J. Mater. Sci. Technol. ›› 2021, Vol. 78: 131-143.DOI: 10.1016/j.jmst.2020.10.065
• Review Article • Previous Articles Next Articles
Jianxu Baoa, Hang Lia, Yuanting Xua, Shengqiu Chena, Zhoujun Wanga, Chunji Jianga, Huilin Lia, Zhiwei Weia, Shudong Suna, Weifeng Zhaoa,**(), Changsheng Zhaoa,b,c,*(
)
Received:
2020-08-03
Revised:
2020-09-26
Accepted:
2020-10-18
Published:
2020-11-28
Online:
2020-11-28
Contact:
Weifeng Zhao,Changsheng Zhao
About author:
E-mail addresses: weifeng@scu.edu.cn (W. Zhao)Jianxu Bao, Hang Li, Yuanting Xu, Shengqiu Chen, Zhoujun Wang, Chunji Jiang, Huilin Li, Zhiwei Wei, Shudong Sun, Weifeng Zhao, Changsheng Zhao. Multi-functional polyethersulfone nanofibrous membranes with ultra-high adsorption capacity and ultra-fast removal rates for dyes and bacteria[J]. J. Mater. Sci. Technol., 2021, 78: 131-143.
Fig. 2. (A) Adsorption performance of PQAM at different initial MO concentrations; (B) Linear fitting of the pseudo-second-order adsorption model at different initial MO concentrations; The corresponding linear plot for Langmuir model (C) and Freundlich model (D) for MO adsorption process.
C0(μmol/L) | qe[exp] (mg/g) | Pseudo-first-order model | Pseudo-second-order model | ||
---|---|---|---|---|---|
qe[calcu](mg g-1) | R12 | qe[calcu](mg g-1) | R22 | ||
1400 | 845.9 | 255.6 | 0.7316 | 854.7 | 0.9998 |
1200 | 769.6 | 233.2 | 0.7916 | 787.4 | 0.9999 |
1000 | 724.4 | 215.6 | 0.8334 | 719.4 | 0.9998 |
800 | 677.7 | 154.7 | 0.5676 | 680.2 | 0.9999 |
Table 1 Pseudo-first-order and pseudo-second-order kinetic model parameters.
C0(μmol/L) | qe[exp] (mg/g) | Pseudo-first-order model | Pseudo-second-order model | ||
---|---|---|---|---|---|
qe[calcu](mg g-1) | R12 | qe[calcu](mg g-1) | R22 | ||
1400 | 845.9 | 255.6 | 0.7316 | 854.7 | 0.9998 |
1200 | 769.6 | 233.2 | 0.7916 | 787.4 | 0.9999 |
1000 | 724.4 | 215.6 | 0.8334 | 719.4 | 0.9998 |
800 | 677.7 | 154.7 | 0.5676 | 680.2 | 0.9999 |
T (K) | Langmuir isotherm model | Freundlich isotherm model | ||||
---|---|---|---|---|---|---|
KL(L mg-1) | qmax(mg g-1) | RL2 | n | KF((mg g-1)(L mg-1)1/n) | RF2 | |
298.15 | 0.1759 | 826.4 | 0.9931 | 5.55 | 307.12 | 0.8218 |
308.15 | 0.1375 | 847.5 | 0.9904 | 4.71 | 265.47 | 0.8478 |
318.15 | 0.1267 | 877.2 | 0.9883 | 4.49 | 260.55 | 0.8794 |
Table 2 Langmuir and Freundlich isotherm model parameters.
