J. Mater. Sci. Technol. ›› 2021, Vol. 89: 150-157.DOI: 10.1016/j.jmst.2020.12.082
Previous Articles Next Articles
Guang Yanga,b, Yunhang Qib, Daming Hub, Haochen Wangb, Hongfei Chena,b, Liangmiao Zhanga,b, Chuanxiang Caoa,b, Bin Liub,*(), Fang Xiac,d,**(
), Yanfeng Gaoa,b,***(
)
Received:
2020-11-14
Revised:
2020-12-27
Accepted:
2020-12-30
Published:
2021-10-30
Online:
2021-10-30
Contact:
Bin Liu,Fang Xia,Yanfeng Gao
About author:
***State Key Laboratory of Advanced Special Steel,Shanghai University, Shanghai, 200444, China. yfgao@shu.edu.cn (Y. Gao).Guang Yang, Yunhang Qi, Daming Hu, Haochen Wang, Hongfei Chen, Liangmiao Zhang, Chuanxiang Cao, Bin Liu, Fang Xia, Yanfeng Gao. Sodium tungsten bronze (NaxWO3)-doped near-infrared-shielding bulk glasses for energy-saving applications[J]. J. Mater. Sci. Technol., 2021, 89: 150-157.
Sample No. | Mole fraction (%) | Quenching Temperature (°C) | ||||
---|---|---|---|---|---|---|
WOx | NaF | B2O3 | SiO2 | Sb2O3 | ||
2WO | 2 | 27.4 | 37.2 | 33.3 | 0.2 | 1000 |
4WO | 4 | 26.9 | 36.5 | 32.6 | 0.2 | 1000 |
5WO | 5 | 26.6 | 36.1 | 32.3 | 0.2 | 1000 |
6WO-1 | 6 | 26.3 | 35.7 | 32.0 | 0.2 | 1000 |
6WO-2 | 6 | 26.3 | 35.7 | 32.0 | 0.2 | 1200 |
6WO-3 | 6 | 26.3 | 35.7 | 32.0 | 0.2 | 1400 |
7WO | 7 | 26.0 | 35.3 | 31.6 | 0.2 | 1000 |
8WO | 8 | 25.8 | 35.0 | 31.3 | 0.2 | 1000 |
Table 1 Nominal compositions and quenching temperatures of the prepared glasses.
Sample No. | Mole fraction (%) | Quenching Temperature (°C) | ||||
---|---|---|---|---|---|---|
WOx | NaF | B2O3 | SiO2 | Sb2O3 | ||
2WO | 2 | 27.4 | 37.2 | 33.3 | 0.2 | 1000 |
4WO | 4 | 26.9 | 36.5 | 32.6 | 0.2 | 1000 |
5WO | 5 | 26.6 | 36.1 | 32.3 | 0.2 | 1000 |
6WO-1 | 6 | 26.3 | 35.7 | 32.0 | 0.2 | 1000 |
6WO-2 | 6 | 26.3 | 35.7 | 32.0 | 0.2 | 1200 |
6WO-3 | 6 | 26.3 | 35.7 | 32.0 | 0.2 | 1400 |
7WO | 7 | 26.0 | 35.3 | 31.6 | 0.2 | 1000 |
8WO | 8 | 25.8 | 35.0 | 31.3 | 0.2 | 1000 |
Fig. 1. Schematic diagram of the simulation experiment: the thermal insulation effects of 5 mm thick soda lime glass, ITO glass, CWO-film glass, and 6WO-1 samples were tested, respectively.
Fig. 2. (a, b) UV-Vis-NIR transmission spectra of the glass samples, (c) zoom-in view of the transmission spectra in the short-wavelength region, and (d) photos of the glass samples.
Fig. 4. (a) Comparison of heat insulation effects and (b) UV-Vis-NIR transmission spectra of soda lime glass, ITO glass, CWO-film glass, and 6WO-1 glass.
Soda lime glass | ITO glass | CWO-film glass | 6WO-1 glass | |
---|---|---|---|---|
T0/ °C | 23.2 | 23.5 | 23.3 | 23.0 |
T1/ °C | 55.5 | 42.9 | 31.9 | 33 |
ΔT/ °C | 32.3 | 19.4 | 8.6 | 10 |
Table 2 Temperature in the simulated thermal insulation chamber.
Soda lime glass | ITO glass | CWO-film glass | 6WO-1 glass | |
---|---|---|---|---|
T0/ °C | 23.2 | 23.5 | 23.3 | 23.0 |
T1/ °C | 55.5 | 42.9 | 31.9 | 33 |
ΔT/ °C | 32.3 | 19.4 | 8.6 | 10 |
Fig. 5. Transmission spectra as a function of time. (a) CWO-film glass in a 80 °C water bath, (b) 6WO-1 in a 80 °C water bath, (c) CWO-film glass at 120 °C in air, (d) 6WO-1 at 120 °C in air, and (e) 6WO-1 under ambient atmosphere and sunlight.
