-157.
DOI URL |
[29] |
M.E.Arroyo-de Dompablo, P.Tartaj, J.M. Amarilla, U. Amador, Chem. Mater. 28 (2016) 5643-5651.
DOI URL |
[30] |
G.B. Peter, S. Bruno, T. Jean-Marie, Angew. Chem. Int. Edit. 47 (2008) 2930-2946.
DOI URL |
[31] |
M.V. Reddy, G.V.Subba Rao, B.V.R. Chowdari, Chem. Rev. 113 (2013) 5364-5457.
DOI PMID |
[32] | R. Wang, X.Y. Cao, D.X. Zhao, L.M. Zhu, L.L. Xie, J.P. Liu, Y. Liu, Int. J. EnergyRes. 44 (2020) 4211-4223. |
[33] |
S. Yi, J.Z. Wang, S.L. Chou, D. Wexler, Y. Wu, Nano Lett. 13 (2013) 4715-4720.
DOI URL |
[34] |
C. Liao, Y. Wen, B. Shan, T. Zhai, H. Li, J. Power Sources 348 (2017) 48-56.
DOI URL |
[35] |
P. Rozier, E. Iwama, N. Nishio, K. Baba, K. Matsumura, K. Kisu, J. Miyamoto, W. Naoi, Y. Orikasa, P. Simon, K. Naoi, Chem. Mater. 30 (2018) 4926-4934.
DOI URL |
[36] |
W.T. Kim, Y.U. Jeong, Y.J. Lee, Y.J. Kim, J.H. Song, J. Power Sources 244 (2013) 557-560.
DOI URL |
[37] |
Y.S.J. Gao, Chem-Eur. J. 20 (2014) 5608-5612.
DOI URL |
[38] | Y. Shi, Y. Zhang, L.L. Liu, Z.J. Zhang, J. Wang, S.L. Chou, J. Gao, H.D. Abruna, H. J.Li H.K. Liu, D. Wexler, J.Z. Wang, Y.P. Wu, J.Solid State Electr. 21 (2017) 2547-2553. |
[39] |
L.L. Zhou, S.Y. Shen, X. Peng, L.N. Wu, S.G. Sun, ACS Appl. Mater. Interfaces 8 (2016) 23739.
DOI URL |
[40] |
L. Chen, X. Jiang, N. Wang, J. Yue, J. Yang, Adv. Sci. 2 (2015), 1500090.
DOI URL |
[41] |
K. Wang, C.K. Zhang, H.Y. Fu, C.F. Liu, Z.Y. Li, W.D. Ma, X.M. Lu, G.Z. Cao, Chem-Eur. J. 23 (2017) 5368-5374.
DOI PMID |
[42] | N. Gautam, R. Muhammad, H. Raj, A. Sil, P. Mohanty, T.K. Mandal, Micropor.Mesopor. Mater. 290 (2019), 109669. |
[43] | G.S. Zakharova, E. Thauer, S.A. Wegener, J.H. Nolke, Q. Zhu, R. Klingeler, J.Solid State Electr. 23 (2019) 2205-2212. |
[44] |
G. Yang, J. Feng, B. Zhang, V. Aravindan, D. Peng, X. Cao, H. Yu, S. Madhavi, Y. Huang , Int. J. Hydrog. Energ. 42 (2017) 22167-22174.
DOI URL |
[45] | Z. Liang, Y. Zhao, L. Ouyang, Y. Dong, Q. Kuang, X. Lin, X. Liu, D. Yan, J. PowerSources 252 (2014) 244-247. |
[46] | Z. Liang, Y. Zhao, Y. Dong, Q. Kuang, X. Lin, X. Liu, D. Yan, J. Electroanal.Chem. 745 (2015)1-7. |
[47] |
G. Shao, G. Lin, M. Ying, H. Li, T. Zhai, J. Mater. Chem. A 3 (2015) 11253-11260.
DOI URL |
[48] |
C. Zhang, H. Song, C. Liu, Y. Liu, C. Zhang, X. Nan, G. Cao, Adv. Funct. Mater. 25 (2015) 3497-3504.
DOI URL |
[49] |
C. Zhang, C. Liu, X. Nan, H. Song, G. Cao, ACS Appl. Mater. Interfaces 8 (2015) 680-688.
DOI URL |
[50] | S. Hu, Y. Song, S. Yuan, H. Liu, Q. Xu, Y. Wang, C.X. Wang, Y.Y. Xia, J. PowerSources 303 (2016) 333-339. |
[51] |
L.F. Shen, S.Q. Chen, J. Maier, Y. Yu, Adv. Mater. 29 (2017) 1701571.