T (K) | Langmuir isotherm model | Freundlich isotherm model | ||||
---|---|---|---|---|---|---|
KL(L mg-1) | qmax(mg g-1) | RL2 | n | KF((mg g-1)(L mg-1)1/n) | RF2 | |
298.15 | 0.1759 | 826.4 | 0.9931 | 5.55 | 307.12 | 0.8218 |
308.15 | 0.1375 | 847.5 | 0.9904 | 4.71 | 265.47 | 0.8478 |
318.15 | 0.1267 | 877.2 | 0.9883 | 4.49 | 260.55 | 0.8794 |
Fig. 3. (A) Performance of PQAM during 5 cycles for the desorption/resorption of MO; (B) Static adsorption amounts of PQAM in different pH of MO solutions; and the static adsorption amounts of PQAM for five different dyes (C) and two different toxic heavy metal ions (D).
Fig. 4. (A) Images of selective adsorption of PQAM for MO from MB/MO mixed solution and the chemical structures of MB and MO; (B) UV-vis spectra of MB/MO mixed solution before and after adsorption.
Fig. 5. (A) Dynamic removal performance of PQAM for MO via filtration; (B) UV-vis spectra of MO solution before and after filtration; (C) Dynamic removal performance for 5 filtration-regeneration cycles and (D) selective filtration-separation of PQAM for MO from MB/MO mixed solution.
Fig. 6. (A) Fluorescent images of S. aureus and E. coli after 3 h incubation with PESM and PQAM; (B) The relative proportions of live/dead S. aureus and E. coli on the surface of the prepared membranes; SEM images of S. aureus (C) and E. coli (D) after 3 h incubation with PESM and PQAM.
Fig. 7. Agar plate photographs of S. aureus (A) and E. coli (B) in adsorption experiment; Pseudo-second-order model of S. aureus (C) and E. coli (D) adsorption; (E) Schematic diagram of the adsorption process for bacteria.
Fig. 8. (A) Agar plate photographs of S. aureus and E. coli before and after 3 cycles adsorption-desorption; (B) Clearance ratios for S. aureus and E. coli in 3 cycles; (C) Schematic diagram of the killing, desorbing and recycle process; SEM images of PQAM after adsorption and after desorption for S. aureus (D) and E. coli (E).
Fig. 9. Agar plate photographs of PESM (A) and PQAM (B) for S. aureus and E. coli before and after filtration; (C) Clearance ratios of dynamic removal for bacteria via filtration; SEM images of PESM and PQAM after filtration for S. aureus (D) and E. coli (E).
Adsorbents | Dyes | Bacteria | Refs | |||
---|---|---|---|---|---|---|
te (min) | qmax (mg g-1) | te (min) | Adsorption ratio (%) | Killing ratio (%) | ||
Chitosan/MgO composite | 30 | 90 (MO) | 1440 | - | 93(E. coli) | [ |
Polyaniline/Guar gum/acrylic acid hydrogel | 240 | - | - | - | Efficient for E. coli and S. aureus | [ |
Polyurethane/ graphene oxide NFM | 60 | 109 (MB) | - | - | Efficient for E. coli and S. aureus | [ |
Polyacrylonitrile/ polyetherimide/Fe NFM | 180 | 77.5 (CR) | 480 | - | 90(E. coli) 99(S. aureus) | [ |
Quaternary ammonium modified cellulose mats | 180 | 694 (CR) | 240 | - | 99.9(E. coli) 99(S. aureus) | [ |
Graphene oxide foams | 640 | 446 (RB) | 300 | - | Efficient for S. aureus | [ |
CuO-ZnO composite nanofibers | 1440 | 126 (CR) | 720 | - | Efficient for E. coli and S. aureus | [ |
In-situ crosslinked quaternary ammonium NFM | 360 | 208 (CR) | 720 | - | 99(E. coli) 99(S. aureus) | [ |
Quaternary ammonium modified polyethersulfone NFM | 50 | 909 (MO) | 20 | 99(E. coli and S. aureus) | 96(E. coli) 88(S. aureus) | This work |
Table 3 Comparisons of equilibrium time and adsorption capacities toward dyes, as well as antibacterial effects through various electrospun nanofibrous membranes.
