J. Mater. Sci. Technol. ›› 2021, Vol. 85: 44-55.DOI: 10.1016/j.jmst.2020.12.065
• Research Article • Previous Articles Next Articles
Min-Woo Kima,b,1, Yong-Il Kima,1, Chanwoo Parka, Ali Aldalbahic, Hamdah S. Alanazic, Seongpil Anb,d,*(), Alexander L. Yarine,*(
), Sam S. Yoona,*(
)
Received:
2020-09-09
Revised:
2020-12-17
Accepted:
2020-12-30
Published:
2021-09-20
Online:
2021-02-09
Contact:
Seongpil An,Alexander L. Yarin,Sam S. Yoon
About author:
skyoon@korea.ac.kr (S.S. Yoon).1These authors contributed equally to this work.
Min-Woo Kim, Yong-Il Kim, Chanwoo Park, Ali Aldalbahi, Hamdah S. Alanazi, Seongpil An, Alexander L. Yarin, Sam S. Yoon. Reusable and durable electrostatic air filter based on hybrid metallized microfibers decorated with metal-organic-framework nanocrystals[J]. J. Mater. Sci. Technol., 2021, 85: 44-55.
Fig. 1. Schematics of different fibrous filters based on (a) Cu microfibers and (b) MOF/Cu microfibers. Insets located in the bottom right of panels (a) and (b) illustrate the difference in durability between the Cu microfiber filter and the MOF/Cu microfiber filter loaded by external stresses.
Fig. 2. (a) Fabrication process of the MOF/Cu microfibers, and (b) the corresponding illustrations and scanning electron microscopy (SEM) images after each stage of the process.
Fig. 3. Schematic of filtration test with MOF/Cu microfiber filter: (a) PM feeder wherein the ionized air and PM are mixed, (b) charging of PM by electrons in the ionized air, (c) filtration process in the MOF/Cu microfiber filter.
Process | Parameters | Values |
---|---|---|
Electrospinning | Applied DC voltage [kV] | 6 |
Flow rate [μl h-1] | 280 | |
Needle-to-collector distance [cm] | 13 | |
Electrospinning time [s] | 60 | |
Electroplating | Applied DC voltage [kV] | 3 |
Nanofiber mat-to-Cu electrode distance [cm] | 3 | |
Electroplating time [s] | 60 |
Table 1 Operating conditions for PAN electrospinning and Cu electroplating.
Process | Parameters | Values |
---|---|---|
Electrospinning | Applied DC voltage [kV] | 6 |
Flow rate [μl h-1] | 280 | |
Needle-to-collector distance [cm] | 13 | |
Electrospinning time [s] | 60 | |
Electroplating | Applied DC voltage [kV] | 3 |
Nanofiber mat-to-Cu electrode distance [cm] | 3 | |
Electroplating time [s] | 60 |
Fig. 4. SEM images and the corresponding photographs of different fibrous filters based on: (a) PAN nanofibers, (b) Cu microfibers, and (c) MOF/Cu microfibers. SEM images of individual MOF/Cu microfibers with varying MOF deposition times of: (d) 10 min, (e) 30 min, and (f) 60 min. Processed images of (g) PAN nanofibers, (h) Cu microfibers, and (i) MOF/Cu microfibers.
Fig. 5. XRD patterns of MOF/Cu microfibers in (a) broad and (b) narrow ranges. (c) FTIR spectrum of MOF/Cu microfibers. High-resolution XPS spectra of MOF/Cu microfibers for (d) C 1s, (e) Cu 2p, and (f) Zn 2p energy levels.
Fig. 6. Schematics of (a) tensile and (b) puncture tests. Results of mechanical tests for different fiber mats: (c) tensile test and (d) puncture test. (e) Photographs of MOF/Cu microfiber mat and Cu microfiber mat after air flow tests.