DOI URL |
[52] |
P.C. Qin, X.D. Lv, C. Li, Y.Z. Zheng, X. Tao, Sci. China-Mater. 62 (2019) 1105-1114.
DOI URL |
[53] |
J.F. Zhou, B.C. Zhao, J.Y. Song, B.Z. Chen, J. Bai, Z.T. Fang, J.M. Dai, X.B. Zhu, Y. P.Sun , ACS Appl. Energ. Mater. 2 (2019) 354-362.
DOI URL |
[54] |
Y. Yang, J. Li, X. He, W. Jing, J. Zhao, J. Mater. Chem. A 4 (2016) 7165-7168.
DOI URL |
[55] |
D. Zhao, M. Cao, ACS Appl. Mater. Interfaces 7 (2015) 25084-25093.
DOI URL |
[56] |
H. Park, W. Jae, J. Kim, , J. Alloys. Compd. 767 (2018) 657-665.
DOI URL |
[57] |
X. Liu, L. Li, G. Li, Tungsten 1 (2019) 276-286.
DOI URL |
[58] |
J. Zhang, S. Ni, K. Tao, J. Tang, L. Zhang, J. Mater. Chem. A 4 (2016) 14101-14105.
DOI URL |
[59] |
J. Zhang, S. Ni, J. Ma, X. Yang, L. Zhang, J. Power Sources 301 (2016) 41-46.
DOI URL |
[60] | S. Ni, J. Zhang, J. Ma, X. Yang, Haibo Zeng,Adv. Mater. Interfaces 3 (2015),1500340. |
[61] |
R.H. Qin, G.Q. Shao, J.X. Hou, Z. Zheng, T.Y. Zhai, H.Q. Li, Sci. Bull. 62 (2017) 1081-1088.
DOI URL |
[62] |
Y. Yang, M. Zhao, J. Xiong, H.B. Geng, Y.F. Zhang, C.C. Li, J.B. Zhao, ChemElectroChem 6 (2019) 3920-3927.
DOI |
[63] | Z. Yan, Z. Sun, A. Xia, R. Yin, X. Huang, K. Yue, H. Xu, G. Zhao, L. Qian, Ceram.Int. 46 (2020) 2247-2254. |
[64] |
S. Ni, J. Zhang, J. Ma, X. Yang, L. Zhang, J. Mater. Chem. A 3 (2015) 17951-17955.
DOI URL |
[65] |
X.N. Xu, F.E. Niu, C.S. Wang, Y.J. Li, C.L. Zhao, J. Yang, Y.T. Qian, Chem. Eng. J. 370 (2019) 606-613.
DOI URL |
[66] |
Q. Li, J. Sheng, Q. Wei, Q. An, X. Wei, P. Zhang, L. Mai, Nanoscale 6 (2014) 11072.
DOI URL |
[67] |
Y. Yang, J.Q. Li, D.Q. Chen, J.B. Zhao, , J. Electrochem. Soc. 164 (2017) A6001-A6006.
DOI URL |
[68] |
Y. Shi, J.Z. Wang, S.L. Chou, D. Wexler, H.J. Li, K. Ozawa, H.K. Liu, Y.P. Wu, Nano Lett. 13 (2013) 4715-4720.
DOI PMID |
[69] |
J. Liu, P.-J. Lu, S. Liang, J. Liu, W. Wang, M. Lei, S. Tang, Q. Yang, Nano Energy 12 (2015) 709-724.
DOI URL |
[70] |
Jin Xin, Lei Bingbing, Wang Jing, Chen Ziliang, Xie Kai, J. Alloys. Compd. 686 (2016) 227-234.