Fig. 7. Raman spectra of the glass samples and WOx in the range of (a) 0-1400 cm-1 and (b) 850-1050 cm-1. Raman spectra of samples 6WO-1, 6WO-2 and 6WO-3 in the range of (c) 0-1400 cm-1 and (d) 850-1050 cm-1.
Fig. 8. (a) A typical XPS spectrum of glass sample (6WO-1), (b) W 4f spectrum and its fitting of sample 6WO-1, (c) ratio of W 5+ to W 6+ content in the glass samples, and (d) ratio of W 5+ to W 6+ content in samples 6WO-1 (1000 °C), 6WO-2 (1200 °C) and 6WO-3 (1400 °C).
[1] |
Y. Xi, H.Y. Guo, Y.L. Zi, X.G. Li, J. Wang, J.N. Deng, S.M. Li, C.G. Hu, X. Cao, Z. L.Wang, Adv. Energy Mater. 7 (2017), 1602397.
DOI URL |
[2] |
L. Yang, Z.G. Chen, M.S. Dargusch, J. Zou, Adv. Energy Mater. 8 (2018), 1701797.
DOI URL |
[3] |
W. Zhang, W.Z. Lai, R. Cao, Chem. Rev. 117 (2017) 3717-3797.
DOI PMID |
[4] |
H.-F. Chen, C.Zhang, Y.C. Liu, P. Song, W.X. Li, G. Yang, B. Liu, Rare Met. 39 (2019) 498-512.
DOI URL |
[5] |
M.I. Hoffert, K. Caldeira, G. Benford, D.R. Criswell, C. Green, H. Herzog, A. K.Jain H.S. Kheshgi, K.S. Lackner, J.S. Lewis, H.D. Lightfoot, W. Manheimer, J. C.Mankins M.E. Mauel, L.J. Perkins, M.E. Schlesinger, T. Volk, T.M.L. Wigley, Science 298 (2002) 981-987.
PMID |
[6] |
A. Llordes, G. Garcia, J. Gazquez, D.J. Milliron, Nature 500 (2013) 323-+.
DOI URL |
[7] |
S.F. Wang, M.S. Liu, L.B. Kong, Y. Long, X.C. Jiang, A.B. Yu, Prog. Mater. Sci. 81 (2016) 1-54.
DOI URL |
[8] |
H. Khandelwal, A.P. Schenning, M.G. Debije, Adv. Energy Mater. 7 (2017),1602209.
DOI URL |
[9] |
Y. Ke, C. Zhou, Y. Zhou, S. Wang, S.H. Chan, Y. Long, Adv. Funct. Mater. 28 (2018), 1800113.
DOI URL |
[10] |
M. Waite, E. Cohen, H. Torbey, M. Piccirilli, Y. Tian, V. Modi, Energy 127 (2017) 786-802.
DOI URL |
[11] |
Y. Li, X.Y. Wu, J. Li, K. Wang, G.K. Zhang, Appl. Catal. B-Environ. 229 (2018) 218-226.
DOI URL |
[12] |
Y.J. Yao, L.M. Zhang, Z. Chen, C.X. Cao, Y.F. Gao, H.J. Luo, Ceram. Int. 44 (2018) 13469-13475.
DOI URL |
[13] |
J. Kulczyk-Malecka, P.J. Kelly, G. West, G.C.B.Clarke, J.A. Ridealgh, K.P. Almtoft,A.L. Greer, Z.H. Barber, Acta Mater. 66 (2014) 396-404.
DOI URL |
[14] |
M. Kanehara, H. Koike, T. Yoshinaga, T. Teranishi, , J. Am. Chem. Soc. 131 (2009) 17736-17737.
DOI URL |
[15] |
P. Pattathil, R. Giannuzzi, M. Manca, Nano Energy 30 (2016) 242-251.
DOI URL |
[16] |
Y.F. Gao, H.J. Luo, Z.T. Zhang, L.T. Kang, C. Zhang, J. Du, M. Kanehira, C.X. Cao, Nano Energy 1 (2012) 221-246.
DOI URL |
[17] |
L.M. Chao, L.H. Bao, W. Wei, O. Tegus, Sol. Energy 190 (2019) 10-27.
DOI URL |
[18] |
L. Lei, F. Lou, K.Y. Tao, H.X. Huang, X. Cheng, P. Xu, Photon. Res. 7 (2019) 734-741.
DOI URL |
[19] |
J.D. Zhou, Y.F. Gao, X.L. Liu, Z. Chen, L. Dai, C.X. Cao, H.J. Luo, M. Kanahira, C. Sun L.M. Yan, Phys. Chem. Chem. Phys. 15 (2013) 7505-7511.
