J. Mater. Sci. Technol. ›› 2021, Vol. 82: 40-46.DOI: 10.1016/j.jmst.2020.08.051
• Research Article • Previous Articles Next Articles
Hua Zhanga, Jia Zhuanga,*(), Xingchong Liua,*(
), Zhu Mab, Heng Guoa, Ronghong Zhenga, Shuangshuang Zhaoa, Fu Zhangb, Zheng Xiaob, Hanyu Wanga, Haimin Lia
Received:
2020-06-07
Revised:
2020-08-11
Accepted:
2020-08-17
Published:
2020-09-09
Online:
2020-09-09
Contact:
Jia Zhuang,Xingchong Liu
About author:
liuxc76@163.com (X. Liu).Hua Zhang, Jia Zhuang, Xingchong Liu, Zhu Ma, Heng Guo, Ronghong Zheng, Shuangshuang Zhao, Fu Zhang, Zheng Xiao, Hanyu Wang, Haimin Li. Defect passivation strategy for inorganic CsPbI2Br perovskite solar cell with a high-efficiency of 16.77%[J]. J. Mater. Sci. Technol., 2021, 82: 40-46.
Fig. 2. (a) XRD patterns and (b) UV-vis spectra of the control and optimized CsPbI2Br perovskite films. Top-view SEM images of the (c) control and (d) optimized perovskite films, insets are the corresponding details of the images with higher magnification.
Fig. 3. (a) Surface topography and (b) surface contact potential of the CsPbI2Br perovskite films for the control and optimized samples in KPFM measurement. Statistic histograms of surface potentials (SP) of the (c) control and (d) optimized CsPbI2Br perovskite films.
Fig. 4. (a) Schematic illustration of interaction between NMP (C5H9NO) molecules and CsPbI2Br perovskites. (b) Survey XPS, high resolution (c) Pb 4f core-level spectra and (d) O 1s spectra for pure NMP molecules and optimized CsPbI2Br perovskite films.
Fig. 5. (a) Steady-state photoluminescence (PL) spectra and (b) time-resolved photoluminescence (TRPL) spectra of control and optimized perovskite films deposited on glass/ITO/SnO2.
Fig. 6. SCLC measurements of (a) control and (b) optimized devices based on the structure of glass/ITO/SnO2/perovskite/PCBM/Ag. (c) Electrochemical impedance spectra (EIS) and an equivalent circuit of the control and optimized devices. (d) Schematic illustration of the CsPbI2Br device. (e) Reverse scanning current density-voltage (J-V) curves of the CsPbI2Br PSC devices with doping different concentration of NMP molecules. (f) Statistic histograms of the PCE with the control and optimized devices (based on 20 different individual devices). (g) Reverse scanning J-V curves, (h) steady-state efficiencies and (i) evolution of normalized PCEs under the dry nitrogen atmosphere for the control and optimized devices, respectively.
Samples | VOC (V) | JSC (mA/cm2) | FF | PCE (%) | Rs (Ω) | Rsh (Ω) |
---|---|---|---|---|---|---|
Control | 1.22 | 16.80 | 0.72 | 14.70 | 3.3 | 4901.0 |
0.5% NMP | 1.20 | 16.80 | 0.76 | 15.28 | 2.3 | 6509.0 |
1.5% NMP | 1.23 | 16.54 | 0.77 | 15.62 | 2.4 | 5485.6 |
2.5% NMP | 1.26 | 16.70 | 0.80 | 16.77 | 1.9 | 14376.7 |
3.5% NMP | 1.24 | 16.15 | 0.76 | 15.35 | 3.6 | 4557.1 |
Table 1 Detailed photovoltaic performance parameters of CsPbI2Br PSC devices without and with NMP.
Samples | VOC (V) | JSC (mA/cm2) | FF | PCE (%) | Rs (Ω) | Rsh (Ω) |
---|---|---|---|---|---|---|
Control | 1.22 | 16.80 | 0.72 | 14.70 | 3.3 | 4901.0 |
0.5% NMP | 1.20 | 16.80 | 0.76 | 15.28 | 2.3 | 6509.0 |
1.5% NMP | 1.23 | 16.54 | 0.77 | 15.62 | 2.4 | 5485.6 |
2.5% NMP | 1.26 | 16.70 | 0.80 | 16.77 | 1.9 | 14376.7 |
3.5% NMP | 1.24 | 16.15 | 0.76 | 15.35 | 3.6 | 4557.1 |
[1] | National Renewable Energy Laboratory (NREL), Best Research-Cell Efficiency Website, 2020 https://www.nrel.gov/pv/cell-efficiency.html . |