Fig. 7. Comparison of the filtration efficiency (a) of different MOF/Cu microfiber filters against Cu powder illustrating the effect of the pre-ionization use and MOF deposition time, and (b) with using different number of layers of the MOF/Cu microfiber filter. (c) Results for air pressure before (black column) and after (diagonal-lined column) passing the filter with varying the number of layers of the MOF/Cu microfibers. (d) The corresponding snapshots of each layer at Nlayer = 5 after the PM filtration (where the 1 st layer was placed at the side where PMs entered the filter). Results of the cycling tests of the MOF/Cu microfiber filters for (e) 20 cycles with the ionizer on and off and (f) 50 cycles with the ionizer on. (g) Photographs of the MOF/Cu microfiber filter before the filtration test (N = 0) and after the filtration test of 1 cycle (N = 1) and 50 cycles (N = 50). SEM images of the MOF/Cu microfiber filter (h) before filtration (N = 1), (i) after filtration (N = 1), and (j) after cleaning (N = 50).
Fig. 8. (a) Comparison of filtration efficiency of different MOF/Cu microfiber filters against Rhodamine B powder with and without ionization at different MOF deposition times. (b) Transmittance spectra of Rhodamine B solution before (denoted as b) and after UV irradiation with MOF/Cu microfiber filter (denoted as a). The decomposition efficiency of MOF/Cu microfiber filters (c) at different MOF deposition times and (d) as a function of UV irradiation time.
Particle diameter [nm] | Filtration efficiency [%] | Filter thickness [μm] | Face velocity [m s-1] | Pressure loss [Pa] | Duration time [min] | Ref. |
---|---|---|---|---|---|---|
2500 | 99 | 1.25 | 0.05 | - | - | [ |
2500 | 99 | 53.8 | 0.053 | 123.97 | - | [ |
300 | 100 | 0.4 | 0.05 | 73.5 | - | [ |
300 | 99 | 1700 | 0.05 | 68 | - | [ |
300 | 100 | 150 | 2.2 | 521 | 36 | [ |
100 | 98 | 20 | 0.05 | 85 | 60 | [ |
< 1500 | 92 (1 layer) 94 (3 layer) 98 (5 layer) | 4 12 20 | 42.5 | 0 69 207 | 900 | This study |
Table 2 Comparison of nanofiber-based filters.
Particle diameter [nm] | Filtration efficiency [%] | Filter thickness [μm] | Face velocity [m s-1] | Pressure loss [Pa] | Duration time [min] | Ref. |
---|---|---|---|---|---|---|
2500 | 99 | 1.25 | 0.05 | - | - | [ |
2500 | 99 | 53.8 | 0.053 | 123.97 | - | [ |
300 | 100 | 0.4 | 0.05 | 73.5 | - | [ |
300 | 99 | 1700 | 0.05 | 68 | - | [ |
300 | 100 | 150 | 2.2 | 521 | 36 | [ |
100 | 98 | 20 | 0.05 | 85 | 60 | [ |
< 1500 | 92 (1 layer) 94 (3 layer) 98 (5 layer) | 4 12 20 | 42.5 | 0 69 207 | 900 | This study |
[1] | M. Andreae, D. Rosenfeld, Earth. Rev. 89 (2008) 13-41. |
[2] |
N. Mahowald, Science 334 (2011) 794-796.
DOI PMID |
[3] |
R. Zhang, J. Jing, J. Tao, S.-C. Hsu, G. Wang, J. Cao, C.S.L. Lee, L. Zhu, Z. Chen, Y. Zhao, Atmos. Chem. Phys. 13 (2013) 7053-7074.
DOI URL |
[4] |
D.E. Horton, C.B. Skinner, D. Singh, N.S. Diffenbaugh, Nat. Clim. Chang. 4 (2014) 698-704.
DOI URL |
[5] |
C. Liu, P.-C. Hsu, H.-W. Lee, M. Ye, G. Zheng, N. Liu, W. Li, Y. Cui, Nat. Commun. 6 (2015) 6205.
DOI URL |
[6] |
K.-H. Kim, E. Kabir, S. Kabir, Environ. Int. 74 (2015) 136-143.
