J. Mater. Sci. Technol. ›› 2021, Vol. 89: 158-166.DOI: 10.1016/j.jmst.2021.02.019
Previous Articles Next Articles
L.L. Lia,b, Z.B. Wanga,*(), S.Y. Hea,c, Y.G. Zhenga
Received:
2020-09-07
Revised:
2021-01-05
Accepted:
2021-02-10
Published:
2021-10-30
Online:
2021-10-30
Contact:
Z.B. Wang
About author:
*E-mail address: zbwang12s@imr.ac.cn (Z.B. Wang).L.L. Li, Z.B. Wang, S.Y. He, Y.G. Zheng. Correlation between depassivation and repassivation processes determined by single particle impingement: Its crucial role in the phenomenon of critical flow velocity for erosion-corrosion[J]. J. Mater. Sci. Technol., 2021, 89: 158-166.
Fig. 1. (a) Schematic diagram of single particle impingement set-up: (1) counter electrode, (2) reference electrode, (3) working electrode (sample), (4) nozzle, (5) impact angle controller, (6) cooling water, (7) electrolyte, (8) electrochemical workstation, (9) computer, (10) filter, (11) heater, (12) thermocouple, (13) control cabinet, (14) motor I, (15) pump, (16) electromagnetic flowmeter, (17) single particle feeding system, (18) motor II to control the feeding rod, (19) flow tube, (20) solid particle, (21) feeding rod and (22) spring; (b) Optical image of ZrO2 particle used in single particle impingement test.
Fig. 2. Current responses to single particle impingement on 304 stainless steel surfaces at different flow velocities and impact angles of (a) 30°; (b) 45°; (c) 60° and (d) 90°.
Impact angle | Flow velocity | Is (A × 107) | Ipeak (A × 107) | Repassivation parameter | Depassivation parameter | ||||
---|---|---|---|---|---|---|---|---|---|
tre (ms) | Qre (C×109) | hcrater (μm) | γ (C/m3 × 10-6) | Srf (m2 × 109) | κvθ (×104) | ||||
30° | 5 m/s | 0.67 ± 0.11 | 2.97 ± 0.69 | 134.40 ± 3.65 | 12.46 ± 0.15 | 1.42 ± 0.06 | 7.54 | 1.20 ± 0.10 | 7.61 |
10 m/s | 0.84 ± 0.05 | 11.11 ± 1.60 | 519.00 ± 12.27 | 67.27 ± 0.48 | 1.99 ± 0.41 | 2.21 ± 0.68 | |||
15 m/s | 0.54 ± 0.02 | 12.07 ± 0.31 | 722.00 ± 30.41 | 122.77 ± 21.61 | 3.56 ± 0.34 | 6.92 ± 0.54 | |||
45° | 5 m/s | 0.70 ± 0.08 | 2.81 ± 0.15 | 138.25 ± 4.86 | 13.48 ± 0.12 | 1.50 ± 0.22 | 5.11 | 0.92 ± 0.27 | 5.16 |
10 m/s | 0.36 ± 0.02 | 8.89 ± 0.75 | 583.67 ± 25.54 | 68.10 ± 5.35 | 2.91 ± 0.11 | 3.44 ± 0.26 | |||
15 m/s | 0.74 ± 0.07 | 13.50 ± 1.00 | 1028.50 ± 38.89 | 117.298 ± 2.58 | 4.82 ± 1.24 | 6.66 ± 0.54 | |||
60° | 5 m/s | 0.40 ± 0.02 | 2.58 ± 0.22 | 136.00 ± 8.29 | 13.19 ± 0.74 | 1.96 ± 0.20 | 1.78 | 0.55 ± 0.11 | 1.80 |
10 m/s | 0.39 ± 0.04 | 6.26 ± 0.19 | 531.67 ± 4.73 | 35.45 ± 6.19 | 3.52 ± 0.39 | 1.76 ± 0.39 | |||
15 m/s | 0.49 ± 0.05 | 9.90 ± 0.67 | 658.50 ± 17.21 | 81.20 ± 3.44 | 5.28 ± 0.35 | 4.07 ± 0.30 | |||
90° | 5 m/s | 0.38 ± 0.02 | 1.27 ± 0.13 | 108.00 ± 5.29 | 4.10 ± 1.81 | 2.32 ± 0.25 | 0.46 | 0.20 ± 0.04 | 0.47 |
10 m/s | 0.40 ± 0.01 | 1.85 ± 0.67 | 133.67 ± 8.08 | 11.42 ± 4.39 | 4.39 ± 0.42 | 0.71 ± 0.14 | |||
15 m/s | 0.45 ± 0.01 | 4.94 ± 2.24 | 503.00 ± 57.66 | 32.15 ± 10.07 | 5.36 ± 0.20 | 1.05 ± 0.08 |
Table 1 Depassivation and repassivation parameters of 304 stainless steel determined by single particle impingement at various flow velocities and impact angles.
