J. Mater. Sci. Technol. ›› 2021, Vol. 89: 24-35.DOI: 10.1016/j.jmst.2021.01.076
Previous Articles Next Articles
Jin-Sung Park, Gi Dae Park, Yun Chan Kang*()
Received:
2020-09-28
Revised:
2021-01-27
Accepted:
2021-01-27
Published:
2021-10-30
Online:
2021-10-30
Contact:
Yun Chan Kang
About author:
*E-mail address: yckang@korea.ac.kr (Y.C. Kang).Jin-Sung Park, Gi Dae Park, Yun Chan Kang. Exploration of cobalt selenite-carbon composite porous nanofibers as anode for sodium-ion batteries and unveiling their conversion reaction mechanism[J]. J. Mater. Sci. Technol., 2021, 89: 24-35.
Fig. 1. Morphologies, SAED pattern, and elemental mapping images of CoSe2-CNF nanofibers: (a) SEM image, (b, c) TEM images, (d) HR-TEM image, (e) SAED pattern, and (f) elemental dot mapping images.
Fig. 2. Morphologies, SAED pattern, and elemental mapping images of p-CoSeO3-CNF: (a) SEM image, (b, c) TEM images, (d) HR-TEM image, (e) SAED pattern, and (f) elemental dot mapping images.
Fig. 4. XPS spectra of p-CoSeO3-CNF electrode after the 1st (a-d) discharge and (e-h) charge processes: (a, e) Co 2p, (b, f) Na 2s & Se 3d, (c, g) Na 1s, and (d, h) O 1s.
Fig. 5. Ex-situ TEM images and corresponding SAED patterns of p-CoSeO3-CNF after the 1 st (a-c) discharge and (d-f) charge processes: (a, d) TEM images, (b, e) HR-TEM images, and (c, f) SAED patterns.
Fig. 7. (a) Potential vs. capacity graph where red dots correspond to the pre-selected potentials for which the Nyquist plots were obtained, (b) in-situ Nyquist plots, (c) Rct and (d) RSEI values obtained at preselected potential for the first cycle.
Fig. 8. Electrochemical properties of p-CoSeO3-CNF: (a) cycle performance at 0.5 A g-1 (where colored dots represent the cycle number for which the ex-situ Nyquist plots were obtained), (b) rate performance, (c-f) ex-situ Nyquist plots obtained for (c) the assembled cell and after the (d) 1 st, (e) 50th, and (f) 100th cycles.
Fig. 9. (a) CV graphs of p-CoSeO3-CNF obtained at various sweep rates, (b) linear fitting of log (peak current) vs. log (scan rate) data for Peak 1 (anodic) and Peak 2 (cathodic), (c) diagram showing the capacitive contribution (red-colored area) and the experimentally obtained current (in gray), and (d) percentages of capacitive contribution at numerous sweep rates.
[1] |
F. Xie, L. Zhang, D. Su, M. Jaroniec, S.Z. Qiao, Adv. Mater. 29 (2017), 1700989.
DOI URL |
[2] |
J.S. Park, Y.C. Kang, Chem. Eng. J. 373 (2019) 227-237.
DOI URL |
[3] |
Y. Zhu, X. Han, Y. Xu, Y. Liu, S. Zheng, K. Xu, L. Hu, C. Wang, ACS Nano 7 (2013) 6378-6386.
DOI URL |
[4] |
M.S. Balogun, Y. Luo, F. Lyu, F. Wang, H. Yang, H. Li, C. Liang, M. Huang, Y. Huang Y. Tong, ACS Appl. Mater. Interfaces 8 (2016) 9733-9744.
DOI URL |
[5] | Z. Zhang, H. Zhao, J. Fang, X. Chang, Z. Li, L. Zhao, ACS Appl. Mater.Interfaces 10 (2018) 28533-28540. |
[6] |
Z. Yan, L. Tang, Y. Huang, W. Hua, Y. Wang, R. Liu, Q. Gu, S. Indris, S.L. Chou, Y. Huang M. Wu, S.X. Dou, Angew. Chem. Int. Ed. 58 (2019) 1412-1416.