DOI PMID |
[7] |
J. Zhao, Q. Zhao, C. Wang, B. Guo, C.B. Park, G. Wang, Mater. Des. 131 (2017) 1-11.
DOI URL |
[8] |
S.-J. Cao, D. Cen, W. Zhang, Z. Feng, Build. Environ. 126 (2017) 195-206.
DOI URL |
[9] |
S.-J. Cao, C. Ren, Build. Environ. 144 (2018) 316-333.
DOI URL |
[10] |
Y. Bai, C.B. Han, C. He, G.Q. Gu, J.H. Nie, J.J. Shao, T.X. Xiao, C.R. Deng, Z.L. Wang, Adv. Funct. Mater. 28 (2018), 1706680.
DOI URL |
[11] | M. Brauer, M. Amann, R.T. Burnett, A. Cohen, F. Dentener, M. Ezzati, S.B. Henderson, M. Krzyzanowski, R.V. Martin, R. Van Dingenen, Environ. Sci. Technol. 46 (2012) 652-660. |
[12] |
J.H. Park, K.Y. Yoon, J. Hwang, Build. Environ. 46 (2011) 1699-1708.
DOI URL |
[13] |
B. Shi, L. Ekberg, Environ. Sci. Technol. 49 (2015) 6891-6898.
DOI URL |
[14] |
Z. Feng, Z. Long, T. Yu, J. Electrostat. 83 (2016) 52-62.
DOI URL |
[15] |
E. Tian, J. Mo, Energy Build. 186 (2019) 276-283.
DOI URL |
[16] |
M.-W. Kim, S. An, H. Seok, S.S. Yoon, A.L. Yarin, ACS Appl. Mater. Interfaces 11 (2019) 26323-26332.
DOI URL |
[17] | L. Wang, Y. Wu, G. Li, H. Xu, J. Gao, Q. Zhang, Chem. Eng. J. (2020), 125755. |
[18] | B. Shi, ASHRAE Trans. 118 (2012) 602-611. |
[19] |
S. Wang, X. Zhao, X. Yin, J. Yu, B. Ding, ACS Appl. Mater. Interfaces 8 (2016) 23985-23994.
DOI URL |
[20] |
M.H. Kim, W.J. Lee, D.H. Lee, S.W. Ko, T.I. Hwang, J.W. Kim, C.H. Park, C.S. Kim, J. Nanosci. Nanotechnol. 18 (2018) 2132-2136.
DOI URL |
[21] | K.R. Parker, Applied Electrostatic Precipitation, Springer, Dordrecht, 1997. |
[22] |
H.-J. Kim, B. Han, Y.-J. Kim, S.-J. Yoa, J. Aerosol Sci. 41 (2010) 987-997.
DOI URL |
[23] |
Z. Li, Y. Liu, Y. Xing, T.-M.-P. Tran, T.-C. Le, C.-J. Tsai, Environ. Sci. Technol. 49 (2015) 8683-8690.
DOI URL |
[24] |
M. Gao, Y. Zhu, X. Yao, J. Shi, W. Shangguan, Powder Technol. 348 (2019) 13-23.
DOI URL |
[25] |
R. Thakur, D. Das, A. Das, Sep. Purif. Rev. 42 (2013) 87-129.
DOI URL |
[26] |
J.H. Park, K.Y. Yoon, K.C. Noh, J.H. Byeon, J. Hwang, J. Aerosol Sci. 41 (2010) 935-943.
DOI URL |
[27] | M.W. Lee, S. An, K.Y. Song, B.N. Joshi, H.S. Jo, S.S. Al-Deyab, S.S. Yoon, A.L. Yarin,J. Appl. Phys. 118 (2015), 245307. |
[28] |
T.-F. Liu, D. Feng, Y.-P. Chen, L. Zou, M. Bosch, S. Yuan, Z. Wei, S. Fordham, K. Wang, H.-C. Zhou, J. Am. Chem. Soc. 137 (2015) 413-419.