Impact angle | Flow velocity | Is (A × 107) | Ipeak (A × 107) | Repassivation parameter | Depassivation parameter | ||||
---|---|---|---|---|---|---|---|---|---|
tre (ms) | Qre (C×109) | hcrater (μm) | γ (C/m3 × 10-6) | Srf (m2 × 109) | κvθ (×104) | ||||
30° | 5 m/s | 0.67 ± 0.11 | 2.97 ± 0.69 | 134.40 ± 3.65 | 12.46 ± 0.15 | 1.42 ± 0.06 | 7.54 | 1.20 ± 0.10 | 7.61 |
10 m/s | 0.84 ± 0.05 | 11.11 ± 1.60 | 519.00 ± 12.27 | 67.27 ± 0.48 | 1.99 ± 0.41 | 2.21 ± 0.68 | |||
15 m/s | 0.54 ± 0.02 | 12.07 ± 0.31 | 722.00 ± 30.41 | 122.77 ± 21.61 | 3.56 ± 0.34 | 6.92 ± 0.54 | |||
45° | 5 m/s | 0.70 ± 0.08 | 2.81 ± 0.15 | 138.25 ± 4.86 | 13.48 ± 0.12 | 1.50 ± 0.22 | 5.11 | 0.92 ± 0.27 | 5.16 |
10 m/s | 0.36 ± 0.02 | 8.89 ± 0.75 | 583.67 ± 25.54 | 68.10 ± 5.35 | 2.91 ± 0.11 | 3.44 ± 0.26 | |||
15 m/s | 0.74 ± 0.07 | 13.50 ± 1.00 | 1028.50 ± 38.89 | 117.298 ± 2.58 | 4.82 ± 1.24 | 6.66 ± 0.54 | |||
60° | 5 m/s | 0.40 ± 0.02 | 2.58 ± 0.22 | 136.00 ± 8.29 | 13.19 ± 0.74 | 1.96 ± 0.20 | 1.78 | 0.55 ± 0.11 | 1.80 |
10 m/s | 0.39 ± 0.04 | 6.26 ± 0.19 | 531.67 ± 4.73 | 35.45 ± 6.19 | 3.52 ± 0.39 | 1.76 ± 0.39 | |||
15 m/s | 0.49 ± 0.05 | 9.90 ± 0.67 | 658.50 ± 17.21 | 81.20 ± 3.44 | 5.28 ± 0.35 | 4.07 ± 0.30 | |||
90° | 5 m/s | 0.38 ± 0.02 | 1.27 ± 0.13 | 108.00 ± 5.29 | 4.10 ± 1.81 | 2.32 ± 0.25 | 0.46 | 0.20 ± 0.04 | 0.47 |
10 m/s | 0.40 ± 0.01 | 1.85 ± 0.67 | 133.67 ± 8.08 | 11.42 ± 4.39 | 4.39 ± 0.42 | 0.71 ± 0.14 | |||
15 m/s | 0.45 ± 0.01 | 4.94 ± 2.24 | 503.00 ± 57.66 | 32.15 ± 10.07 | 5.36 ± 0.20 | 1.05 ± 0.08 |
Fig. 4. Variation of repassivation time tre with the kinetic energy of solid particle in the (a-d) tangential direction and (e-h) normal direction at the impact angle of (a, e) 30°; (b, f) 45°; (c, g) 60° and (d, h) 90°.
Fig. 6. (a, d, g) 3D profile images and (b, e, h) 2D projection images of the impact craters at the impact angle of 90° and the flow velocities of (a, b, c) 5 m/s, (d, e, f) 10 m/s and (g, h, i) 15 m/s. (c, f, i) presents the 2D profile images intercepting at the crater centre along the direction indicated by solid black lines in b, e, h, respectively.