DOI URL |
[7] |
J. Ma, Y. Li, N. Grundish, J.B. Goodenough, Y. Chen, L. Guo, Z. Peng, X. Qi, F. Yang L. Qie, C. Wang, B. Huang, Z. Huang, L. Chen, D. Su, G. Wang, X. Peng, Z. Chen J. Yang, S. He, X. Zhang, H. Yu, C. Fu, M. Jiang, W. Deng, C. Sun, Q. Pan, Y. Tang X. Li, X. Ji, F. Wang, Z. Niu, F. Lian, C. Wang, G.G. Wallace, M. Fan, Q. Meng S. Xin, Y.G. Guo, L. Wan, J. Phys. D: Appl. Phys. 54 (2021), 183001.
DOI URL |
[8] |
X. Li, S.H. Qi, W.C. Zhang, Y.Z. Feng, J.M. Ma, Rare Met. 39 (2020) 1239-1255.
DOI URL |
[9] |
H. Wang, R. Tan, Z. Yang, Y. Feng, X. Duan, J. Ma, Adv. Energy Mater. 11 (2020),2000962.
DOI URL |
[10] |
S. Qi, B. Xu, V.T. Tiong, J. Hu, J. Ma, Chem. Eng. J. 379 (2020), 122261.
DOI URL |
[11] |
S. Qi, D. Wu, Y. Dong, J. Liao, C.W. Foster, C. O’Dwyer, Y. Feng, C. Liu, J. Ma, Chem. Eng. J. 370 (2019) 185-207.
DOI URL |
[12] |
Y. Xu, Y. Zhu, Y. Liu, C. Wang, Adv. Energy Mater. 3 (2013) 128-133.
DOI URL |
[13] |
Z. Li, Y. Fang, J. Zhang, X.W. Lou, Adv. Mater. 30 (2018), 1800525.
DOI URL |
[14] | J. Pan, S. Chen, Q. Fu, Y. Sun, Y. Zhang, N. Lin, P. Gao, J. Yang, Y. Qian, ACS Nano12 (2018) 12869-12878. |
[15] |
Y.J. Oh, J.H. Kim, S.K. Park, J.S. Park, J.K. Lee, Y.C. Kang, Chem. Eng. J. 351 (2018) 886-896.
DOI URL |
[16] |
J.S. Park, J.S. Cho, Y.C. Kang, J. Power Sources 379 (2018) 278-287.
DOI URL |
[17] | Z. Zhang, X. Liang, J. Li, J. Qian, Y. Liu, S. Yang, Y. Wang, D. Gao, D. Xue, ACSAppl. Mater. Interfaces 12 (2020) 21661-21669. |
[18] |
N. Bi, X. Liu, N. Wu, C. Cui, Y. Sun, RSC Adv. 5 (2015) 32452-32459.
DOI URL |
[19] | P. Ge, L. Zhang, Y. Yang, W. Sun, Y. Hu, X. Ji, Adv. Mater. Interfaces 7 (2020),1901651. |
[20] |
J.S. Park, J.H. Hong, S.H. Yang, Y.C. Kang, J. Mater. Chem. A 8 (2020) 12124-12133.
DOI URL |
[21] |
B. Shang, Q. Peng, X. Jiao, G. Xi, X. Hu, Mater. Lett. 246 (2019) 157-160.
DOI |
[22] | G.D. Park, S.J. Yang, J.H. Lee, Y.C. Kang, Small 15 (2019), 1905289. |
[23] | X. Zhu, D. Liu, D. Zheng, G. Wang, X. Huang, J. Harris, D. Qu, D. Qu, J. Mater.Chem. A 6 (2018) 13294-13301. |
[24] |
Y. Dong, S. Li, K. Zhao, C. Han, W. Chen, B. Wang, L. Wang, B. Xu, Q. Wei, L. Zhang X. Xu, L. Mai, Energy Environ. Sci. 8 (2015) 1267-1275.