DOI URL |
[29] |
L. Liu, X.-N. Zhang, Z.-B. Han, M.-L. Gao, X.-M. Cao, S.-M. Wang, J. Mater. Chem. A 3 (2015) 14157-14164.
DOI URL |
[30] | S. An, J.S. Lee, B.N. Joshi, H.S. Jo, K. Titov, J.S. Chang, C.H. Jun, S.S. Al-Deyab, Y.K. Hwang, J.C. Tan, S.S. Yoon, J. Appl. Polym. Sci. 133 (2016) 1-8. |
[31] |
B. Joshi, S. Park, E. Samuel, H.S. Jo, S. An, M.-W. Kim, M.T. Swihart, J.M. Yun, K.H. Kim, S.S. Yoon, J. Electroanal. Chem. 810 (2018) 239-247.
DOI URL |
[32] |
J. Gao, X. Qian, R.B. Lin, R. Krishna, H. Wu, W. Zhou, B. Chen, Angew. Chemie Int. Ed. 59 (2020) 4396-4400.
DOI URL |
[33] |
Y. Zhang, S. Yuan, X. Feng, H. Li, J. Zhou, B. Wang, J. Am. Chem. Soc. 138 (2016) 5785-5788.
DOI URL |
[34] |
P. Kumar, K.-H. Kim, E.E. Kwon, J.E. Szulejko, J. Mater. Chem. A 4 (2016) 345-361.
DOI URL |
[35] |
Y. Chen, S. Zhang, S. Cao, S. Li, F. Chen, S. Yuan, C. Xu, J. Zhou, X. Feng, X. Ma, B. Wang, Adv. Mater. 29 (2017), 1606221.
DOI URL |
[36] |
F. Xie, N. Zhang, L. Zhuo, P. Qin, S. Chen, Y. Wang, Z. Lu, Compos. Part B Eng. 168 (2019) 406-412.
DOI URL |
[37] |
T.-T. Li, L. Liu, M.-L. Gao, Z.-B. Han, Chem. Commun. 55 (2019) 4941-4944.
DOI URL |
[38] |
T. Li, L. Liu, Z. Zhang, Z. Han, Sep. Purif. Technol. 237 (2020), 116360.
DOI URL |
[39] |
Y. Bian, R. Wang, S. Wang, C. Yao, W. Ren, C. Chen, L. Zhang, J. Mater. Chem. A 6 (2018) 15807-15814.
DOI URL |
[40] |
S. An, H.S. Jo, D.Y. Kim, H.J. Lee, B.K. Ju, S.S. Al-Deyab, J.H. Ahn, Y. Qin, M.T. Swihart, A.L. Yarin, S.S. Yoon, Adv. Mater. 28 (2016) 7149-7154.
DOI URL |
[41] | S. An, H.S. Jo, S.S. Al-Deyab, A.L. Yarin, S.S. Yoon,J. Appl. Phys. 119 (2016), 065306. |
[42] |
H. Yoon, M.-W. Kim, H. Kim, D.-Y. Kim, S. An, J.-G. Lee, B.N. Joshi, H.S. Jo, J. Choi, S.S. Al-Deyab, Int. J. Heat Mass Transf. 101 (2016) 198-204.
DOI URL |
[43] |
H.S. Jo, S. An, J.-G. Lee, H.G. Park, S.S. Al-Deyab, A.L. Yarin, S.S. Yoon, NPG Asia Mater. 9 (2017) e347.
DOI URL |
[44] |
S. An, H.S. Jo, Y.I. Kim, K.Y. Song, M.-W. Kim, K.B. Lee, A.L. Yarin, S.S. Yoon, Nanoscale 9 (2017) 9139-9147.
DOI URL |
[45] |
H.S. Jo, S. An, H.-J. Kwon, A.L. Yarin, S.S. Yoon, Sci. Rep. 10 (2020) 1-12.