DOI URL |
[71] |
Z. Jian, M. Zheng, Y. Liang, X. Zhang, Y. Yao, Chem. Commun. 51 (2014) 229-231.
DOI URL |
[72] |
S. Ni, J. Zhang, J. Ma, X. Yang, L. Zhang, J. Power Sources 296 (2015) 377-382.
DOI URL |
[73] |
J.N. Ye, J.X. Cheng, W.Q. Xiao, L. Xi, F. Xie, Y.J. Hu, New J. Chem. 42 (2018) 13241-13248.
DOI URL |
[74] | Q. Li, Q. Wei, Q. Wang, W. Luo, Q. An, Y. Xu, C. Niu, C. Tang, L. Mai, J. Mater.Chem. A 3 (2015) 18839-18842. |
[75] | Q. Li, Q. Wei, J. Sheng, M. Yan, L. Zhou, W. Luo, R. Sun, L. Mai, Adv. Sci. 2 (2015), 1500284. |
[76] | H.C. Liu, P. Hu, Q. Yu, Z.H. Liu, T. Zhu, W. Luo, L. Zhou, L.Q. Mai, ACS Appl.Mater. Interfaces 10 (2018) 23938-23944. |
[77] |
Y. Yang, J.Q. Li, J.X. Huang, J.X. Huang, J. Zeng, J.B. Zhao, Electrochim. Acta 247 (2017) 771-778.
DOI URL |
[78] |
Y.T. Liu, M.Q. Zhang, Y. Liu, M. Xue, B. Li, X.T. Tao, Mater. Lett. 196 (2017) 209-212.
DOI URL |
[79] |
M.Q. Zhang, X. Bai, Y.Y. Liu, Y.P. Zhang, Y. Wu, D.L. Cui, Y. Liu, L. Wang, B. Li, X.T. Tao, Appl. Surf. Sci. 469 (2019) 923-932.
DOI URL |
[80] | T. Kang, D.Y. Shen, S.B. Ni, Q.C. Chen, T. Li, X.L. Yang, J.B. Zhao, J. Alloys.Compd. 741 (2018) 442-448. |
[81] |
S. Ni, J. Zhang, X. Lv, X. Yang, L. Zhang, J. Power Sources 291 (2015) 95-101.
DOI URL |
[82] | T. Kang, S.B. Ni, Q.C. Chen, T. Li, D.L. Chao, X.L. Yang, J.B. Zhao, J. Electrochem.Soc. 166 (2019) A5295-A5300. |
[83] |
Y.H. Huang, H.C. Yang, Y. Zhang, Y.M. Zhang, Y.T. Wu, M.K. Tian, P. Chen, R. Trout Y. Ma, T.H. Wu, Y.P. Wu, N. Liu, J. Mater. Chem. A 7 (2019) 11250-11256.
DOI URL |
[84] |
J.F. Zhou, B.C. Zhao, J.Y. Song, B.Z. Chen, X.H. Ma, J.M. Dai, X.B. Zhu, Y.P. Sun, Solid State Ionics 322 (2018) 30-38.
DOI URL |
[85] |
J.F. Zhou, B.C. Zhao, J.Y. Song, B.Z. Chen, X.H. Ma, J.M. Dai, X.B. Zhu, Y.P. Sun, Chem-Eur. J 23 (2017) 16338-16345.
DOI URL |
[86] |
C. Zhang, K. Wang, C. Liu, X. Nan, H. Fu, W. Ma, Z. Li, G. Cao, NPG Asia Mater. 8 (2016) e287.
DOI URL |
[87] |
Y.Z. Dong, H. Duan, K.S. Park, Y.M. Zhao, ACS Appl. Mater. Interfaces 9 (2017) 27688-27696.
DOI URL |
[88] |
C.N. Mu, K.X. Lei, H.X. Li, F.J. Li, J. Chen, J. Phys. Chem. C 121 (2017) 26196-26201.
DOI URL |
[89] | L. Zhao, H. Duan, Y.M. Zhao, Q. Kuang, Q.H. Fan, L. Chen, Y.Z. Dong, J. PowerSources 378 (2018) 618-627. |
[90] |
X.Q. Liu, G.S. Li, D. Zhang, D.D. Chen, X.Y. Wang, B.Y. Li, L.P. Li, Electrochim.Acta 308 (2019) 185-194.