Adsorbents | Dyes | Bacteria | Refs | |||
---|---|---|---|---|---|---|
te (min) | qmax (mg g-1) | te (min) | Adsorption ratio (%) | Killing ratio (%) | ||
Chitosan/MgO composite | 30 | 90 (MO) | 1440 | - | 93(E. coli) | [ |
Polyaniline/Guar gum/acrylic acid hydrogel | 240 | - | - | - | Efficient for E. coli and S. aureus | [ |
Polyurethane/ graphene oxide NFM | 60 | 109 (MB) | - | - | Efficient for E. coli and S. aureus | [ |
Polyacrylonitrile/ polyetherimide/Fe NFM | 180 | 77.5 (CR) | 480 | - | 90(E. coli) 99(S. aureus) | [ |
Quaternary ammonium modified cellulose mats | 180 | 694 (CR) | 240 | - | 99.9(E. coli) 99(S. aureus) | [ |
Graphene oxide foams | 640 | 446 (RB) | 300 | - | Efficient for S. aureus | [ |
CuO-ZnO composite nanofibers | 1440 | 126 (CR) | 720 | - | Efficient for E. coli and S. aureus | [ |
In-situ crosslinked quaternary ammonium NFM | 360 | 208 (CR) | 720 | - | 99(E. coli) 99(S. aureus) | [ |
Quaternary ammonium modified polyethersulfone NFM | 50 | 909 (MO) | 20 | 99(E. coli and S. aureus) | 96(E. coli) 88(S. aureus) | This work |
[1] |
R.P. Schwarzenbach, T. Egli, T.B. Hofstetter, U. von Gunten, B. Wehrli, Annu. Rev. Env. Resour. 35(2010) 109-136.
DOI URL |
[2] | A. Birhanlı, M.J.D. Ozmen, Drug Chem. Toxicol. 28(2005) 51-65. |
[3] |
K.S. Kim, Lancet Infect. Dis. 10(2010) 32-42.
DOI URL |
[4] |
H.F. Wertheim, H.N. Nguyen, W. Taylor, T.T. Lien, H.T. Ngo, T.Q. Nguyen, B.N. Nguyen, H.H. Nguyen, H.M. Nguyen, C.T. Nguyen, T.T. Dao, T.V. Nguyen, A. Fox, J. Farrar, C. Schultsz, H.D. Nguyen, K.V. Nguyen, P. Horby, PLoS One 4(2009) e5973.
DOI URL |
[5] |
Y. Xu, D. Yuan, J. Bao, Y. Xie, M. He, Z. Shi, S. Chen, C. He, W. Zhao, C. Zhao, J. Mater. Chem. A 6(2018) 13359-13372.
DOI URL |
[6] |
Y. Xu, J. Bao, X. Zhang, W. Li, Y. Xie, S. Sun, W. Zhao, C. Zhao, J. Colloid Interface Sci. 533(2019) 526-538.
DOI URL |
[7] |
Y. Xing, J. Cheng, J. Wu, M. Zhang, X.A. Li, W. Pan, J. Mater. Sci. Technol. 45(2020) 84-91.
DOI URL |
[8] |
S. Zhao, Z. Wang, J. Membr. Sci. 524(2017) 214-224.
DOI URL |
[9] | J. Lin, W. Ye, H. Zeng, H. Yang, J. Shen, S. Darvishmanesh, P. Luis, A. Sotto, B. Van der Bruggen, J.Membr. Sci. 477(2015) 183-193. |
[10] |
J.B. Tarkwa, N. Oturan, E. Acayanka, S. Laminsi, M.A. Oturan, Environ. Chem. Lett. 17(2018) 473-479.
DOI URL |
[11] |
K. Rajeshwar, M.E. Osugi, W. Chanmanee, C.R. Chenthamarakshan, M.V.B. Zanoni, P. Kajitvichyanukul, R. Krishnan-Ayer, J. Photochem. Photobiol. C 9(2008) 171-192.
DOI URL |
[12] |
Z. Jia, L.B.T. La, W.C. Zhang, S.X. Liang, B. Jiang, S.K. Xie, D. Habibi, L.C. Zhang, J. Mater. Sci. Technol. 33(2017) 856-863.
