J. Mater. Sci. Technol. ›› 2021, Vol. 89: 36-44.DOI: 10.1016/j.jmst.2021.01.078
Previous Articles Next Articles
Jian Hana, Xingyu Pua, Hui Zhoua, Qi Caoa, Shuangjie Wanga, Jiabao Yanga, Junsong Zhaoa, Xuanhua Lia,b,*(
)
Received:2020-09-30
Revised:2021-01-18
Accepted:2021-01-26
Published:2021-10-30
Online:2021-10-30
Contact:
Xuanhua Li
About author:*State Key Laboratory of Solidification Processing,Center for Nano Energy Materials, School of Materials Science and Engineering,Northwestern Polytechnical University, Xi'an 710072, China.E-mail address: lixh32@nwpu.edu.cn (X. Li).Jian Han, Xingyu Pu, Hui Zhou, Qi Cao, Shuangjie Wang, Jiabao Yang, Junsong Zhao, Xuanhua Li. Multidentate anchoring through additive engineering for highly efficient Sb2S3 planar thin film solar cells[J]. J. Mater. Sci. Technol., 2021, 89: 36-44.
Fig. 1. (a) Schematic diagram of the preparation process for [TMA][PF6]-assisted Sb2S3 film and device structure. (b) Cross-sectional SEM image of Sb2S3 solar cell without Au electrode. (c) Crystal structure of Sb2S3 (showing the distances of interribbons and intersheets) and the molecular structure of the [TMA][PF6]. (d) Working mechanism schematic of [PF6]- in Sb2S3: [PF6]- coordinate with Sb to form multidentate anchoring structure at the grain boundaries of Sb2S3. The Sb2S3 films with different concentrations of [TMA][PF6] additives: (e) surface SEM images; (f) XRD patterns, and the inset is the zoom-in of the 24.5°-26.0° region around (130) peak.
| Condition | VOC (V) | JSC (mA cm-2) | FF (%) | PCE (%) |
|---|---|---|---|---|
| 0 % | 0.57 ± 0.006 (0.58)(a) | 14.87 ± 0.24 (14.94) | 50.32 ± 0.46 (51.13) | 4.27 ± 0.14 (4.43) |
| 2 % | 0.60 ± 0.007 (0.61) | 16.33 ± 0.22 (16.48) | 53.75 ± 0.47 (54.65) | 5.27 ± 0.14 (5.49) |
| 10 % | 0.65 ± 0.005 (0.66) | 17.57 ± 0.18 (17.65) | 58.03 ± 0.43 (58.66) | 6.63 ± 0.12 (6.83) |
| 30 % | 0.62 ± 0.005 (0.63) | 16.76 ± 0.20 (16.83) | 55.31 ± 0.48 (56.21) | 5.75 ± 0.13 (5.96) |
Table 1 Photovoltaic parameters (best) of Sb2S3 devices with different concentrations of [TMA][PF6] additives.
| Condition | VOC (V) | JSC (mA cm-2) | FF (%) | PCE (%) |
|---|---|---|---|---|
| 0 % | 0.57 ± 0.006 (0.58)(a) | 14.87 ± 0.24 (14.94) | 50.32 ± 0.46 (51.13) | 4.27 ± 0.14 (4.43) |
| 2 % | 0.60 ± 0.007 (0.61) | 16.33 ± 0.22 (16.48) | 53.75 ± 0.47 (54.65) | 5.27 ± 0.14 (5.49) |
| 10 % | 0.65 ± 0.005 (0.66) | 17.57 ± 0.18 (17.65) | 58.03 ± 0.43 (58.66) | 6.63 ± 0.12 (6.83) |
| 30 % | 0.62 ± 0.005 (0.63) | 16.76 ± 0.20 (16.83) | 55.31 ± 0.48 (56.21) | 5.75 ± 0.13 (5.96) |
Fig. 2. (a) Raman spectra (containing the Raman spectrum of the [TMA][PF6]). High-resolution of (b) P 2p and F 1 s, (c) Sb 3d, and (d) S 2p XPS spectra for Sb2S3 films without and with 10 % additive.