DOI URL |
[46] |
Y. Yun, H. Sheng, K. Bao, L. Xu, Y. Zhang, D. Astruc, M. Zhu, J. Am. Chem. Soc. 142 (2020) 4126-4130.
DOI URL |
[47] | E.P.V. Sánchez, H. Gliemann, K. Haas-Santo, W. Ding, E. Hansjosten, J. Wohlgemuth, C. Wöll, R. Dittmeyer,J. Memb. Sci. 594 (2020), 117421. |
[48] |
L.S. Lai, Y.F. Yeong, N.C. Ani, K.K. Lau, A.M. Shariff, Part. Sci. Technol. 32 (2014) 520-528.
DOI URL |
[49] |
B. Joshi, E. Samuel, Y.I. Kim, M.-W. Kim, H.S. Jo, M.T. Swihart, W.Y. Yoon, S.S. Yoon, Chem. Eng. J. 351 (2018) 127-134.
DOI URL |
[50] |
E. Samuel, B. Joshi, M.-W. Kim, Y.-I. Kim, S. Park, T.-G. Kim, M.T. Swihart, W.Y. Yoon, S.S. Yoon, J. Power Sources 395 (2018) 349-357.
DOI URL |
[51] |
S. Zhong, X. Yang, Z. Cao, X. Dong, S.M. Kozlov, L. Falivene, J.-K. Huang, X. Zhou, M.N. Hedhili, Z. Lai, Chem. Commun. 54 (2018) 11324-11327.
DOI URL |
[52] | A. Zukeran, Y. Ikeda, Y. Ehara, T. Ito, T. Takahashi, H. Kawakami, T. Takamatsu, Electr. Eng. Jpn. 130 (2000) 30-37. |
[53] |
E. Kelly, D. Spottiswood, Miner. Eng. 2 (1989) 337-349.
DOI URL |
[54] |
S. Sinha-Ray, S. Sinha-Ray, A.L. Yarin, B. Pourdeyhimi, J. Memb. Sci. 485 (2015) 132-150.
DOI URL |
[55] |
J. Cravillon, C.A. Schröder, H. Bux, A. Rothkirch, J. Caro, M. Wiebcke, CrystEngComm 14 (2012) 492-498.
DOI URL |
[56] |
J. Cravillon, R. Nayuk, S. Springer, A. Feldhoff, K. Huber, M. Wiebcke, Chem. Mater. 23 (2011) 2130-2141.
DOI URL |
[57] | M. Raffi, S. Mehrwan, T.M. Bhatti, J.I. Akhter, A. Hameed, W. Yawar, M.M. ul Hasan, Ann.Microbiol. 60 (2010) 75-80. |
[58] |
Y. Zhang, Y. Jia, RSC Adv. 8 (2018) 31471-31477.
DOI URL |
[59] | K.S. Park, Z. Ni, A.P. Côté, J.Y. Choi, R. Huang, F.J. Uribe-Romo, H.K. Chae, M. O’Keeffe, O.M. Yaghi, Proc. Natl. Acad. Sci. (2006) 10186-10191. |
[60] |
Y. Pan, Y. Liu, G. Zeng, L. Zhao, Z. Lai, Chem. Commun. 47 (2011) 2071-2073.
DOI URL |
[61] |
A. Schejn, L. Balan, V. Falk, L. Aranda, G. Medjahdi, R. Schneider, CrystEngComm 16 (2014) 4493-4500.
DOI URL |
[62] |
J. Cravillon, S. Münzer, S.-J. Lohmeier, A. Feldhoff, K. Huber, M. Wiebcke, Chem. Mater. 21 (2009) 1410-1412.
DOI URL |
[63] |
M.J.C. Ordonez, K.J. Balkus Jr., J.P. Ferraris, I.H. Musselman, J. Memb. Sci. 361 (2010) 28-37.