Diamater of silica sand particles | Concentration of silica sand particles | Critical flow velocity of 304 s.s. | Critical flow velocity of Fe-based AMC | Reference |
---|---|---|---|---|
106∼180 μm | 2 wt% | 13 m/s | - | This work |
180∼270 μm | 2 wt% | 15 m/s | - | |
270∼380 μm | 2 wt% | 17 m/s | - | |
106∼200 μm | 1 wt% | 14 m/s | 16 m/s | [ |
106∼200 μm | 2 wt% | 12 m/s | 14 m/s | |
106∼200 μm | 3 wt% | 9 m/s | 9 m/s |
Table 2 Critical flow velocity for erosion-corrosion of 304 stainless steel (304 s.s.) and Fe-based amorphous metallic coating (Fe-based AMC) under slurry impingement with different concentration [7] and diameter of silica sand particles.
Diamater of silica sand particles | Concentration of silica sand particles | Critical flow velocity of 304 s.s. | Critical flow velocity of Fe-based AMC | Reference |
---|---|---|---|---|
106∼180 μm | 2 wt% | 13 m/s | - | This work |
180∼270 μm | 2 wt% | 15 m/s | - | |
270∼380 μm | 2 wt% | 17 m/s | - | |
106∼200 μm | 1 wt% | 14 m/s | 16 m/s | [ |
106∼200 μm | 2 wt% | 12 m/s | 14 m/s | |
106∼200 μm | 3 wt% | 9 m/s | 9 m/s |
[1] |
Z.W. Tan, L.Y. Yang, D.L. Zhang, Z.B. Wang, F. Cheng, M.Y. Zhang, Y.H. Jin, J.Mater. Sci. Technol. 49 (2020) 186-201.
DOI URL |
[2] |
X. Tang, L.Y. Xu, Y.F. Cheng, Corros. Sci. 50 (2008) 1469-1474.
DOI URL |
[3] |
X. Hu, A. Neville, Wear 258 (2005) 641-648.
DOI URL |
[4] | S.S. Rajahram, T.J. Harvey, R.J.K.Wood, Tribol. Int. 44 (2011) 232-240. |
[5] |
K. Sasaki, G.T. Burstein, Philos. Mag. Lett. 80 (2000) 489-493.
DOI URL |
[6] |
G.T. Burstein, K. Sasaki, Electrochim. Acta 46 (2001) 3675-3683.
DOI URL |
[7] |
Z.B. Zheng, Y.G. Zheng, X. Zhou, S.Y. He, W.H. Sun, J.Q. Wang, Corros. Sci. 88 (2014) 187-196.
DOI URL |
[8] | J.Z. Yi, H.X. Hu, Z.B. Wang, Y.G. Zheng, Wear 458- 459 (2020) 203417. |
[9] |
Z.B. Wang, Y.G. Zheng, J.Z. Yi, Tribol. Int. 133 (2019) 67-72.
DOI |
[10] | Y.G. Zheng, F. Yang, Z.M. Yao, W. Ke, Z. MetaIlkd. 91 (2000) 323-328. |
[11] | M.M. Stack, S. Zhou, R.C. Newman, Wear 186-187 (1995) 523-532. |
[12] | M.M. Stack, N. Corlett, S. Zhou, Wear 203-204 (1997) 474-488. |
[13] |
G.T. Burstein, K. Sasaki, Wear 240 (2000) 80-94.
DOI URL |
[14] |
E. Abelev, A.J. Smith, A.W. Hassel, Y. Ein-Eli, , J. Electrochem. Soc. 153 (2006) B337-B343.
DOI URL |
[15] |
A.J. Smith, M. Stratmann, A.W. Hassel, Electrochim. Acta 51 (2006) 6521-6526.
DOI URL |
[16] |
B.T. Lu, J.L. Luo, H.Y. Ma, , J. Electrochem. Soc. 154 (2007) C159-C168.
DOI URL |
[17] |
F. Mohammadi, J.L. Luo, B.T. Lu, A. Afacan, Corros. Sci. 52 (2010) 2331-2340.
DOI URL |
[18] |
F. Mohammadi, J.L. Luo, Corros. Sci. 52 (2010) 2994-3001.
DOI URL |
[19] |
B.T. Lu, L.C. Mao, J.L. Luo, Electrochim. Acta 56 (2010) 85-92.
DOI URL |
[20] |
N. Andrews, L. Giourntas, A.M. Galloway, A. Pearson, Wear 320 (2014) 143-151.
DOI URL |
[21] | C. Sun, J. Li, V. Fattahpour, M. Roostaei, M. Mahmoudi, H. Zeng, J.L. Luo, Corros.Sci. 166 (2020) 108422. |
[22] |
S. Ahila, B. Reynders, H.J. Grabke, Corros. Sci. 38 (1996) 1991-2005.
DOI URL |
[23] |
J. Liu, J.Q. Wang, Z.M. Zhang, H. Zheng, , J. Mater. Sci. Technol. 68 (2021) 227-235.
DOI |
[24] |
P.I. Marshall, G.T. Burstein, Corros. Sci. 23 (1983) 1219-1228.