DOI URL |
[13] | Y. Xu, W. Lin, H. Wang, J. Guo, D. Yuan, J. Bao, S. Sun, W. Zhao, C. Zhao, Compos. Sci. Technol. 199(2020), 108353. |
[14] |
E. Brillas, C.A. Martínez-Huitle, Appl. Catal.B 166-167(2015) 603-643.
DOI URL |
[15] | M. Sala, M.C. Gutiérrez-Bouzán, Int. J. Photoenergy 2012 (2012) 1-12. |
[16] |
W.W. Wilson, M.M. Wade, S.C. Holman, F.R.J.J. Champlin, J. Microbiol. Methods 43(2001) 153-164.
DOI URL |
[17] |
J. Malakootikhah, A.H. Rezayan, B. Negahdari, S. Nasseri, H. Rastegar, Carbohydr. Polym. 170(2017) 190-197.
DOI PMID |
[18] |
M.J. Sharrer, S.T. Summerfelt, G.L. Bullock, L.E. Gleason, J. Taeuber, Aquacult. Eng. 33(2005) 135-149.
DOI URL |
[19] |
X. Wang, X. Hu, H. Wang, C. Hu, Water Res. 46(2012) 1225-1232.
DOI URL |
[20] |
M. Florjanic, J. Kristl, Drug Dev. Ind. Pharm. 32(2006) 1113-1121.
PMID |
[21] |
M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, Adv. Colloid Interface Sci. 209(2014) 172-184.
DOI URL |
[22] |
Y. Liao, C.H. Loh, M. Tian, R. Wang, A.G. Fane, Prog. Polym. Sci. 77(2018) 69-94.
DOI URL |
[23] |
J. Xue, T. Wu, Y. Dai, Y. Xia, Chem. Rev. 119(2019) 5298-5415.
DOI URL |
[24] | M. Zhang, W. Ma, J. Cui, S. Wu, J. Han, Y. Zou, C. Huang, J. Hazard. Mater. 383(2020), 121152. |
[25] | J. Cui, F. Li, Y. Wang, Q. Zhang, W. Ma, C. Huang, Sep. Purif. Technol. 250(2020), 117116. |
[26] |
J. Shen, Z. Li, Y.N. Wu, B. Zhang, F. Li, Chem. Eng. J. 264(2015) 48-55.
DOI URL |
[27] |
W. Ma, Y. Li, S. Gao, J. Cui, Q. Qu, Y. Wang, C. Huang, G. Fu, ACS Appl. Mater. Interfaces 12(2020) 23644-23654.
DOI URL |
[28] | B. Shen, D. Zhang, Y. Wei, Z. Zhao, X. Ma, X. Zhao, S. Wang, W. Yang, Polymers (Basel) 11(2019) 1511. |
[29] |
R.K. Sadasivam, S. Mohiyuddin, G. Packirisamy, ACS Omega 2(2017) 6556-6569.
DOI PMID |
[30] |
D. Malwal, P. Gopinath, J. Hazard. Mater. 321(2017) 611-621.
DOI URL |
[31] |
C. Lv, S. Chen, Y. Xie, Z. Wei, L. Chen, J. Bao, C. He, W. Zhao, S. Sun, C. Zhao, J. Colloid Interface Sci. 556(2019) 492-502.
DOI URL |
[32] |
H. Deng, Y. Xu, Q. Chen, X. Wei, B. Zhu, J. Membr. Sci. 366(2011) 363-372.
DOI URL |
[33] | L. Zhang, M. Tang, J. Zhang, P. Zhang, J. Zhang, L. Deng, C. Lin, A. Dong, J. Appl. Polym. Sci. 134(2017) 44632. |
[34] |
B. Cramariuc, R. Cramariuc, R. Scarlet, L.R. Manea, I.G. Lupu, O. Cramariuc, J. Electrostatics 71(2013) 189-198.
DOI URL |
[35] |
F.C. Wu, R.L. Tseng, S.C. Huang, R.S. Juang, Chem. Eng. J. 151(2009) 1-9.
