J. Mater. Sci. Technol. ›› 2021, Vol. 66: 150-156.DOI: 10.1016/j.jmst.2020.05.073
• Research Article • Previous Articles Next Articles
Fu Zhanga,1, Zhu Maa,1, Taotao Hua, Rui Liua, Qiaofeng Wua, Yu Yuea, Hua Zhanga, Zheng Xiaoa, Meng Zhanga,*(), Wenfeng Zhanga, Xin Chenb, Hua Yua,*(
)
Received:
2020-04-16
Revised:
2020-05-11
Accepted:
2020-05-29
Published:
2021-03-10
Online:
2021-04-01
Contact:
Meng Zhang,Hua Yu
About author:
hua.yu@uq.edu.au (H. Yu).1Fu Zhang and Zhu Ma contributed equally.
Fu Zhang, Zhu Ma, Taotao Hu, Rui Liu, Qiaofeng Wu, Yu Yue, Hua Zhang, Zheng Xiao, Meng Zhang, Wenfeng Zhang, Xin Chen, Hua Yu. Ultra-smooth CsPbI2Br film via programmable crystallization process for high-efficiency inorganic perovskite solar cells[J]. J. Mater. Sci. Technol., 2021, 66: 150-156.
Fig. 1. Schematic diagram of preparing CsPbI2Br film with solvent control growth (SCG), gradient thermal annealing (GTA), and solvent-releasing-control crystallization (SRCC) methods.
Fig. 2. (a) XRD patterns of CsPbI2Br prepared via SCG, GTA, and SRCC methods. SEM images of the GTA thin film in the local area without stripes (b) and with stripes (c).
Fig. 3. SEM and AFM images of CsPbI2Br films deposited on ITO/SnO2 substrates with three different preparing methods, SCG (a, d), GTA (b, e), SRCC (c, f).
Fig. 4. (a) Steady-state PL spectra and (b) time-resolved PL decay curves of CsPbI2Br films deposited on ITO/SnO2 substrate with three different preparing methods.
Fig. 5. Jsc (a) and Voc (b) versus light intensity for SCG, GTA, and SRCC devices. (c) The dark I-V curves of the electron-only devices (ITO/SnO2/perovskite/PCBM/Ag) with SCG, GTA, and SRCC films. (d) Nyquist plots of devices with SCG, GTA, and SRCC films.
Methods | Voc (V) | Jsc (mA/cm2) | FF (%) | PCE (%) |
---|---|---|---|---|
SCG | 1.16 | 15.66 | 69.98 | 12.73 |
GTA | 1.17 | 14.44 | 68.93 | 11.73 |
SRCC | 1.23 | 16.41 | 71.80 | 14.55 |
Table 1 Performance parameters of PSCs based on CsPbI2Br with SCG, GTA, and SRCC films.
Methods | Voc (V) | Jsc (mA/cm2) | FF (%) | PCE (%) |
---|---|---|---|---|
SCG | 1.16 | 15.66 | 69.98 | 12.73 |
GTA | 1.17 | 14.44 | 68.93 | 11.73 |
SRCC | 1.23 | 16.41 | 71.80 | 14.55 |
[1] |
M. Kulbak, D. Cahen, G. Hodes, J. Phys. Chem. Lett. 6 (2015) 2452-2456.
URL PMID |
[2] |
M. Kulbak, S. Gupta, N. Kedem, I. Levine, T. Bendikov, G. Hodes, D. Cahen, J. Phys. Chem. Lett. 7 (2016) 167-172.
URL PMID |
[3] | R.J. Sutton, G.E. Eperon, L. Miranda, E.S. Parrott, B.A. Kamino, J.B. Patel, M.T. Horantner, M.B. Johnston, A.A. Haghighirad, D.T. Moore, H.J. Snaith, Adv. Energy Mater. 6 (2016), 1502458. |
[4] | J. Duan, Y.Y. Zhao, B.L. He, Q.W. Tang, Angew. Chem. Int. Ed. 57 (2018) 3787-3791. |
[5] |
S. Mariotti, O.S. Hutter, L.J. Phillips, P.J. Yates, B. Kundu, K. Durose, ACS Appl. Mater. Interfaces 10 (2018) 3750-3760.
URL PMID |
[6] |
R.E. Beal, D.J. Slotcavage, T. Leijtens, A.R. Bowring, R.A. Belisle, W.H. Nguyen, G.F. Burkhard, E.T. Hoke, M.D. McGehee, J. Phys. Chem. Lett. 7 (2016) 746-751.