DOI URL |
[25] |
H. Yashiro, K. Tanno, Corros. Sci. 31 (1990) 485-490.
DOI URL |
[26] | J. Li, Y.G. Zheng, J.Q. Wang, Z.M. Yao, Z.F. Wang, W. Ke, Wear 186-187 (1995) 562-567. |
[27] |
J.D. Kim, S.I. Pyun, Corros. Sci. 38 (1996) 1093-1102.
DOI URL |
[28] |
M. Lakatos-Varsányi, F. Falkenberg, I. Olefjord, Electrochim. Acta 43 (1998) 187-197.
DOI URL |
[29] |
E.A. Cho, C.K. Kim, J.S. Kim, H.S. Kwon, Electrochim. Acta 45 (2000) 1933-1942.
DOI URL |
[30] |
J.W. Park, V.S. Rao, H.S. Kwon, Corrosion 60 (2004) 1099-1103.
DOI URL |
[31] |
A. Anderko, N. Sridhar, D.S. Dunn, Corros. Sci. 46 (2004) 1583-1612.
DOI URL |
[32] |
C.J. Park, H.S. Kwon, Met. Mater. Int. 11 (2005) 309-312.
DOI URL |
[33] |
F. Bernard, V.S. Rao, H.S. Kwon, , J. Electrochem. Soc. 152 (2005) B415-B420.
DOI URL |
[34] |
S.J. Ahn, D.Y. Kim, H.S. Kwon, , J. Electrochem. Soc. 153 (2006) B370-B374.
DOI URL |
[35] |
S.J. Ahn, V.S. Rao, H.S. Kwon, U.C. Kim, Corros. Sci. 48 (2006) 1137-1153.
DOI URL |
[36] |
B. Deng, Y.M. Jiang, J. Gong, C. Zhong, J. Gao, J. Li, Electrochim. Acta 53 (2008) 5220-5225.
DOI URL |
[37] |
E. Blasco-Tamarit, A. Igual-Mu˜noz, J.G. Antón, D. García-García, Corros. Sci. 50 (2008) 1848-1857.
DOI URL |
[38] |
D. Cicolin, M. Trueba, S.P. Trasatti, Electrochim. Acta 124 (2014) 27-35.
DOI URL |
[39] |
K.N. Oh, S.H. Ahn, K.S. Eom, H.S. Kwon, Corros. Sci. 100 (2015) 158-168.
DOI URL |
[40] |
X.R. Zhang, J.L. Zhao, T. Xi, M.B. Shahzad, C.G. Yang, K. Yang, , J. Mater. Sci. Technol. 34 (2018) 2149-2159.
DOI URL |
[41] |
H. Feng, H.B. Li, X.L. Wu, Z.H. Jiang, S. Zhao, T. Zhang, D.K. Xu, S.C. Zhang, H. C.Zhu B.B. Zhang, M.X. Yang, , J. Mater. Sci. Technol. 34 (2018) 1781-1790.
DOI |
[42] |
X.W. Wu, Y.Y. Yang, Y.T. Sun, Y.Y. Liu, J. Li, Y.M. Jiang, Corros. Sci. 149 (2019) 29-36.
DOI URL |
[43] |
C. Dai, T.L. Zhao, C.W. Du, Z.Y. Liu, D.W. Zhang, , J. Mater. Sci. Technol. 46 (2020) 64-73.
DOI URL |
[44] |
H.T. Zeng, Y. Yang, M.H. Zeng, M.C. Li, , J. Mater. Sci. Technol. 66 (2021) 177-185.
DOI URL |
[45] |
A.W. Hassel, A.J. Smith, Corros. Sci. 49 (2007) 231-239.
DOI URL |
[46] |
Z.B. Wang, C. Sun, L.L. Li, M. Roostaei, J.L. Luo, Corros. Sci. 170 (2020), 108717.
DOI URL |
[47] |
J.I. Ukpai, R. Barker, X. Hu, A. Neville, Tribol. Int. 65 (2013) 161-170.
DOI URL |
[48] |
R.S. Lillard, G.V. Jr, D.F. Bahr, , J. Electrochem. Soc. 158 (2011) C194-C201.