DOI URL |
[25] | D. Kundu, E. Talaie, V. Duffort, L.F. Nazar, Angew. Chem. Int. Ed. 54 (2015) 3432-3448. |
[26] |
S. Fang, D. Bresser, S. Passerini, Adv. Energy Mater. 10 (2020), 1902485.
DOI URL |
[27] |
Y. Cai, H. Yang, J. Zhou, Z. Luo, G. Fang, S. Liu, A. Pan, S. Liang, Chem. Eng. J. 327 (2017) 522-529.
DOI URL |
[28] |
X.W. Lou, L.A. Archer, Z. Yang, Adv. Mater. 20 (2008) 3987-4019.
DOI URL |
[29] |
L. Zhou, D. Zhao, X.W. Lou, Adv. Mater. 24 (2012) 745-748.
DOI URL |
[30] |
J. Wang, B. Wang, X. Liu, J. Bai, H. Wang, G. Wang, , Chem. Eng. J. 382 (2020) 123050-123063.
DOI URL |
[31] |
C. Chen, H. Guo, Z. Zhao, S. Li, Z. Jiang, D. Luo, Y. Wang, Electrochim. Acta 293 (2019) 141-148.
DOI URL |
[32] |
F.H. Du, B. Li, W. Fu, Y.J. Xiong, K.X. Wang, J.S. Chen, Adv. Mater. 26 (2014) 6145-6150.
DOI URL |
[33] |
Y. Liu, L. Zhang, D. Liu, W. Hu, X. Yan, C. Yu, H. Zeng, T. Shen, Nanoscale 11 (2019) 15497-15507.
DOI URL |
[34] | N. Cheng, J. Zhao, L. Fan, Z. Liu, S. Chen, H. Ding, X. Yu, Z. Liu, B. Lu, Chem.Commun. 55 (2019) 12511-12514. |
[35] |
J. Le Xie, C.X. Guo, C.M. Li, Energy Environ. Sci. 7 (2014) 2559-2579.
DOI URL |
[36] |
A. Ramadoss, G.S. Kim, S.J. Kim, CrystEngComm 15 (2013) 10222-10229.
DOI URL |
[37] |
Y.R. Pei, M. Zhao, H.Y. Zhou, C.C. Yang, Q. Jiang, Nanoscale Adv. 2 (2020) 4187-4198.
DOI URL |
[38] |
Z. Li, Y. Fang, J. Zhang, X.W. Lou, Adv. Mater. 30 (2018), 1800525.
DOI URL |
[39] |
T. Jin, H. Li, Y. Li, L. Jiao, J. Chen, Nano Energy 50 (2018) 462-467.
DOI URL |
[40] |
W.T. Jing, Y. Zhang, Y. Gu, Y.F. Zhu, C.C. Yang, Q. Jiang, Matter 1 (2019)720-733.
DOI URL |
[41] |
Y. Liu, Y. Fang, Z. Zhao, C. Yuan, X.W. Lou, Adv. Energy Mater. 9 (2019),1803052.
DOI URL |
[42] |
J. Han, K. Zhu, P. Liu, Y. Si, Y. Chai, L. Jiao, J. Mater. Chem. A 7 (2019) 25268-25273.
DOI URL |
[43] | D.M. Zhang, J.H. Jia, C.C. Yang, Q. Jiang, Energy Storage Mater. 24 (2020) 439-449. |
[44] |
Y. Fang, X.Y. Yu, X.W. Lou, Matter 1 (2019) 90-114.
DOI URL |
[45] |
T. Jin, Y. Liu, Y. Li, K. Cao, X. Wang, L. Jiao, Adv. Energy Mater. 7 (2017),1700087.
DOI URL |
[46] |
J.S. Park, S. Yang, Y.C. Kang, Chem. Eng. J. 393 (2020) 124606-124618.
DOI URL |
[47] |
D. Chen, Z. Xu, W. Chen, G. Chen, J. Huang, J. Huang, C. Song, C. Li, K. Ostrikov, J. Mater. Chem. A 8 (2020) 12035-12044.
