J. Mater. Sci. Technol. ›› 2014, Vol. 30 ›› Issue (9): 854-859.DOI: 10.1016/j.jmst.2014.07.006

• Orginal Article • Previous Articles     Next Articles

Improving the Economic Values of the Recycled Plastics Using Nanotechnology Associated Studies

W.S. Khan, R. Asmatulu*, S. Davuluri, V.K. Dandin   

  1. Department of Mechanical Engineering, Wichita State University, 1845 Fairmount, Wichita, KS 67260-0133, USA
  • Received:2013-11-29 Online:2014-09-20 Published:2014-09-30
  • Contact: * Corresponding author. Assoc. Prof., Ph.D.; Tel.: t1 316 9786368;E-mail address:ramazan.asmatulu@wichita.edu (R. Asmatulu).

Abstract: Recycled polystyrene (PS) cups were chopped up and separately incorporated with multiwall carbon nanotubes (MWCNTs) and NiZn ferrite (Ni0.6Zn0.4Fe2O4) nanoparticles prior to electrospinning under different conditions. These nanoscale inclusions were initially dispersed well in dimethylformamide (DMF), and then known amounts of the recycled PS pieces were added to the dispersions prior to 30 min of sonication followed by 4 h of high-speed agitation at 750 r/min. The thermal, dielectric, surface hydrophobic, and magnetic properties of the resultant nanocomposite fibers were determined by thermal comparative, capacitance bridge, vibrating sample magnetometer (VSM), and goniometer techniques, respectively. Test results confirmed that the physical properties of recycled nanofibers were significantly increased as a function of the inclusion concentrations, which may be because of their excellent properties. The consumption of polymeric products as well as their waste materials has dramatically grown worldwide. Although plastic recycling, reprocessing, and reusing rates are growing, the physical properties and economic value of recycled plastics are significantly low. Consequently, this work provides a detailed explanation of how to improve recycled plastics, making them into highly valued new nanoproducts for various industrial applications, including filtration, textile, transportation, construction, and energy.

Key words: Recycled polystyrene, NiZn ferrite, Multiwall carbon nanotubes (MWCNTs), Electrospinning, Nanocomposite fibers, Physical properties