DOI URL |
[49] |
H.S. Xu, D.B. Sun, H.Y. Yu, Appl. Surf. Sci. 357 (2015) 204-213.
DOI URL |
[50] |
Y. Tirupataiah, G. Sundararajan, Int. J. Impact Eng. 9 (1990) 237-246.
DOI URL |
[51] |
B.T. Lu, J.L. Luo, F. Mohammadi, K. Wang, X.M. Wan, Electrochim. Acta 53 (2008) 7022-7031.
DOI URL |
[52] | N. Khayatan, H.M. Ghasemi, M. Abedini, Wear 380-381 (2017) 154-162. |
[53] |
Y. Liu, A. Alfantazi, R.F. Schaller, E. Asselin, Corros. Sci. 174 (2020) 108816.
DOI URL |
[54] |
K. Sasaki, G.T. Burstein, Corros. Sci. 49 (2007) 92-102.
DOI URL |
[55] |
Z.B. Zheng, Y.G. Zheng, Corros. Sci. 102 (2016) 259-268.
DOI URL |
[56] |
L.L. Li, Z.B. Wang, Y.G. Zheng, Corros. Sci. 158 (2019) 108084.
DOI URL |
[57] |
H.X. Guo, B.T. Lu, J.L. Luo, Electrochim. Acta 52 (2006) 1108-1116.
DOI URL |
[58] |
L. Zeng, X.P. Guo, G.A. Zhang, H.X. Chen, Corros. Sci. 144 (2018) 258-265.
DOI URL |
[59] |
M. Barbosa, J.C. Scully, Corros. Sci. 22 (1982) 1025-1036.
DOI URL |
[60] | S.S. Rajahram, T.J. Harvey, J.C. Walker, S.C. Wang, R.J.K.Wood, Tribol. Int. 46 (2012) 161-173. |
[61] |
R.J.K. Wood, J.C. Walker, T.J. Harvey, S. Wang, S.S. Rajahram, Wear 306 (2013) 254-262.
DOI URL |
[62] | M. Umemoto, K. Todaka, K. Tsuchiya, Mater. Sci. Eng.A 375-377 (2004) 899-904. |
[63] |
S.S. Rajahram, T.J. Harvey, J.C. Walker, S.C. Wang, R.J.K. Wood, G. Lalev, Wear 271 (2011) 1302-1313.
DOI URL |
[64] | J. Aguirre, M. Walczak, M. Rohwerder, Wear 438-439 (2019), 203053. |
[65] |
J.Z. Wu, H.J. Liu, P.T. Wei, Q.J. Lin, S.S. Zhou, Int. J. Mech. Sci. 183 (2020) 105785.
DOI URL |
[66] |
H.C. Wu, B. Yang, Y.Z. Shi, Q. Gao, Y.Q. Wang, , J. Mater. Sci. Technol. 31 (2015) 1144-1150.
DOI |
[67] |
I.M. Hutchings, J. Phys. D Appl. Phys. 10 (1977) L179-L184.
DOI URL |
[68] |
L.M. Zhang, Z.X. Li, J.X. Hu, A.L. Ma, S. Zhang, E.F. Daniel, A.J. Umoh, H.X. Hu, Tribol. Int. 155 (2021) 106752.