URL PMID |
[7] | S.S. Zhang, S.H. Wu, W.T. Chen, H.M. Zhu, Z.Z. Xiong, Z.C. Yang, C.L. Chen, R. Chen, L.Y. Han, W. Chen, Mater. Today Energy 8 (2018) 125-133. |
[8] |
J.K. Nam, M.S. Jung, S.U. Chai, Y.J. Choi, D. Kim, J.H. Park, J. Phys. Chem. Lett. 8 (2017) 2936-2940.
DOI URL PMID |
[9] | C. Dong, X. Han, W. Li, Q. Qiu, J. Wang, Nano Energy 59 (2019) 553-559. |
[10] |
J. Zhuang, Y. Wei, Y. Luan, N. Chen, P. Mao, S. Cao, J. Wang, Nanoscale 11 (2019) 14553-14560.
DOI URL PMID |
[11] | H. Zhao, S.M. Yang, Y. Han, S.H. Yuan, H. Jiang, C.Y. Duan, Z.K. Liu, S.Z. Liu, Int. J.Adv. Mater. Technol. 4 (2019), 1900311. |
[12] | J. Tian, Q. Xue, X. Tang, Y. Chen, N. Li, Z. Hu, T. Shi, X. Wang, F. Huang, C.J. Brabec, H.L. Yip, Y. Cao, Adv. Mater. 31 (2019), 1901152. |
[13] | Z. Zhou, Z. Wang, Y. Zhou, S. Pang, D. Wang, H. Xu, Z. Liu, N.P. Padture, G. Cui, Angew. Chem. Int. Ed. 54 (2015) 9705-9709. |
[14] | Y. Zhang, Z. Zhou, F. Ji, Z. Li, G. Cui, P. Gao, E. Oveisi, M.K. Nazeeruddin, S. Pang, Adv. Mater. 30 (2018), 1707143. |
[15] | S. Pang, Y. Zhou, Z. Wang, M. Yang, A.R. Krause, Z. Zhou, K. Zhu, N.P. Padture, G. Cui,. Am. Chem. Soc. 138 (2016) 750-753. |
[16] |
Z.H. Liu, L.B. Qiu, E.J. Juarez-Perez, Z. Hawash, T. Kim, Y. Jiang, Z.F. Wu, S.R. Raga, L.K. Ono, S.Z. Liu, Y.B. Qi, Nat. Commun. 9 (2018) 3880.
DOI URL PMID |
[17] | N.X. Li, S.X. Tao, Y.H. Chen, X.X. Niu, C.K. Onwudinanti, C. Hu, Z.W. Qiu, Z.Q. Xu, G.H.J. Zheng, L.G. Wang, Y. Zhang, L. Li, H.F. Liu, Y.Z. Lun, J.W. Hong, X.Y. Wang, Y.Q. Liu, H.P. Xie, Y.L. Gao, Y. Bai, S.H. Yang, G. Brocks, Q. Chen, H.P. Zhou, Nat. Energy 4 (2019) 408-415. |
[18] | J.F. Yuan, L.X. Zhang, C.H. Bi, M.R. Wang, J.J. Tian, Sol. RRL 2 (2018), 1800188. |
[19] | G.N. Yin, H. Zhao, H. Jiang, S.H. Yuan, T.Q. Niu, K. Zhao, Z.K. Liu, S.Z. Liu, Adv. Funct. Mater. 28 (2018), 1803269. |
[20] | Z. Shao, Z. Wang, Z. Li, Y. Fan, H. Meng, R. Liu, Y. Wang, A. Hagfeldt, G. Cui, S. Pang, Angew. Chem. Int. Ed. 58 (2019) 5587-5591. |
[21] |
X.Y. Meng, Z. Wang, W. Qian, Z.L. Zhu, T. Zhang, Y. Bai, C. Hu, S. Xiao, Y.L. Yang, S.H. Yang, J. Phys. Chem. Lett. 10 (2019) 194-199.
DOI URL PMID |
[22] | W.J. Chen, H.Y. Chen, G.Y. Xu, R.M. Xue, S.H. Wang, Y.W. Li, Y.F. Li, Joule 3 (2019) 191-204. |
[23] | H.X. Rao, S.Y. Ye, F.D. Gu, Z.R. Zhao, Z.W. Liu, Z.Q. Bian, C.H. Huang, Adv. Energy Mater. 8 (2018), 1800758. |
[24] |
P.Y. Wang, X.W. Zhang, Y.Q. Zhou, Q. Jiang, Q.F. Ye, Z.M. Chu, X.X. Li, X.L. Yang, Z.G. Yin, J.B. You, Nat. Commun. 9 (2018) 2225.