DOI URL |
[48] | Y.J. Huang, C.P. Lee, H.W. Pang, C.T. Li, M.S. Fan, R. Vittal, K.C. Ho, Mater. TodayEnergy 6 (2017) 189-197. |
[49] |
D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B.Alemany W. Lu, J.M. Tour, ACS Nano 4 (2010) 4806-4814.
DOI URL |
[50] |
U.N. Maiti, J. Lim, K.E. Lee, W.J. Lee, S.O. Kim, Adv. Mater. 26 (2014) 615-619.
DOI URL |
[51] |
Z. Dan, Y. Yang, F. Qin, H. Wang, H. Chang, Materials 11 (2018) 446-459.
DOI URL |
[52] | X. Yao, Y. Ke, W. Ren, X. Wang, F. Xiong, W. Yang, M. Qin, Q. Li, L. Mai, Adv.Energy Mater. 9 (2019), 1803260. |
[53] |
A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, U. Pöschl, Carbon 43 (2005) 1731-1742.
DOI URL |
[54] |
J. Lu, Y. Zeng, X. Ma, H. Wang, L. Gao, H. Zhong, Q. Meng, Polymers 11 (2019) 828.
DOI URL |
[55] |
B. Su, J. Zhang, M. Fujita, W. Zhou, P.H.L. Sit, D.Y.W. Yu, J. Electrochem. Soc. 166 (2019) A5075-A5080.
DOI URL |
[56] |
S. Park, C.H. Champness, I. Shih, , J. Electron Spectrosc. 205 (2015) 23-28.
DOI URL |
[57] |
K.P.C.Yao, D.G. Kwabi, R.A. Quinlan, A.N. Mansour, A. Grimaud, Y.L. Lee, Y.C. Lu, Y. Shao-Horn, J. Electrochem. Soc. 160 (2013) A824-A831.
DOI URL |
[58] |
L. Zeng, X. Wei, J. Wang, Y. Jiang, W. Li, Y. Yu, J. Power Sources 281 (2015) 461-469.
DOI URL |
[59] | Z. Zhu, X. Shi, D. Zhu, L. Wang, K. Lei, F. Li, Research (2019), 6180615. |
[60] |
Z.W. Seh, J. Sun, Y. Sun, Y. Cui, ACS Cent. Sci. 1 (2015) 449-455.
DOI URL |
[61] |
J.L. Xia, D. Yan, L.P. Guo, X.L. Dong, W.C. Li, A.H. Lu, Adv. Mater. 32 (2020),2000447.
DOI URL |
[62] |
M.A. Mu˜noz-Márquez, M. Zarrabeitia, E. Castillo-Martínez, A. Eguía-Barrio, T. Rojo M. Casas-Cabanas, ACS Appl. Mater. Interfaces 7 (2015) 7801-7808.
DOI URL |
[63] |
Y. Tang, L. Dong, S. Mao, H. Gu, T. Malkoske, B. Chen, ACS Appl. Energy Mater. 1 (2018) 2698-2708.
DOI URL |
[64] |
A.B. Volynsky, A.Y. Stakheev, N.S. Telegina, V.G. Senin, L.M. Kustov, R. Wennrich , Spectrochim. Acta Part B 56 (2001) 1387-1396.
DOI URL |
[65] |
K. Xiao, L. Xia, G. Liu, S. Wang, L.X. Ding, H. Wang, J. Mater. Chem. A 3 (2015) 6128-6135.
DOI URL |
[66] | L. Fang, B.V.R. Chowdari, J. Power Sources 97 (2001) 181-184. |
[67] |
Z. Zheng, H.H. Wu, H. Liu, Q. Zhang, X. He, S. Yu, V. Petrova, J. Feng, R. Kostecki, P. Liu, D.L. Peng, M. Liu, M.S. Wang, ACS Nano 14 (2020) 9545-9561.