Fig. 3. The AFM topography maps of (a) the optimized Sb2S3 (the addition of 10 % [TMA][PF6]) and (c) control Sb2S3 film, and their corresponding KPFM maps of (b) optimized Sb2S3 and (d) control Sb2S3 film. (e) The line profile of surface potential of (b) and (d). The schematic about the crystallization process of (f) the control Sb2S3 and (g) optimized Sb2S3. Yellow, brown, purple and gray spheres represent S, Sb, P and F, respectively.
Fig. 4. Photovoltaic performance: (a) J-V curves of different Sb2S3 devices measured under standard AM 1.5 G simulated sunlight, (b) UV-vis absorption spectra of different Sb2S3 films (the inset is the Tauc plot for the bandgap calculations), (c) EQE and their integrated current plots, and (d) IQE of different Sb2S3 devices.
Fig. 5. (a) UPS characterizations for the control and optimized Sb2S3 films. (b) Energy level diagram of control and optimized Sb2S3 devices. (c) I-V curves in dark conditions (the inset shows the structure of the devices), (d) 1/C2 versus V curves.
Fig. 6. (a) PL of the Sb2S3 films, and (b) dark J-V characterizations of Sb2S3 devices with different concentrations of [TMA][PF6] additives. (c) EIS of Sb2S3 devices measured in the darkness (the inset shows the equivalent circuit), and (d) bias voltage dependent Rrec curves for the Sb2S3 devices with different concentrations of [TMA][PF6] additives.
| [1] |
J. Xu, C.C. Boyd, Z.J. Yu, A.F. Palmstrom, D.J. Witter, B.W. Larson, R.M. France, J. Werner S.P. Harvey, E.J. Wolf, W. Weigand, S. Manzoor, M.F.A.M. van Hest, J. J.Berry J.M. Luther, Z.C. Holman, M.D. McGehee, Science 367 (2020) 1097-1104.
DOI URL |
| [2] |
D. Colombara, F. Werner, T. Schwarz, I.C. Infante, Y. Fleming, N. Valle, C. Spindler E. Vacchieri, G. Rey, M. Guennou, M. Bouttemy, A.G. Manjón, I. P.Alonso M. Melchiorre, B. El Adib, B. Gault, D. Raabe, P.J. Dale, S. Siebentritt, Nat. Commun. 9 (2018) 826.
DOI PMID |
| [3] |
B. Yang, W. Pan, H. Wu, G. Niu, J.H. Yuan, K.H. Xue, L. Yin, X. Du, X.S. Miao, X. Yang Q. Xie, J. Tang, Nat. Commun. 10 (2019) 1989.
DOI PMID |
| [4] |
A. Chiril˘a, P. Reinhard, F. Pianezzi, P. Bloesch, A.R. Uhl, C. Fella, L. Kranz, D. Keller C. Gretener, H. Hagendorfer, D. Jaeger, R. Erni, S. Nishiwaki, S. Buecheler A.N. Tiwari, Nat. Mater. 12 (2013) 1107-1111.
DOI URL |
| [5] |
Z. Yang, X. Wang, Y. Chen, Z. Zheng, Z. Chen, W. Xu, W. Liu, Y.M. Yang, J. Zhao, T. Chen, H. Zhu, Nat. Commun. 10 (2019) 4540.
DOI URL |
| [6] |
R. Kondrotas, C. Chen, J. Tang, Joule 2 (2018) 857-878.
DOI URL |
| [7] | H. Deng, Y. Zeng, M. Ishaq, S. Yuan, H. Zhang, X. Yang, M. Hou, U. Farooq, J. Huang K. Sun, R. Webster, H. Wu, Z. Chen, F. Yi, H. Song, X. Hao, J. Tang, Adv.Funct. Mater. 29 (2019), 1901720. |
| [8] |
C. Chao, Z. Yang, S. Lu, K. Li, Adv. Energy Mater. 7 (2017), 1700866.
DOI URL |
| [9] |
L. Wang, D.B. Li, K. Li, C. Chen, H.X. Deng, L. Gao, Y. Zhao, F. Jiang, L. Li, F. Huang Y. He, H. Song, G. Niu, J. Tang, Nat. Energy 2 (2017) 17046.
DOI URL |
| [10] |
R. Tang, X. Wang, W. Lian, J. Huang, Q. Wei, M. Huang, Y. Yin, C. Jiang, S. Yang, G. Xing, S. Chen, C. Zhu, X. Hao, M.A. Green, T. Chen, Nat. Energy 5 (2020) 587-595.