DOI URL |
[69] |
J. Lv, H.Y. Luo, Mater. Sci. Eng. C 34 (2014) 484-490.
DOI URL |
[70] | K.D. Ralston, N. Birbilis, Corrosion 66 (2010) 319-324. |
[71] |
V. Cruz, Q. Chao, N. Birbilis, D. Fabijanic, P.D. Hodgson, S. Thomas, Corros. Sci. 164 (2020) 108314.
DOI URL |
[1] | Yoon Hwa, Christopher S. Kumai, Thomas M. Devine, Nancy Yang, Joshua K. Yee, Ryan Hardwick, Kai Burgmann. Microstructural banding of directed energy deposition-additively manufactured 316L stainless steel [J]. J. Mater. Sci. Technol., 2021, 69(0): 96-105. |
[2] | Bright O. Okonkwo, Hongliang Ming, Jianqiu Wang, En-Hou Han, Ehsan Rahimi, Ali Davoodi, Saman Hosseinpour. A new method to determine the synergistic effects of area ratio and microstructure on the galvanic corrosion of LAS A508/309 L/308 L SS dissimilar metals weld [J]. J. Mater. Sci. Technol., 2021, 78(0): 38-50. |
[3] | Nana Kwabena Adomako, Giseung Shin, Nokeun Park, Kyoungtae Park, Jeoung Han Kim. Laser dissimilar welding of CoCrFeMnNi-high entropy alloy and duplex stainless steel [J]. J. Mater. Sci. Technol., 2021, 85(0): 95-105. |
[4] | Sam Yaw Anaman, Solomon Ansah, Hoon-Hwe Cho, Min-Gu Jo, Jin-Yoo Suh, Minjung Kang, Jong-Sook Lee, Sung-Tae Hong, Heung Nam Han. An investigation of the microstructural effects on the mechanical and electrochemical properties of a friction stir processed equiatomic CrMnFeCoNi high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 87(0): 60-73. |
[5] | Hongtao Zeng, Yong Yang, Minhang Zeng, Moucheng Li. Effect of dissolved oxygen on electrochemical corrosion behavior of 2205 duplex stainless steel in hot concentrated seawater [J]. J. Mater. Sci. Technol., 2021, 66(0): 177-185. |
[6] | Jiuyi Li, Xiankang Zhong, Tianguan Wang, Tan Shang, Junying Hu, Zhi Zhang, Dezhi Zeng, Duo Hou, Taihe Shi. Synergistic effect of erosion and hydrogen on properties of passive film on 2205 duplex stainless steel [J]. J. Mater. Sci. Technol., 2021, 67(0): 1-10. |
[7] | Mingjun Li, Li Nan, Chunyong Liang, Ziqing Sun, Lei Yang, Ke Yang. Antibacterial behavior and related mechanisms of martensitic Cu-bearing stainless steel evaluated by a mixed infection model of Escherichia coli and Staphylococcus aureus in vitro [J]. J. Mater. Sci. Technol., 2021, 62(0): 139-147. |
[8] | Yuqiao Dong, Jiaqi Li, Dake Xu, Guangling Song, Dan Liu, Haipeng Wang, M.Saleem Khan, Ke Yang, Fuhui Wang. Investigation of microbial corrosion inhibition of Cu-bearing 316L stainless steel in the presence of acid producing bacterium Acidithiobacillus caldus SM-1 [J]. J. Mater. Sci. Technol., 2021, 64(0): 176-186. |
[9] | Xinhua Wang, Lin Fan, Kangkang Ding, Likun Xu, Weimin Guo, Jian Hou, Tigang Duan. Pitting corrosion of 2Cr13 stainless steel in deep-sea environment [J]. J. Mater. Sci. Technol., 2021, 64(0): 187-194. |
[10] | Wenlong Qi, Jidong Wang, Xuanpeng Li, Yanan Cui, Yang Zhao, Junfeng Xie, Guanxin Zeng, Qiuying Gao, Tao Zhang, Fuhui Wang. Effect of oxide scale on corrosion behavior of HP-13Cr stainless steel during well completion process [J]. J. Mater. Sci. Technol., 2021, 64(0): 153-164. |
[11] | H. Niu, H.C. Jiang, M.J. Zhao, L.J. Rong. Effect of interlayer addition on microstructure and mechanical properties of NiTi/stainless steel joint by electron beam welding [J]. J. Mater. Sci. Technol., 2021, 61(0): 16-24. |
[12] | Jianxiong Li, Anupam Vivek, Glenn Daehn. Improved properties and thermal stability of a titanium-stainless steel solid-state weld with a niobium interlayer [J]. J. Mater. Sci. Technol., 2021, 79(0): 191-204. |
[13] | Hanyu Zhao, Yupeng Sun, Lu Yin, Zhao Yuan, Yiliang Lan, Dake Xu, Chunguang Yang, Ke Yang. Improved corrosion resistance and biofilm inhibition ability of copper-bearing 304 stainless steel against oral microaerobic Streptococcus mutans [J]. J. Mater. Sci. Technol., 2021, 66(0): 112-120. |
[14] | Ping Deng, Qunjia Peng, En-Hou Han, Wei Ke, Chen Sun. Proton irradiation assisted localized corrosion and stress corrosion cracking in 304 nuclear grade stainless steel in simulated primary PWR water [J]. J. Mater. Sci. Technol., 2021, 65(0): 61-71. |
[15] | G.Y. Zhu, Y.Y. Li, B.S. Hou, Q.H. Zhang, G.A. Zhang. Corrosion behavior of 13Cr stainless steel under stress and crevice in high pressure CO2/O2 environment [J]. J. Mater. Sci. Technol., 2021, 88(0): 79-89. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||