DOI URL PMID |
[25] | L.F. Ye, H.Y. Wang, Y. Wei, P.F. Guo, X.K. Yang, Q. Ye, H.Q. Wang, Acs Appl. Energy Mater. 3 (2020) 658-665. |
[26] | Y. Han, H. Zhao, C.Y. Duan, S.M. Yang, Z. Yang, Z.K. Liu, S.Z. Liu, Adv. Funct. Mater. 30 (2020), 1909972. |
[27] | S.L. Chen, T.J. Zhang, X.L. Liu, J.L. Qiao, L. Peng, J. Wang, Y.S. Liu, T.Y. Yang, J. Lin, J. Mater. Chem. C Mater. Opt. Electron. Devices 8 (2020) 3351-3358. |
[28] | J. Wei, X. Wang, X.Y. Sun, Z.F. Yang, I. Moreels, K. Xu, H.B. Li, Nano Res. 13 (2020) 684-690. |
[29] |
C. Liu, W.Z. Li, C.L. Zhang, Y.P. Ma, J.D. Fan, Y.H. Mai, J. Am. Chem. Soc. 140 (2018) 3825-3828.
URL PMID |
[30] | H.C. Zai, D.L. Zhang, L. Li, C. Zhu, S. Ma, Y.Z. Zhao, Z.G. Zhao, C.F. Chen, H.P. Zhou, Y.J. Li, Q. Chen, J. Mater. Chem. A Mater. Energy Sustain. 6 (2018) 23602-23609. |
[31] |
Z.L. Guo, S. Zhao, A. Liu, Y. Kamata, S. Teo, S.Z. Yang, Z. Xu, S.Z. Hayase, T.L. Ma, ACS Appl. Mater. Interfaces 11 (2019) 19994-20003.
URL PMID |
[32] | J.J. Ye, X.H. Zhang, L.Z. Zhu, H.Y. Zheng, G.Z. Liu, H.X. Wang, T. Hayat, X. Pan, S.Y. Dai, Sustain. Energy Fuels 1 (2017) 907-914. |
[33] |
K.L. Wang, R. Wang, Z.K. Wang, M. Li, Y. Zhang, H. Ma, L.S. Liao, Y. Yang, Nano Lett. 19 (2019) 5176-5184.
URL PMID |
[34] | D.L. Bai, J.R. Zhang, Z.W. Jin, H. Bian, K. Wang, H.R. Wang, L. Liang, Q. Wang, S.Z. Liu, ACS Energy Lett. 3 (2018) 970-978. |
[35] | Y. Zhou, X. Zhang, X.B. Lu, X.S. Gao, J.W. Gao, L.L. Shui, S.J. Wu, J.M. Liu, Sol. RRL3 (2019), 1800315. |
[36] | J. Duan, Y. Zhao, B. He, Q. Tang, Small 14 (2018), 1704443. |
[37] | T. Singh, T. Miyasaka, Adv. Energy Mater. 8 (2018), 1700677. |
[38] | W. Hu, W. Zhou, X. Lei, P. Zhou, M. Zhang, T. Chen, H. Zeng, J. Zhu, S. Dai, S. Yang, S. Yang, Adv. Mater. 31 (2019), 1806095. |
[39] | F.X. Xie, C.C. Chen, Y.Z. Wu, X. Li, M.L. Cai, X. Liu, X.D. Yang, L.Y. Han, Energy Environ. Sci. 10 (2017) 1942-1949. |
[40] | L.W. Tian, W.F. Zhang, H. Yu, C.T. Peng, H.Y. Mao, Y.P. Li, Q.Y. Wang, Y.L. Huang, ACS Appl. Energy Mater. 2 (2019) 4954-4963. |
[41] | C.B. Fei, B. Li, R. Zhang, H.Y. Fu, J.J. Tian, G.Z. Cao, Adv. Energy Mater. 7 (2017), 1602017. |
[42] |
D. Shi, V. Adinolfi, R. Comin, M.J. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P.A. Dowben, O.F. Mohammed, E.H. Sargent, O.M. Bakr, Science 347 (2015) 519-522.