[2] |
B. Brunetti, C. Cavallo, A. Ciccioli, G. Gigli, A. Latini, Sci. Rep. 6 (2016) 31896.
DOI PMID |
[3] | B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D’Haen, L. D’Olieslaeger, A. Ethirajan, J. Verbeeck, J. Manca, E. Mosconi, F.D. Angelis, H.G. Boyen, Adv. Energy Mater. 5 (2015) 1-8. |
[4] |
C.C. Boyd, R. Cheacharoen, T. Leijtens, M.D. McGehee, Chem. Rev. 119 (2019) 3418-3451.
DOI URL |
[5] |
Y. Fan, J. Fang, X. Chang, M.-C. Tang, D. Barrit, Z. Xu, Z. Jiang, J. Wen, H. Zhao, T. Niu, D.-M. Smilgies, S. Jin, Z. Liu, E.Q. Li, A. Amassian, S. Liu, K. Zhao, Joule 3 (2019) 2485-2502.
DOI URL |
[6] |
Q. Zhang, W. Zhu, D. Chen, Z. Zhang, Z. Lin, J. Chang, J. Zhang, C. Zhang, Y. Hao, ACS Appl. Mater. Interfaces 11 (2019) 2997-3005.
DOI URL |
[7] |
Q. Ye, Y. Zhao, S. Mu, F. Ma, F. Gao, Z. Chu, Z. Yin, P. Gao, X. Zhang, J. You, Adv. Mater. 31 (2019) 1905143.
DOI URL |
[8] |
W. Xiang, W. Tress, Adv. Mater. 31 (2019) 1902851.
DOI URL |
[9] |
Q. Zeng, X. Zhang, C. Liu, T. Feng, Z. Chen, W. Zhang, W. Zheng, H. Zhang, B. Yang, Sol. RRL 3 (2019) 1800239.
DOI URL |
[10] | J.V. Patil, S.S. Mali, C.K. Hong, Sol. RRL(2020) 2000164. |
[11] |
G. Yin, H. Zhao, H. Jiang, S. Yuan, T. Niu, K. Zhao, Z. Liu, S.F. Liu, Adv. Funct. Mater 28 (2018) 1803269.
DOI URL |
[12] |
C. Duan, J. Cui, M. Zhang, Y. Han, S. Yang, H. Zhao, H. Bian, J. Yao, K. Zhao, Z. Liu, S. Liu, Adv. Energy Mater 10 (2020) 2000691.
DOI URL |
[13] |
J. Tian, Q. Xue, X. Tang, Y. Chen, N. Li, Z. Hu, T. Shi, X. Wang, F. Huang, C.J. Brabec, H.L. Yip, Y. Cao, Adv. Mater. 31 (2019) 1901152.
DOI URL |
[14] |
Y. Zhang, C. Wu, D. Wang, Z. Zhang, X. Qi, N. Zhu, G. Liu, X. Li, H. Hu, Z. Chen, L. Xiao, B. Qu, Sol. RRL 3 (2019) 1900254.
DOI URL |
[15] |
H. Zhao, Y. Han, Z. Xu, C. Duan, S. Yang, S. Yuan, Z. Yang, Z. Liu, S. Liu, Adv. Energy Mater 9 (2019) 1902279.
DOI URL |
[16] |
Y. Han, H. Zhao, C. Duan, S. Yang, Z. Yang, Z. Liu, S. Liu, Adv. Funct. Mater 30 (2020) 1909972.
DOI URL |
[17] |
W. Chen, H. Chen, G. Xu, R. Xue, S. Wang, Y. Li, Y. Li, Joule 3 (2019) 191-204.
DOI URL |
[18] |
J. Kim, S.H. Lee, J.H. Lee, K.H. Hong, J. Phys. Chem. Lett. 5 (2014) 1312-1317.
DOI URL |
[19] | A. Walsh, D.O. Scanlon, S. Chen, X.G. Gong, S.-H. Wei, Angew.Chem. 127 (2015) 1811-1814. |
[20] |
M.L. Agiorgousis, Y.Y. Sun, H. Zeng, S. Zhang, J. Am. Chem. Soc. 136 (2014) 14570-14575.
DOI PMID |
[21] |
X. Tang, M. van den Berg, E. Gu, A. Horneber, G.J. Matt, A. Osvet, A.J. Meixner, D. Zhang, C.J. Brabec, Nano Lett. 18 (2018) 2172-2178.