DOI URL |
| [11] | C. Wu, C. Jiang, X. Wang, H. Ding, H. Ju, L. Zhang, T. Chen, C. Zhu, ACS Appl.Mater. Interfaces 11 (2019) 3207-3213. |
| [12] |
W.K. Metzger, S. Grover, D. Lu, E. Colegrove, J. Moseley, C.L. Perkins, X. Li, R. Mallick W. Zhang, R. Malik, J. Kephart, C.S. Jiang, D. Kuciauskas, D.S. Albin, M.M. Al-Jassim, G. Xiong, M. Gloeckler, Nat. Energy 4 (2019) 837-845.
DOI |
| [13] |
J.D. Major, R.E. Treharne, L.J. Phillips, K. Durose, Nature 511 (2014) 334-337.
DOI URL |
| [14] | Y.T. Hsieh, Q. Han, C. Jiang, T.B. Song, H. Chen, L. Meng, H. Zhou, Y. Yang, Adv.Energy Mater. 6 (2016), 1502386. |
| [15] | S.G. Haass, M. Diethelm, M. Werner, B. Bissig, Y.E. Romanyuk, A.N. Tiwari, Adv.Energy Mater. 5 (2015), 1500712. |
| [16] |
M. Bernechea, N.C. Miller, G. Xercavins, D. So, A. Stavrinadis, G. Konstantatos, Nat. Photonics 10 (2016) 521-525.
DOI |
| [17] | D. Liu, D. Cai, Y. Yang, H. Zhong, Y. Zhao, Y. Song, S. Yang, H. Wu, Appl. Surf.Sci. 366 (2016) 30-37. |
| [18] |
P.P. Boix, Y.H. Lee, F. Fabregat-Santiago, S.H. Im, I. Mora-Sero, J. Bisquert, S. I.Seok , ACS Nano 6 (2012) 873-880.
DOI URL |
| [19] | J. Han, S. Wang, J. Yang, S. Guo, Q. Cao, H. Tang, X. Pu, B. Gao, X. Li, ACS Appl.Mater. Interfaces 12 (2020) 4970-4979. |
| [20] |
J.A. Chang, S.H. Im, Y.H. Lee, H.J. Kim, C.S. Lim, J.H. Heo, S.I. Seok, Nano Lett. 12 (2012) 1863-1867.
DOI URL |
| [21] | M. Ishaq, H. Deng, U. Farooq, H. Zhang, X. Yang, U.A. Shah, H. Song, Sol. RRL 3 (2019), 1900305. |
| [22] |
X.M. Wang, J.M. Li, W.F. Liu, S.F. Yang, C.F. Zhu, T. Chen, Nanoscale 9 (2017) 3386-3390.
DOI URL |
| [23] |
K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi M. Kanematsu, H. Uzu, K. Yamamoto, Nat. Energy 2 (2017) 17032.
DOI URL |
| [24] |
Y. Itzhaik, O. Niitsoo, M. Page, G. Hodes, J. Phys. Chem. C 113 (2009) 4254-4256.
DOI URL |
| [25] |
C.C. Yong, U.L. Dong, J.H. Noh, E.K. Kim, I.S. Sang, Adv. Funct. Mater. 24 (2014) 3587-3592.
DOI URL |
| [26] |
S.H. Im, C.S. Lim, J.A. Chang, Y.H. Lee, N. Maiti, H.J. Kim, M.K. Nazeeruddin, M. Grätzel S.I. Seok, Nano Lett. 11 (2011) 4789-4793.
DOI URL |
| [27] | R. Nie, S.I. Seok, Small Methods 4 (2019), 1900698. |
| [28] |
H. Wedemeyer, J. Michels, R. Chmielowski, S. Bourdais, T. Muto, M. Sugiura, G. Dennler J. Bachmann, Energy Environ. Sci. 6 (2013) 67-71.
DOI URL |
| [29] |
D.H. Kim, S.J. Lee, M.S. Park, J.K. Kang, J.H. Heo, S.H. Im, S.J. Sung, Nanoscale 6 (2014) 14549-14554.