DOI URL PMID |
[43] | Q.Q. Chu, B. Ding, J. Peng, H.P. Shen, X.L. Li, Y. Liu, C.X. Li, C.J. Li, G.J. Yang, T.P. White, K.R. Catchpole, J. Mater. Sci. Technol. 35 (2019) 987-993. |
[44] | H.R. Sun, J. Zhang, X.L. Gan, L.T. Yu, H.B. Yuan, M.H. Shang, C.J. Lu, D.G. Hou, Z.Y. Hu, Y.J. Zhu, L.Y. Han, Adv. Energy Mater. 9 (2019), 1900896. |
[45] |
F. Haque, M. Wright, M.A. Mahmud, H. Yi, D. Wang, L. Duan, C. Xu, M.B. Upama, A. Uddin, ACS Omega 3 (2018) 11937-11944.
DOI URL PMID |
[46] |
T. Meng, C. Liu, K. Wang, T. He, Y. Zhu, A. Al-Enizi, A. Elzatahry, X. Gong, ACS Appl. Mater. Interfaces 8 (2016) 1876-1883.
URL PMID |
[47] | K. Wang, C. Liu, P.C. Du, J. Zheng, X. Gong, Energy Environ. Sci. 8 (2015) 1245-1255. |
[48] | R. Scheer, H.W. Schock, Chalcogenide Photovoltaics: Physics, Technologies, and Thin Film Devices, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2011, pp. 9-127. |
[49] |
S. Ravishankar, C. Aranda, P.P. Boix, J.A. Anta, J. Bisquert, G. Garcia-Belmonte, J. Phys. Chem. Lett. 9 (2018) 3099-3104.
URL PMID |
[50] | C. Liu, W.Z. Li, J.H. Chen, J.D. Fan, Y.H. Mai, R.E.I. Schropp, Nano Energy 41 (2017) 75-83. |
[51] | Z.B. Zeng, J. Zhang, X.L. Gan, H.R. Sun, M.H. Shang, D.G. Hou, C.J. Lu, R.J. Chen, Y.J. Zhu, L.Y. Han, Adv. Energy Mater. 8 (2018), 1801050. |
[52] | H.J. Seok, H.K. Kim, Metals 9 (2019) 120. |
[53] |
H.S. Kim, I.H. Jang, N. Ahn, M. Choi, A. Guerrero, J. Bisquert, N.G. Park, J. Phys. Chem. Lett. 6 (2015) 4633-4639.
URL PMID |
[54] | L. Cojocaru, S. Uchida, P.V.V. Jayaweera, S. Kaneko, J. Nakazaki, T Kubo, H. Segawa, Chem. Lett. 44 (2015) 1750-1752. |
[55] | L. Zhou, X. Guo, Z.H. Lin, J. Ma, J. Su, Z.S. Hu, C.F. Zhang, S.Z. Liu, J.J. Chang, Y. Hao, Nano Energy 60 (2019) 583-590. |
[56] | Y.Q. Zhang, C.C. Wu, D. Wang, Z.H. Zhang, X. Qi, N. Zhu, G.H. Liu, X.D. Li, H.Z. Hu, Z.J. Chen, L.X. Xiao, B. Qu, Sol. RRL 3 (2019), 1900254. |
[57] | L. Shi, M. Zhang, Y. Cho, T.L. Young, D. Wang, H.M. Yi, J. Kim, S.J. Huang, A.W.Y. Ho-Baillie, ACS Appl. Energy Mater. 2 (2019) 2358-2363. |
[1] | Qianqian Jin, Xiaohong Shao, Shijian Zheng, Yangtao Zhou, Bo Zhang, Xiuliang Ma. Interfacial dislocations dominated lateral growth of long-period stacking ordered phase in Mg alloys [J]. J. Mater. Sci. Technol., 2021, 61(0): 114-118. |
[2] | Qiaoyue Zhang, Shun-Xing Liang, Zhe Jia, Wenchang Zhang, Weimin Wang, Lai-Chang Zhang. Efficient nanostructured heterogeneous catalysts by electrochemical etching of partially crystallized Fe-based metallic glass ribbons [J]. J. Mater. Sci. Technol., 2021, 61(0): 159-168. |
[3] | Kaiming Cheng, Jiaxing Sun, Huixia Xu, Jin Wang, Chengwei Zhan, Reza Ghomashchi, Jixue Zhou, Shouqiu Tang, Lijun Zhang, Yong Du. Diffusion growth of ϕ ternary intermetallic compound in the Mg-Al-Zn alloy system: In-situ observation and modeling [J]. J. Mater. Sci. Technol., 2021, 60(0): 222-229. |
[4] | Liao Yu, Qiaodan Hu, Zongye Ding, Fan Yang, Wenquan Lu, Naifang Zhang, Sheng Cao, Jianguo Li. Effect of cooling rate on the 3D morphology of the proeutectic Al3Ni intermetallic compound formed at the Al/Ni interface after solidification [J]. J. Mater. Sci. Technol., 2021, 69(0): 60-68. |