DOI URL |
[68] | G.D. Park, J.H. Hong, J.H. Choi, J.H. Lee, Y.S. Kim, Y.C. Kang, Small 15 (2019),1901320. |
[69] |
F. Klein, B. Jache, A. Bhide, P. Adelhelm, Phys. Chem. Chem. Phys. 15 (2013) 15876-15887.
DOI URL |
[70] | S. Dai, L. Wang, M. Cao, Z. Zhong, Y. Shen, M. Wang, Mater. Today Energy 12 (2019) 114-128. |
[71] | J. Ding, H. Zhou, H. Zhang, T. Stephenson, Z. Li, D. Karpuzov, D. Mitlin, EnergyEnviron. Sci. 10 (2017) 153-165. |
[72] |
C. Dong, L. Xu, ACS Appl. Mater. Interfaces 9 (2017) 7160-7168.
DOI URL |
[73] | J. Liu, Q. Duan, M. Ma, C. Zhao, J. Sun, Q. Wang, J. Power Sources 445 (2020),227263. |
[74] |
G. Huang, H. Liu, S. Wang, X. Yang, B. Liu, H. Chen, M. Xu, J. Mater. Chem. A 3 (2015) 24128-24138.
DOI URL |
[75] |
Q. Guo, L. Chen, Z. Shan, W.S.V. Lee, W. Xiao, Z. Liu, J. Liang, G. Yang, J. Xue, ChemSusChem 11 (2018) 299-310.
DOI URL |
[76] |
N. Kakati, K. Lee, Y.S. Yoon, , J. Alloys Compd. 711 (2017) 387-394.
DOI URL |
[77] | L. Liu, Y. Chen, Y. Xie, P. Tao, Z. Wang, Q. Li, K. Wang, C. Yan, Small 15 (2019),1804158. |
[78] | S. Zhao, Z. Wang, Y. He, H. Jiang, Y.W. Harn, X. Liu, C. Su, H. Jin, Y. Li, S. Wang, Q. Shen, Z. Lin, Adv. Energy Mater. 9 (2019), 1901093. |
[79] |
A. Prasath, A.S. Sharma, P. Elumalai, J. Sol-Gel Sci. Technol. 90 (2019) 676-684.
DOI |
[80] |
V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.L. Taberna, S.H. Tolbert, H. D.Abru˜na P. Simon, B. Dunn, Nat. Mater. 12 (2013) 518-522.
DOI URL |
[81] |
Y. Fang, D. Luan, Y. Chen, S. Gao, X.W. Lou, Angew. Chem. Int. Ed. 59 (2020) 2644-2648.
DOI URL |
[1] | Wencheng Liang, Mingli Jiang, Junyong Zhang, Xiaoming Dou, Yan Zhou, Yun Jiang, Li Zhao, Meidong Lang. Novel antibacterial cellulose diacetate-based composite 3D scaffold as potential wound dressing [J]. J. Mater. Sci. Technol., 2021, 89(0): 225-232. |
[2] | Mi Wu, Wen Liu, Jinrong Yao, Zhengzhong Shao, Xin Chen. Silk microfibrous mats with long-lasting antimicrobial function [J]. J. Mater. Sci. Technol., 2021, 63(0): 203-209. |
[3] | Xuepeng Ni, Zhe Cui, Ning Jiang, Huifang Chen, Qilin Wu, Anqi Ju, Meifang Zhu. Hollow multi-nanochannel carbon nanofiber/MoS2 nanoflower composites as binder-free lithium-ion battery anodes with high capacity and ultralong-cycle life at large current density [J]. J. Mater. Sci. Technol., 2021, 77(0): 169-177. |
[4] | Jianxu Bao, Hang Li, Yuanting Xu, Shengqiu Chen, Zhoujun Wang, Chunji Jiang, Huilin Li, Zhiwei Wei, Shudong Sun, Weifeng Zhao, Changsheng Zhao. Multi-functional polyethersulfone nanofibrous membranes with ultra-high adsorption capacity and ultra-fast removal rates for dyes and bacteria [J]. J. Mater. Sci. Technol., 2021, 78(0): 131-143. |