DOI URL |
| [30] | G. Murtaza, M. Akhtar, M.A. Malik, P. O’Brien, N. Revaprasadu, Mater. Sci.Semicond. Process. 40 (2015) 643-649. |
| [31] |
Y. Yin, C. Wu, R. Tang, C. Jiang, G. Jiang, W. Liu, T. Chen, C. Zhu, Sci. Bull. 64 (2019) 136-141.
DOI URL |
| [32] |
M. Liu, Y. Gong, Z. Li, M. Dou, F. Wang, Appl. Surf. Sci. 387 (2016) 790-795.
DOI URL |
| [33] | H. Deng, S. Yuan, X. Yang, F. Cai, C. Hu, K. Qiao, J. Zhang, J. Tang, H. Song, Z. He, Mater. Today Energy 3 (2017) 15-23. |
| [34] |
S. Yuan, H. Deng, D. Dong, X. Yang, K. Qiao, C. Hu, H. Song, H. Song, Z. He, J. Tang , Sol. Energy Mater. Sol. Cells 157 (2016) 887-893.
DOI URL |
| [35] |
E. Cárdenas, A. Arato, E. Perez-Tijerina, T.K. Das Roy, G.A. Castillo, B. Krishnan, Sol. Energy Mater. Sol. Cells 93 (2009) 33-36.
DOI URL |
| [36] | S. Ito, K. Tsujimoto, D.C. Nguyen, K. Manabe, H. Nishino, Int. J. HydrogenEnergy 38 (2013) 16749-16754. |
| [37] | R. Tang, X. Wang, C. Jiang, S. Li, W. Liu, H. Ju, S. Yang, C. Zhu, T. Chen, ACS Appl.Mater. Interfaces 10 (2018) 30314-30321. |
| [38] | C. Jiang, R. Tang, X. Wang, H. Ju, G. Chen, T. Chen, Sol. RRL 2 (2018), 1800272. |
| [39] | Z. Cai, C.M. Dai, S. Chen, Sol. RRL 4 (2020), 1900503. |
| [40] |
D. Yang, L. Zhou, W. Yu, J. Zhang, C. Li, Adv. Energy Mater. 4 (2014), 1400591.
DOI URL |
| [41] | T. Li, S. Wang, J. Yang, X. Pu, B. Gao, Z. He, Q. Cao, J. Han, X. Li, Nano Energy 82 (2021), 105742. |
| [42] |
S. Shaji, L.V. Garcia, S.L. Loredo, B. Krishnan, J.A.A. Martinez, T.K. Das Roy, D.A. Avellaneda, Appl. Surf. Sci. 393 (2017) 369-376.
DOI URL |
| [43] |
P.K. Dutta, B. del Barco, D.C. Shieh, Chem. Phys. Lett. 127 (1986) 200-204.
DOI URL |
| [44] |
R.W. Berg, Monatsh. Chem. 138 (2007) 1045-1075.
DOI URL |
| [45] |
L.E. Alexander, I.R. Beattie, J. Chem. Soc. A 0 (1971) 3091-3095.
DOI URL |
| [46] |
R. Minkwitz, A. Kornath, W. Sawodny, Angew. Chem. Int. Ed. Engl. 31 (1992) 643-644.
DOI URL |
| [47] |
T. Buniˇc, M. Tramˇsek, E. Goreshnik, B. ˇZemva, Solid State Sci. 10 (2008) 1511-1516.
DOI URL |
| [48] |
X. Sun, H. Deng, W. Zhu, Z. Yu, C. Wu, Y. Xie, Angew. Chem. Int. Ed. 55 (2016) 1704-1709.
DOI URL |
| [49] |
S. Wang, B. Yang, J. Han, Z. He, T. Li, Q. Cao, J. Yang, J. Suo, X. Li, Z. Liu, S. Liu, C. Tang A. Hagfeldt, Energy Environ. Sci. 13 (2020) 5068-5079.
DOI URL |
| [50] |
A.J. Nelson, S. Glenis, A.J. Frank, , J. Chem. Phys. 87 (1987) 5002-5006.