DOI URL |
[64] |
A. Jomekian, R. Behbahani, T. Mohammadi, A. Kargari, Microporous Mesoporous Mater. 234 (2016) 43-54.
DOI URL |
[65] |
F. Bai, Y. Xia, B. Chen, H. Su, Y. Zhu, Carbon 79 (2014) 213-226.
DOI URL |
[66] |
J. Liu, J. He, L. Wang, R. Li, P. Chen, X. Rao, L. Deng, L. Rong, J. Lei, Sci. Rep. 6 (2016) 23667.
DOI URL |
[67] |
F. Yu, F. Li, B. Zhang, H. Li, L. Sun, ACS Catal. 5 (2015) 627-630.
DOI URL |
[68] |
J. Wang, L. Zhu, L. Ji, Z. Chen, J. Mater. Res. 33 (2018) 581-589.
DOI URL |
[69] |
Y. Huang, T. Zhao, G. Zhao, X. Yan, K. Xu, J. Power Sources 304 (2016) 74-80.
DOI URL |
[70] |
N. Barka, S. Qourzal, A. Assabbane, A. Nounah, Y. Ait-Ichou, J. Photochem. Photobiol. A: Chem. 195 (2008) 346-351.
DOI URL |
[71] |
P. Du, L. Song, J. Xiong, H. Cao, J. Mater. Sci. 48 (2013) 8386-8392.
DOI URL |
[72] | R. Kannan, D. Jayaraman, S. Aravindhan, Int. J. Sci. Eng. Appl. 4 (2015) 7-16. |
[73] |
M. Okutan, R. Coş kun, M. Öztürk, O. Yalçın, Physica B Condens. Matter 457 (2015) 5-11.
DOI URL |
[74] |
J. Zhao, T. Wu, K. Wu, K. Oikawa, H. Hidaka, N. Serpone, Environ. Sci. Technol. 32 (1998) 2394-2400.
DOI URL |
[75] |
Y. Ho, G. McKay, Process. Saf. Environ. Prot. 76 (1998) 332-340.
DOI URL |
[76] |
Y. Bian, S. Wang, L. Zhang, C. Chen, Build. Environ. 170 (2020), 106628.
DOI URL |
[77] | J. Wu, O. Akampumuza, P. Liu, Z. Quan, H. Zhang, X. Qin, R. Wang, J. Yu, Mater. Today Commun. 23 (2020), 100897. |
[78] |
H. Liu, L. Liu, J. Yu, X. Yin, B. Ding, Compos. Commun. 22 (2020), 100493.
DOI URL |
[79] |
A.C. Canalli Bortolassi, V.G. Guerra, M.L. Aguiar, L. Soussan, D. Cornu, P. Miele, M. Bechelany, Nanomaterials 9 (2019) 1740.
DOI URL |
[80] |
J. Cao, Z. Cheng, L. Kang, M. Lin, L. Han, RSC Adv. 10 (2020) 20155-20161.
DOI URL |
[81] |
C.-J. Cho, Y.-S. Chang, Y.-Z. Lin, D.-H. Jiang, W.-H. Chen, W.-Y. Lin, C.-W. Chen, S.-P. Rwei, C.-C. Kuo, J. Taiwan Inst. Chem. Eng. 106 (2020) 206-214.
DOI URL |
[1] | Xuepeng Ni, Zhe Cui, Ning Jiang, Huifang Chen, Qilin Wu, Anqi Ju, Meifang Zhu. Hollow multi-nanochannel carbon nanofiber/MoS2 nanoflower composites as binder-free lithium-ion battery anodes with high capacity and ultralong-cycle life at large current density [J]. J. Mater. Sci. Technol., 2021, 77(0): 169-177. |
[2] | Jianxu Bao, Hang Li, Yuanting Xu, Shengqiu Chen, Zhoujun Wang, Chunji Jiang, Huilin Li, Zhiwei Wei, Shudong Sun, Weifeng Zhao, Changsheng Zhao. Multi-functional polyethersulfone nanofibrous membranes with ultra-high adsorption capacity and ultra-fast removal rates for dyes and bacteria [J]. J. Mater. Sci. Technol., 2021, 78(0): 131-143. |
[3] | Mi Wu, Wen Liu, Jinrong Yao, Zhengzhong Shao, Xin Chen. Silk microfibrous mats with long-lasting antimicrobial function [J]. J. Mater. Sci. Technol., 2021, 63(0): 203-209. |