[5] | Shao-Fang Li, Zhen-Yi Gu, Jin-Zhi Guo, Xian-Kun Hou, Xu Yang, Bo Zhao, Xing-Long Wu. Enhanced electrode kinetics and electrochemical properties of low-cost NaFe2PO4(SO4)2 via Ca2+ doping as cathode material for sodium-ion batteries [J]. J. Mater. Sci. Technol., 2021, 78(0): 176-182. |
[6] | Shi Tao, Wei Zhou, Dajun Wu, Zhicheng Wang, Bin Qian, Wangsheng Chu, Augusto Marcelli, Li Song. Insights into the Ti4+ doping in P2-type Na0.67Ni0.33Mn0.52Ti0.15O2 for enhanced performance of sodium-ion batteries [J]. J. Mater. Sci. Technol., 2021, 74(0): 230-236. |
[7] | Chuan Wang, Hai Long, Lijiao Zhou, Chao Shen, Wei Tang, Xiaodong Wang, Bingbing Tian, Le Shao, Zhanyuan Tian, Haijun Su, Keyu Xie. A multiphase sodium vanadium phosphate cathode material for high-rate sodium-ion batteries [J]. J. Mater. Sci. Technol., 2021, 66(0): 121-127. |
[8] | Zhi-Jia Zhang, Wei-Jie Li, Shu-Lei Chou, Chao Han, Hua-Kun Liu, Shi-Xue Dou. Effects of carbon on electrochemical performance of red phosphorus (P) and carbon composite as anode for sodium ion batteries [J]. J. Mater. Sci. Technol., 2021, 68(0): 140-146. |
[9] | Yameng Yin, Cunyuan Pei, Fangyu Xiong, Yi Pan, Xiaoming Xu, Bo Wen, Qinyou An. Porous yolk-shell structured Na3(VO)2(PO4)2F microspheres with enhanced Na-ion storage properties [J]. J. Mater. Sci. Technol., 2021, 83(0): 83-89. |
[10] | Jiajia Ye, Xuting Li, Guang Xia, Guanghao Gong, Zhiqiang Zheng, Chuanzhong Chen, Cheng Hu. P-doped CoSe2 nanoparticles embedded in 3D honeycomb-like carbon network for long cycle-life Na-ion batteries [J]. J. Mater. Sci. Technol., 2021, 77(0): 100-107. |
[11] | Min-Woo Kim, Yong-Il Kim, Chanwoo Park, Ali Aldalbahi, Hamdah S. Alanazi, Seongpil An, Alexander L. Yarin, Sam S. Yoon. Reusable and durable electrostatic air filter based on hybrid metallized microfibers decorated with metal-organic-framework nanocrystals [J]. J. Mater. Sci. Technol., 2021, 85(0): 44-55. |
[12] | Rongan He, Haijuan Liu, Huimin Liu, Difa Xu, Liuyang Zhang. S-scheme photocatalyst Bi2O3/TiO2 nanofiber with improved photocatalytic performance [J]. J. Mater. Sci. Technol., 2020, 52(0): 145-151. |
[13] | Jaffer Saddique, Xu Zhang, Tianhao Wu, Heng Su, Shiqi Liu, Dian Zhang, Yuefei Zhang, Haijun Yu. Sn4P3-induced crystalline/amorphous composite structures for enhanced sodium-ion battery anodes [J]. J. Mater. Sci. Technol., 2020, 55(0): 73-80. |
[14] | Xianrui Xie, Yujie Chen, Xiaoyu Wang, Xiaoqing Xu, Yihong Shen, Atta ur Rehman Khan, Ali Aldalbahi, Allison E. Fetz, Gary L. Bowlin, Mohamed El-Newehy, Xiumei Mo. Electrospinning nanofiber scaffolds for soft and hard tissue regeneration [J]. J. Mater. Sci. Technol., 2020, 59(0): 243-261. |
[15] | Juyan Zhang, Xuhui Yao, Ravi K. Misra, Qiong Cai, Yunlong Zhao. Progress in electrolytes for beyond-lithium-ion batteries [J]. J. Mater. Sci. Technol., 2020, 44(0): 237-257. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||