DOI URL |
| [51] |
B. Yang, J. Wang, C. Jiang, J. Li, G. Yu, S. Deng, S. Lu, P. Zhang, C. Zhu, Q. Zhuo, Chem. Eng. J. 316 (2017) 296-304.
DOI URL |
| [52] |
V.P.Zakaznova-Herzog, S.L. Harmer, H.W. Nesbitt, G.M. Bancroft, R. Flemming, A.R. Pratt, Surf. Sci. 600 (2006) 348-356.
DOI URL |
| [53] |
P. Salinas-Estevané, E.M. Sánchez, Mater. Lett. 64 (2010) 2627-2630.
DOI URL |
| [54] | C. Chen, K. Li, S. Chen, L. Wang, S. Lu, Y. Liu, D. Li, H. Song, J. Tang, ACS EnergyLett. 3 (2018) 2335-2341. |
| [55] | J.C. Yu, S. Badgujar, E.D. Jung, V.K. Singh, D.W. Kim, J. Gierschner, E. Lee, Y. S.Kim S. Cho, M.S. Kwon, M.H. Song, Adv. Mater. 31 (2019), 1805554. |
| [56] | J. Han, S. Wang, X. Li, H. Tang, Q. Cao, J. Yang, J. Zhu, X. Liu, Z. Li, W. Liu, Sol. RRL3 (2019), 1900133. |
| [57] |
S. Wang, Z. He, J. Yang, T. Li, X. Pu, J. Han, Q. Cao, B. Gao, X. Li, , J. Energy Chem. 60 (2021) 169-177.
DOI URL |
| [58] |
X. Liu, T. Bu, J. Li, J. He, T. Li, J. Zhang, W. Li, Z. Ku, Y. Peng, F. Huang, Y.B. Cheng, J. Zhong, Nano Energy 44 (2018) 34-42.
DOI URL |
| [59] |
H. Zhou, Q. Chen, G. Li, S. Luo, T.B. Song, H.S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang , Science 345 (2014) 542-546.
DOI URL |
| [60] |
G.X. Liang, Z.H. Zheng, P. Fan, J.T. Luo, J.G. Hu, X.H. Zhang, H.L. Ma, B. Fan, Z. K.Luo D.P. Zhang, Sol. Energy Mater. Sol. Cells 174 (2018) 263-270.
DOI URL |
| [61] | J. Yang, Q. Cao, Z. He, X. Pu, T. Li, B. Gao, X. Li, Nano Energy 82 (2021), 105731. |
| [62] | R. Tang, Z.H. Zheng, Z.H. Su, X.J. Li, Y.D. Wei, X.H. Zhang, Y.Q. Fu, J.T. Luo, P. Fan, G.X. Liang, Nano Energy 64 (2019), 103929. |
| [63] |
F. Liu, S. Wu, Y. Zhang, X. Hao, L. Ding, Sci. Bull. 65 (2020) 698-701.
DOI URL |
| [64] |
B. Gao, Q. Cao, X. Pu, J. Yang, J. Han, S. Wang, T. Li, Z. He, X. Li, Appl. Surf. Sci. 546 (2021), 148711.
DOI URL |
| [65] |
L. Fan, Y. Ding, J. Luo, B. Shi, X. Yao, C. Wei, D. Zhang, G. Wang, Y. Sheng, Y. Chen A. Hagfeldt, Y. Zhao, X. Zhang, J. Mater. Chem. A 5 (2017) 7423- 7432.44
DOI URL |
| [1] | Hongtao Zeng, Yong Yang, Minhang Zeng, Moucheng Li. Effect of dissolved oxygen on electrochemical corrosion behavior of 2205 duplex stainless steel in hot concentrated seawater [J]. J. Mater. Sci. Technol., 2021, 66(0): 177-185. |
| [2] | L.L. Li, Z.B. Wang, S.Y. He, Y.G. Zheng. Correlation between depassivation and repassivation processes determined by single particle impingement: Its crucial role in the phenomenon of critical flow velocity for erosion-corrosion [J]. J. Mater. Sci. Technol., 2021, 89(0): 158-166. |
| [3] | Xiaofang Ye, Hongkun Cai, Jian Su, Jingtao Yang, Jian Ni, Juan Li, Jianjun Zhang. Preparation of hysteresis-free flexible perovskite solar cells via interfacial modification [J]. J. Mater. Sci. Technol., 2021, 61(0): 213-220. |
| [4] | Ji Liu, Jianqiu Wang, Zhiming Zhang, Hui Zheng. Repassivation behavior of alloy 690TT in simulated primary water at different temperatures [J]. J. Mater. Sci. Technol., 2021, 68(0): 227-235. |