DOI URL |
[36] | H. Moussout, H. Ahlafi, M. Aazza, H. Maghat, Int. J. Modern Sci. 4(2018) 244-254. |
[37] | É.C. Lima, M.A. Adebayo, F.M. Machado, Kinetic and Equilibrium Models of Adsorption, Carbon Nanomaterials As Adsorbents for Environmental and Biological Applications,Springer, 2015, pp. 33-69. |
[38] | T. Xu, H. Li, C. He, H. Xu, X. Song, H. Ji, C. Zhao, J. Environ. Chem. Eng. 7(2019), 103393. |
[39] |
X. Song, T. Xu, L. Yang, Y. Li, Y. Yang, L. Jin, J. Zhang, R. Zhong, S. Sun, W.J.B. Zhao, Biomacromolecules 21(2020) 1762-1775.
DOI PMID |
[40] |
B. Satilmis, T. Uyar, Appl. Surf. Sci. 453(2018) 220-229.
DOI URL |
[41] |
E.F.C. Chaúque, L.N. Dlamini, A.A. Adelodun, C.J. Greyling, J.C. Ngila, Phys. Chem. Earth 100(2017) 201-211.
DOI URL |
[42] |
Y. Haldorai, J.J. Shim, Appl. Surf. Sci. 292(2014) 447-453.
DOI URL |
[43] |
Y. Hu, F. Liu, Y. Sun, X. Xu, X. Chen, B. Pan, D. Sun, J. Qian, Chem. Eng. J. 371(2019) 730-737.
DOI URL |
[44] |
R. Sharma, B.S. Kaith, S. Kalia, D. Pathania, A. Kumar, N. Sharma, R.M. Street, C. Schauer, J. Environ. Manage 162(2015) 37-45.
DOI URL |
[45] |
S.P. Sundaran, C.R. Reshmi, P. Sagitha, O. Manaf, A. Sujith, J. Environ. Manag. 240(2019) 494-503.
DOI URL |
[46] | S. Jayanthi, N. KrishnaRao Eswar, S.A. Singh, K. Chatterjee, G. Madras, A.K. Sood, RSC Adv. 6(2016) 1231-1242. |
[1] | Jianglong Yan, Dandan Xia, Pan Xiong, Yangyang Li, Wenhao Zhou, Qiyao Li, Pei Wang, Yufeng Zheng, Yan Cheng. Polyetheretherketone with citrate potentiated influx of copper boosts osteogenesis, angiogenesis, and bacteria-triggered antibacterial abilities [J]. J. Mater. Sci. Technol., 2021, 71(0): 31-43. |
[2] | Mengyang Wang, Shichao Bi, Jianhui Pang, Zhongzheng Zhou, Di Qin, Honglei Wang, Xiaojie Cheng, Xiguang Chen. Precise quantification of the antibacterial activity of chitosan by NB medium neutralizer [J]. J. Mater. Sci. Technol., 2021, 70(0): 224-232. |
[3] | Yi Zou, Yanxia Zhang, Qian Yu, Hong Chen. Dual-function antibacterial surfaces to resist and kill bacteria: Painting a picture with two brushes simultaneously [J]. J. Mater. Sci. Technol., 2021, 70(0): 24-38. |
[4] | Xinrui Zhang, Xiaofang Liu, Chunguang Yang, Tong Xi, Jinlong Zhao, Lichu Liu, Ke Yang. New strategy to delay food spoilage: Application of new food contact material with antibacterial function [J]. J. Mater. Sci. Technol., 2021, 70(0): 59-66. |
[5] | Mingjun Li, Li Nan, Chunyong Liang, Ziqing Sun, Lei Yang, Ke Yang. Antibacterial behavior and related mechanisms of martensitic Cu-bearing stainless steel evaluated by a mixed infection model of Escherichia coli and Staphylococcus aureus in vitro [J]. J. Mater. Sci. Technol., 2021, 62(0): 139-147. |