DOI URL |
[91] |
L. Zhu, C. Bao, L. Xie, X. Yang, X. Cao, , J. Alloys. Compd. 831 (2020) 154864.
DOI URL |
[92] |
P. Ge, H. Hou, S. Li, L. Yang, X. Ji, Adv. Funct. Mater. 28 (2018), 1801765.
DOI URL |
[93] |
J. Qian, P. Liu, Y. Xiao, Y. Jiang, Y. Cao, X. Ai, H. Yang, Adv. Mater. 21 (2009) 3663-3667.
DOI URL |
[94] | Y. Yuan, Z. Chen, H. Yu, X. Zhang, T. Liu, M. Xia, R. Zheng, M. Shui, J. Shu, Energy Storage Mater. 32 (2020) 65-90. |
[95] |
Y. Zhang, D. Chen, X. Li, J. Shen, Z. Chen, S.-a. Cao, T. Li, F. Xu, Nanoscale 11 (2019) 16043-16051.
DOI URL |
[96] |
L.M. Zhu, L.L. Xie, C.G. Bao, X.Y. Yan, X.Y. Cao, Int. J. Energy Res. 44 (2020) 298-308.
DOI URL |
[97] |
D.M. Chen, N.N. Zhang, C.S. Liu, M. Du, ACS Appl. Mater. Interfaces 9 (2017) 24671-24677.
DOI URL |
[98] |
L.M. Zhu, Q.H. Sun, L.L. Xie, X.Y. Cao, Int. J. Energy Res. 44 (2020) 4586-4594.
DOI URL |
[99] |
L. Zhu, P. Ge, L. Xie, Y. Miao, X. Cao, Electrochem. Commun. 115 (2020),106722.
DOI URL |
[100] |
K. Wang, H.Y. Fu, Z.Y. Li, M.Y. Xia, X.Q. Liang, R.J. Qi, G.Z. Cao, X.M. Lu, ChemElectroChem 5 (2018) 478-482.
DOI URL |
[101] |
C.Y. Liao, Y.W. Wen, Z.G. Xia, R.H. Qin, X. Liu, Y. Yu, B. Shan, T.Y. Zhai, H. Q.Li, Adv. Energy Mater. 8 (2018), 1701621.
DOI URL |
[102] |
J.L. Jiang, H. Li, J.X. Huang, K. Li, J. Zeng, Y. Yang, J.Q. Li, Y.H. Wang, J. Wang, J.B. Zhao, ACS Appl. Mater. Interfaces 9 (2017) 28486-28494.
DOI URL |
[103] |
E. Iwama, N. Kawabata, N. Nishio, K. Kisu, J. Miyamoto, W. Naoi, P. Rozier, P. Simon K. Naoi, ACS Nano 10 (2016) 5398-5404.
DOI URL |
[104] |
K. Huang, Q.N. Ling, C.H. Huang, K. Bi, W.J. Wang, T.Z. Yang, Y.K. Lu, J. Liu, R. Zhang D.Y. Fan, Y.G. Wang, M. Lei, , J. Alloys. Compd. 646 (2015) 837-842.