| [5] | Kun Ye, Bochong Wang, Anmin Nie, Kun Zhai, Fusheng Wen, Congpu Mu, Zhisheng Zhao, Jianyong Xiang, Yongjun Tian, Zhongyuan Liu. Broadband photodetector of high quality Sb2S3 nanowire grown by chemical vapor deposition [J]. J. Mater. Sci. Technol., 2021, 75(0): 14-20. |
| [6] | Tingting Wu, Guoqiang Deng, Chao Zhen. Metal oxide mesocrystals and mesoporous single crystals: synthesis, properties and applications in solar energy conversion [J]. J. Mater. Sci. Technol., 2021, 73(0): 9-22. |
| [7] | Hua Zhang, Jia Zhuang, Xingchong Liu, Zhu Ma, Heng Guo, Ronghong Zheng, Shuangshuang Zhao, Fu Zhang, Zheng Xiao, Hanyu Wang, Haimin Li. Defect passivation strategy for inorganic CsPbI2Br perovskite solar cell with a high-efficiency of 16.77% [J]. J. Mater. Sci. Technol., 2021, 82(0): 40-46. |
| [8] | Zhen Li, Zhang-Zhi Shi, Hai-Jun Zhang, Hua-Fang Li, Yun Feng, Lu-Ning Wang. Hierarchical microstructure and two-stage corrosion behavior of a high-performance near-eutectic Zn-Li alloy [J]. J. Mater. Sci. Technol., 2021, 80(0): 50-65. |
| [9] | Xuan Wu, Yuanyuan Liu, Yangting Sun, Nianwei Dai, Jin Li, Yiming Jiang. A discussion on evaluation criteria for crevice corrosion of various stainless steels [J]. J. Mater. Sci. Technol., 2021, 64(0): 29-37. |
| [10] | InSu Jin, Minwoo Park, Jae Woong Jung. Reduced interface energy loss in non-fullerene organic solar cells using room temperature-synthesized SnO2 quantum dots [J]. J. Mater. Sci. Technol., 2020, 52(0): 12-19. |
| [11] | Sukanta Bose, Sourav Mandal, Asok K. Barua, Sumita Mukhopadhyay. Properties of boron doped ZnO films prepared by reactive sputtering method: Application to amorphous silicon thin film solar cells [J]. J. Mater. Sci. Technol., 2020, 55(0): 136-143. |
| [12] | Kunsik An, Jaehoon Kim, Mohammad Afsar Uddin, Seunghyun Rhee, Hyeok Kim, Kyung-Tae Kang, Han Young Woo, Changhee Lee. Germinant ZnO nanorods as a charge-selective layer in organic solar cells [J]. J. Mater. Sci. Technol., 2020, 55(0): 89-94. |
| [13] | Liquan Yao, Limei Lin, Hui Liu, Fengying Wu, Jianmin Li, Shuiyuan Chen, Zhigao Huang, Guilin Chen. Front and Back contact engineering for high-efficient and low-cost hydrothermal derived Sb2(S, Se)3 solar cells by using FTO/SnO2 and carbon [J]. J. Mater. Sci. Technol., 2020, 58(0): 130-137. |
| [14] | Kyungeun Jung, Du Hyeon Kim, Jaemin Kim, Sunglim Ko, Jae Won Choi, Ki Chul Kim, Sang-Geul Lee, Man-Jong Lee. Influence of a UV-ozone treatment on amorphous SnO2 electron selective layers for highly efficient planar MAPbI3 perovskite solar cells [J]. J. Mater. Sci. Technol., 2020, 59(0): 195-202. |
| [15] | Zhangweijia Qiu, Zhengkun Li, Huameng Fu, Hongwei Zhang, Zhengwang Zhu, Aimin Wang, Hong Li, Long Zhang, Haifeng Zhang. Corrosion mechanisms of Zr-based bulk metallic glass in NaF and NaCl solutions [J]. J. Mater. Sci. Technol., 2020, 46(0): 33-43. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