[6] | Jiajun Qiu, Lu Liu, Shi Qian, Wenhao Qian, Xuanyong Liu. Why does nitrogen-doped graphene oxide lose the antibacterial activity? [J]. J. Mater. Sci. Technol., 2021, 62(0): 44-51. |
[7] | Donglin Han, Yuan Li, Xiangmei Liu, Kelvin Wai Kwok Yeung, Yufeng Zheng, Zhenduo Cui, Yanqin Liang, Zhaoyang Li, Shengli Zhu, Xianbao Wang, Shuilin Wu. Photothermy-strengthened photocatalytic activity of polydopamine-modified metal-organic frameworks for rapid therapy of bacteria-infected wounds [J]. J. Mater. Sci. Technol., 2021, 62(0): 83-95. |
[8] | Li Liu, Wan Peng, Xiao Zhang, Jiangmei Peng, Pingsheng Liu, Jian Shen. Rational design of phosphonate/quaternary amine block polymer as an high-efficiency antibacterial coating for metallic substrates [J]. J. Mater. Sci. Technol., 2021, 62(0): 96-106. |
[9] | Mi Wu, Wen Liu, Jinrong Yao, Zhengzhong Shao, Xin Chen. Silk microfibrous mats with long-lasting antimicrobial function [J]. J. Mater. Sci. Technol., 2021, 63(0): 203-209. |
[10] | Yuxuan Mao, Peng Li, Jiewei Yin, Yanjie Bai, Huan Zhou, Xiao Lin, Huilin Yang, Lei Yang. Starch-based adhesive hydrogel with gel-point viscoelastic behavior and its application in wound sealing and hemostasis [J]. J. Mater. Sci. Technol., 2021, 63(0): 228-235. |
[11] | Yuqiao Dong, Jiaqi Li, Dake Xu, Guangling Song, Dan Liu, Haipeng Wang, M.Saleem Khan, Ke Yang, Fuhui Wang. Investigation of microbial corrosion inhibition of Cu-bearing 316L stainless steel in the presence of acid producing bacterium Acidithiobacillus caldus SM-1 [J]. J. Mater. Sci. Technol., 2021, 64(0): 176-186. |
[12] | Run Huang, Lei Liu, Bo Li, Liang Qin, Lei Huang, Kelvin W.K. Yeung, Yong Han. Nanograins on Ti-25Nb-3Mo-2Sn-3Zr alloy facilitate fabricating biological surface through dual-ion implantation to concurrently modulate the osteogenic functions of mesenchymal stem cells and kill bacteria [J]. J. Mater. Sci. Technol., 2021, 73(0): 31-44. |
[13] | Tingting Wu, Guoqiang Deng, Chao Zhen. Metal oxide mesocrystals and mesoporous single crystals: synthesis, properties and applications in solar energy conversion [J]. J. Mater. Sci. Technol., 2021, 73(0): 9-22. |
[14] | Qian Wu, Xiangmei Liu, Bo Li, Lei Tan, Yong Han, Zhaoyang Li, Yanqin Liang, Zhenduo Cui, Shengli Zhu, Shuilin Wu, Yufeng Zheng. Eco-friendly and degradable red phosphorus nanoparticles for rapid microbial sterilization under visible light [J]. J. Mater. Sci. Technol., 2021, 67(0): 70-79. |
[15] | Xuepeng Ni, Zhe Cui, Ning Jiang, Huifang Chen, Qilin Wu, Anqi Ju, Meifang Zhu. Hollow multi-nanochannel carbon nanofiber/MoS2 nanoflower composites as binder-free lithium-ion battery anodes with high capacity and ultralong-cycle life at large current density [J]. J. Mater. Sci. Technol., 2021, 77(0): 169-177. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||