[4] | Xianrui Xie, Yujie Chen, Xiaoyu Wang, Xiaoqing Xu, Yihong Shen, Atta ur Rehman Khan, Ali Aldalbahi, Allison E. Fetz, Gary L. Bowlin, Mohamed El-Newehy, Xiumei Mo. Electrospinning nanofiber scaffolds for soft and hard tissue regeneration [J]. J. Mater. Sci. Technol., 2020, 59(0): 243-261. |
[5] | Rongan He, Haijuan Liu, Huimin Liu, Difa Xu, Liuyang Zhang. S-scheme photocatalyst Bi2O3/TiO2 nanofiber with improved photocatalytic performance [J]. J. Mater. Sci. Technol., 2020, 52(0): 145-151. |
[6] | Meng-Jie Chang, Wen-Na Cui, Jun Liu, Kang Wang, Hui-Ling Du, Lei Qiu, Si-Meng Fan, Zhen-Min Luo. Construction of novel TiO2/Bi4Ti3O12/MoS2 core/shell nanofibers for enhanced visible light photocatalysis [J]. J. Mater. Sci. Technol., 2020, 36(0): 97-105. |
[7] | Xingxing Liang, Ying Yang, Xin Jin, Jie Cheng. Polyethylene Oxide-Coated Electrospun Polyimide Fibrous Seperator for High-Performance Lithium-Ion Battery [J]. J. Mater. Sci. Technol., 2016, 32(3): 200-206. |
[8] | Sadat-Shojai Mehdi. Electrospun Polyhydroxybutyrate/Hydroxyapatite Nanohybrids: Microstructure and Bone Cell Response [J]. J. Mater. Sci. Technol., 2016, 32(10): 1013-1020. |
[9] | Di Zhou, Youhua Zhou, Yu Tian, Yafang Tu, Guang Zheng, Haoshuang Gu. Structure and Piezoelectric Properties of Lead-Free Na0.5Bi0.5TiO3 Nanofibers Synthesized by Electrospinning [J]. J. Mater. Sci. Technol., 2015, 31(12): 1181-1185. |
[10] | Gehan M.K. Tolba, Nasser A.M. Barakat, A.M. Bastaweesy, E.A. Ashour, Wael Abdelmoez, Mohamed H. El-Newehy, Salem S. Al-Deyab, Hak Yong Kim. Hierarchical TiO2/ZnO Nanostructure as Novel Non-precious Electrocatalyst for Ethanol Electrooxidation [J]. J. Mater. Sci. Technol., 2015, 31(1): 97-105. |
[11] | W.S. Khan, R. Asmatulu, S. Davuluri, V.K. Dandin. Improving the Economic Values of the Recycled Plastics Using Nanotechnology Associated Studies [J]. J. Mater. Sci. Technol., 2014, 30(9): 854-859. |
[12] | Yan Wei, Yu Song, Xuliang Deng, Bing Han, Xuehui Zhang, Yang Shen, Yuanhua Lin. Dielectric and Ferroelectric Properties of BaTiO3 Nanofibers Prepared via Electrospinning [J]. J. Mater. Sci. Technol., 2014, 30(8): 743-747. |
[13] | Qingrong Liang, Xiangqian Shen, Fuzhan Song, Mingquan Liu. Fabrication and Magnetic Property of One-dimensional SrTiO3/SrFe12O19 Composite Nanofibers by Electrospinning [J]. J Mater Sci Technol, 2011, 27(11): 996-1000. |
[14] | Xinwei WANG, Jin CAO, Zuming HU, Wanlian PAN, Zhaofeng LIU. Jet Shaping Nanofibers and the Collection of Nanofiber Mats in Electrospinning [J]. J Mater Sci Technol, 2006, 22(04): 536-540. |
[15] | Tong LIN, Hongxia WANG, Huimin WANG, Xungai WANG. Effects of Polymer Concentration and Cationic Surfactant on the Morphology of Electrospun Polyacrylonitrile Nanofibres [J]. J Mater Sci Technol, 2005, 21(Supl.1): 9-12. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||