DOI URL |
[105] | X.T. Wang, B. Qin, D. Sui, Z.H. Sun, Y. Zhou, H.T. Zhang, Y.S. Chen, EnergyTechnol. 6 (2018) 2074-2081. |
[1] | Chunmao Huang, Shenghong Liu, Yang Wang, Jingjie Feng, Yanming Zhao. A new active NaVMoO6 cathode material for rechargeable Li ion batteries [J]. J. Mater. Sci. Technol., 2021, 66(0): 97-102. |
[2] | Zhi-Jia Zhang, Wei-Jie Li, Shu-Lei Chou, Chao Han, Hua-Kun Liu, Shi-Xue Dou. Effects of carbon on electrochemical performance of red phosphorus (P) and carbon composite as anode for sodium ion batteries [J]. J. Mater. Sci. Technol., 2021, 68(0): 140-146. |
[3] | Mingxing Liang, Yongcong Huang, Yuda Lin, Guisheng Liang, Cihui Huang, Lan Chen, Jiaxin Li, Qian Feng, Chunfu Lin, Zhigao Huang. Micro-nano structured VNb9O25 anode with superior electronic conductivity for high-rate and long-life lithium storage [J]. J. Mater. Sci. Technol., 2021, 83(0): 66-74. |
[4] | Ji Won Kim, Kwangeun Jung, Taeeun Yim. Dually-functionalized Ni-rich layered oxides for high-capacity lithium-ion batteries [J]. J. Mater. Sci. Technol., 2021, 86(0): 70-76. |
[5] | Zhou Zhou, Chaoying Ding, Wenchao Peng, Yang Li, Fengbao Zhang, Xiaobin Fan. One-step fabrication of two-dimensional hierarchical Mn2O3@graphene composite as high-performance anode materials for lithium ion batteries [J]. J. Mater. Sci. Technol., 2021, 80(0): 13-19. |
[6] | Ning Zhang, Ying Li, Yifan Qiao. Boosting the electrochemical performance of LiNi0.6Mn0.2Co0.2O2 through a trace amount of Mg-B co-doping [J]. J. Mater. Sci. Technol., 2021, 89(0): 167-178. |
[7] | Jin-Sung Park, Gi Dae Park, Yun Chan Kang. Exploration of cobalt selenite-carbon composite porous nanofibers as anode for sodium-ion batteries and unveiling their conversion reaction mechanism [J]. J. Mater. Sci. Technol., 2021, 89(0): 24-35. |
[8] | Liang Chen, Zhi Li, Gangyong Li, Minjie Zhou, Binhong He, Jie Ouyang, Wenyuan Xu, Wei Wang, Zhaohui Hou. A facile self-catalyzed CVD method to synthesize Fe3C/N-doped carbon nanofibers as lithium storage anode with improved rate capability and cyclability [J]. J. Mater. Sci. Technol., 2020, 44(0): 229-236. |
[9] | Yueni Mei, Yuyu Li, Fuyun Li, Yaqian Li, Yingjun Jiang, Xiwei Lan, Songtao Guo, Xianluo Hu. Lithium-ion insertion kinetics of Na-doped Li2TiSiO5 as anode materials for lithium-ion batteries [J]. J. Mater. Sci. Technol., 2020, 57(0): 18-25. |
[10] | Jin Bai, Xiao Chen, Emilia Olsson, Huimin Wu, Shiquan Wang, Qiong Cai, Chuanqi Feng. Synthesis of Bi2S3/carbon nanocomposites as anode materials for lithium-ion batteries [J]. J. Mater. Sci. Technol., 2020, 50(0): 92-102. |
[11] | Xiayu Lu, Li Liu, Xuan Xie, Yu Cui, Emeka E. Oguzie, Fuhui Wang. Synergetic effect of graphene and Co(OH)2 as cocatalysts of TiO2 nanotubes for enhanced photogenerated cathodic protection [J]. J. Mater. Sci. Technol., 2020, 37(0): 55-63. |
[12] | Jaffer Saddique, Xu Zhang, Tianhao Wu, Heng Su, Shiqi Liu, Dian Zhang, Yuefei Zhang, Haijun Yu. Sn4P3-induced crystalline/amorphous composite structures for enhanced sodium-ion battery anodes [J]. J. Mater. Sci. Technol., 2020, 55(0): 73-80. |
[13] | Bozhou Chen, Bangchuan Zhao, Jiafeng Zhou, Zhitang Fang, Yanan Huang, Xuebin Zhu, Yuping Sun. Surface modification with oxygen vacancy in Li-rich layered oxide Li1.2Mn0.54Ni0.13Co0.13O2 for lithium-ion batteries [J]. J. Mater. Sci. Technol., 2019, 35(6): 994-1002. |
[14] | Chongjia Zhu, Zhiqiu Wu, Jian Xie, Zhen Chen, Jian Tu, Gaoshao Cao, Xinbing Zhao. Solvothermal-assisted morphology evolution of nanostructured LiMnPO4 as high-performance lithium-ion batteries cathode [J]. J. Mater. Sci. Technol., 2018, 34(9): 1544-1549. |
[15] | Huijie Zhou, Hongbin Zhao, Xuan Zhang, Hongwei Cheng, Xionggang Lu, Qian Xu. Facile one-step synthesis of Cu2O@Cu sub-microspheres composites as anode materials for lithium ion batteries [J]. J. Mater. Sci. Technol., 2018, 34(7): 1085-1090. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||