[5] | Jin-Yu Zhang, Fu-Zhi Dai, Zhi-Peng Sun, Wen-Zheng Zhang. Structures and energetics of semicoherent interfaces of precipitates in hcp/bcc systems: A molecular dynamics study [J]. J. Mater. Sci. Technol., 2021, 67(0): 50-60. |
[6] | Lulu Li, Irene J. Beyerlein, Weizhong Han. Interface-facilitated stable plasticity in ultra-fine layered FeAl/FeAl2 micro-pillar at high temperature [J]. J. Mater. Sci. Technol., 2021, 73(0): 61-65. |
[7] | S.Z. Wu, T. Nakata, G.Z. Tang, C. Xu, X.J. Wang, X.W. Li, X.G. Qiao, M.Y. Zheng, L. Geng, S. Kamado, G.H. Fan. Effect of forced-air cooling on the microstructure and age-hardening response of extruded Mg-Gd-Y-Zn-Zr alloy full with LPSO lamella [J]. J. Mater. Sci. Technol., 2021, 73(0): 66-75. |
[8] | Baoquan Wan, Haiyu Li, Yunhui Xiao, Zhongbin Pan, Qiwei Zhang. Improved breakdown strength and energy density of polyimide composites by interface engineering between BN and BaTiO3 fibers [J]. J. Mater. Sci. Technol., 2021, 74(0): 1-10. |
[9] | Xiaopei Wang, Yoshiaki Morisada, Hidetoshi Fujii. Flat friction stir spot welding of low carbon steel by double side adjustable tools [J]. J. Mater. Sci. Technol., 2021, 66(0): 1-9. |
[10] | Sang Won Lee, Gukin Han, Tea-Sung Jun, Sung Hyuk Park. Effects of initial texture on deformation behavior during cold rolling and static recrystallization during subsequent annealing of AZ31 alloy [J]. J. Mater. Sci. Technol., 2021, 66(0): 139-149. |
[11] | Xirui Lv, Mengkun Yue, Wenfan Yang, Xue Feng, Xiaoyan Li, Yumin Wang, Jiemin Wang, Jie Zhang, Jingyang Wang. Tunable strength of SiCf/β-Yb2Si2O7 interface for different requirements in SiCf/SiC CMC: Inspiration from model composite investigation [J]. J. Mater. Sci. Technol., 2021, 67(0): 165-173. |
[12] | Mingyue Sun, Bin Xu, Bijun Xie, Dianzhong Li, Yiyi Li. Leading manufacture of the large-scale weldless stainless steel forging ring: Innovative approach by the multilayer hot-compression bonding technology [J]. J. Mater. Sci. Technol., 2021, 71(0): 84-86. |
[13] | Hyun Ji Kim, Sang-Cheol Jin, Jae-Gil Jung, Sung Hyuk Park. Influence of undissolved second-phase particles on dynamic recrystallization behavior of Mg-7Sn-1Al-1Zn alloy during low- and high-temperature extrusions [J]. J. Mater. Sci. Technol., 2021, 71(0): 87-97. |
[14] | Peiru Yang, Chenxi Liu, Qianying Guo, Yongchang Liu. Variation of activation energy determined by a modified Arrhenius approach: Roles of dynamic recrystallization on the hot deformation of Ni-based superalloy [J]. J. Mater. Sci. Technol., 2021, 72(0): 162-171. |
[15] | Xiaojie Zhou, Yuan Yao, Jian Zhang, Xiaomin Chen, Weiying Huang, Jing Pan, Haoran Wang, Maopeng Weng. A high-performance Mg-4.9Gd-3.2Y-1.1Zn-0.5Zr alloy via multidirectional forging after analyzing its compression behavior [J]. J. Mater. Sci. Technol., 2021, 70(0): 156-167. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||