DOI URL |
[22] |
S. Yang, J. Dai, Z. Yu, Y. Shao, Y. Zhou, X. Xiao, X.C. Zeng, J. Huang, J. Am. Chem. Soc. 141 (2019) 5781-5787.
DOI URL |
[23] | Y. Zheng, X. Yang, R. Su, P. Wu, Q. Gong, R. Zhu, Adv. Funct. Mater.(2020) 2000457. |
[24] |
B. Chen, P.N. Rudd, S. Yang, Y. Yuan, J. Huang, Chem. Soc. Rev. 48 (2019) 3842-3867.
DOI PMID |
[25] |
N.K. Noel, A. Abate, S.D. Stranks, E.S. Parrott, V.M. Burlakov, A. Goriely, H.J. Snaith, ACS Nano 8 (2014) 9815-9821.
DOI URL |
[26] |
P. Wang, X. Zhang, Y. Zhou, Q. Jiang, Q. Ye, Z. Chu, X. Li, X. Yang, Z. Yin, J. You, Nat. Commun. 9 (2018) 2225.
DOI URL |
[27] |
C. Liu, W. Li, C. Zhang, Y. Ma, J. Fan, Y. Mai, J. Am. Chem. Soc. 140 (2018) 3825-3828.
DOI URL |
[28] |
B. Yu, H. Zhang, J. Wu, Y. Li, H. Li, Y. Li, J. Shi, H. Wu, D. Li, Y. Luo, Q. Meng, J. Mater. Chem. A 6 (2018) 19810-19816.
DOI URL |
[29] |
T. Zhang, F. Wang, H. Chen, L. Ji, Y. Wang, C. Li, M.B. Raschke, S. Li, ACS Energy Lett. 5 (2020) 1619-1627.
DOI URL |
[30] |
T. Wang, Y. Yang, Y. Zhang, L. Nian, P. Wang, Y. Qian, Q. Rong, G. Zhou, N. Li, ACS Appl. Mater. Interfaces 12 (2020) 21539-21547.
DOI URL |
[31] |
Z. Xu, R. Chen, Y. Wu, R. He, J. Yin, W. Lin, B. Wu, J. Li, N. Zheng, J. Mater. Chem. A 7 (2019) 26849-26857.
DOI URL |
[32] |
L. Liang, H. Luo, J. Hu, H. Li, P. Gao, Adv. Energy Mater. 10 (2020) 2000197.
DOI URL |
[33] |
D.J. Xue, Y. Hou, S.C. Liu, M. Wei, B. Chen, Z. Huang, Z. Li, B. Sun, A.H. Proppe, Y. Dong, M.I. Saidaminov, S.O. Kelley, J.S. Hu, E.H. Sargent, Nat. Commun. 11 (2020) 1514.
DOI URL |
[34] |
Z. Guo, J. Zhuang, Z. Ma, H. Xia, J. Yi, W. Zhou, H. Lu, Y. Xiang, H. Li, CrystEngComm 21 (2019) 4753-4762.
DOI URL |
[35] |
E.C. Shen, J.D. Chen, Y. Tian, Y.X. Luo, Y. Shen, Q. Sun, T.Y. Jin, G.Z. Shi, Y.Q. Li, J.X. Tang, Adv. Sci. 7 (2019) 1901952.
DOI URL |
[36] |
Y. Xiang, J. Zhuang, Z. Ma, H. Lu, H. Xia, W. Zhou, T. Zhang, H. Li, Chem. Res. Chin. Univ. 35 (2018) 101-108.
DOI URL |
[37] | S. Zhang, S. Wu, B.H. Babu, W. Chen, R. Chen, Y. Huang, Z. Yang, H. Zhu, J. Zhou, W. Chen, J. Mater. Chem. A 7 (2019) 5067-5073. |
[38] |
Y. Hou, K. Wang, D. Yang, Y. Jiang, N. Yennawar, K. Wang, M. Sanghadasa, C. Wu, S. Priya, ACS Energy Lett. 4 (2019) 2646-2655.
DOI URL |
[1] | Fu Zhang, Zhu Ma, Taotao Hu, Rui Liu, Qiaofeng Wu, Yu Yue, Hua Zhang, Zheng Xiao, Meng Zhang, Wenfeng Zhang, Xin Chen, Hua Yu. Ultra-smooth CsPbI2Br film via programmable crystallization process for high-efficiency inorganic perovskite solar cells [J]. J. Mater. Sci. Technol., 2021, 66(0): 150-156. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||