DOI URL |
[20] | L.T. Kang, Y.F. Gao, Z. Chen, J. Du, Z.T. Zhang, H.J. Luo, Sol. Energy Mater. Sol.Cells 94 (2010) 2078-2084. |
[21] |
Y.F. Gao, S.B. Wang, H.J. Luo, L. Dai, C.X. Cao, Y.L. Liu, Z. Chen, M. Kanehira, Energy Environ. Sci. 5 (2012) 6104-6110.
DOI URL |
[22] | Q. Zhao, Y.S. Fang, K. Qiao, W. Wei, Y.J. Yao, Y.F. Gao, Sol. Energy Mater. Sol.Cells 194 (2019) 95-102. |
[23] |
C.M. Wu, S. Naseem, M.H. Chou, J.H. Wang, Y.Q. Jian, Front. Mater. 6 (2019) 49.
DOI URL |
[24] | X.T. Huo, H.Y. Zhang, W.G. Shen, X.W. Miao, M. Zhang, M. Guo, J. Mater. Chem.A 7 (2019) 16867-16875. |
[25] | H. Takeda, K. Adachi, , J. Am. Ceram. Soc. 90 (2007) 4059-4061. |
[26] |
W. Wang, H.X. Wen, S. Ling, Z.T. Li, J.B. Su, C.B. Wang, J. Mater. Chem. A 6 (2018) 15690-15700.
DOI URL |
[27] |
T.F. Chala, C.M. Wu, M.H. Chou, M.B. Gebeyehu, K.B. Cheng, Nanomaterials 7 (2017) 191.
DOI URL |
[28] | Y.H. Chang, Z.G. Wang, Y.E. Shi, X.C. Ma, L. Ma, Y.Q. Zhang, J.H. Zhan, J. Mater.Chem. A 6 (2018) 10939-10946. |
[29] |
G.V. Naik, V.M. Shalaev, A. Boltasseva, Adv. Mater. 25 (2013) 3264-3294.
DOI URL |
[30] |
N. Li, X. Cao, Y.M. Li, T.C. Chang, S.W. Long, Y.J. Zhou, G.Y. Sun, L. Ge, P. Jin, Chem. Comm. 54 (2018) 5241-5244.
DOI URL |
[31] |
B. Zhu, F. Wang, G. Wang, Y. Gu, Photonics Res. 6 (2018) 1158-1169.
DOI URL |
[32] |
K. Adachi, Y. Ota, H. Tanaka, M. Okada, N. Oshimura, A. Tofuku,, J. Appl. Phys. 114 (2013), 194304.
DOI URL |
[33] | X.Z. Zeng, Y.J. Zhou, S.D. Ji, H.J. Luo, H.L. Yao, X. Huang, P. Jin, , J. Mater. Chem. C3 (2015) 8050-8060. |
[34] |
X.Y. Wu, J.T. Wang, G.K. Zhang, K. Katsumata, K. Yanagisawa, T. Sato, S. Yin, Appl. Catal. B 201 (2017) 128-136.
DOI URL |
[35] |
Y.X. Chen, X.Z. Zeng, Y.J. Zhou, R. Li, H.L. Yao, X. Cao, P. Jin, Ceram. Int. 44 (2018) 2738-2744.
DOI URL |
[36] |
G.K. Dalapati, A.K. Kushwaha, M. Sharma, V. Suresh, S. Shannigrahi, S. Zhuk, S. Masudy-Panah , Prog. Mater. Sci. 95 (2018) 42-131.
DOI URL |
[37] |
Y.S. Wu, C.C. Yang, S.P. Luo, Y.L. Chen, C.N. Wei, S.J. Lue, Int. J. Hydrogen Energy 42 (2017) 6862-6875.
DOI URL |
[38] |
H. Tu, W.N. Wang, D.R. Chen, Aerosol Air Qual. Res. 20 (2020) 690-701.
DOI URL |
[39] |
G.X. Liu, S.N. Wang, Y.T. Nie, X.H. Sun, Y.H. Zhang, Y. Tang, J. Mater. Chem. A 1 (2013) 10120-10129.
DOI URL |
[40] |
Y.R. Cheng, F. Yang, G.L. Xiang, K. Zhang, Y. Cao, D.D. Wang, H.F. Dong, X. J.Zhang , Nano Lett. 19 (2019) 1179-1189.
DOI PMID |
[41] |
B. Ingham, S.V. Chong, J.L. Tallon, J. Phys. Chem. B 109 (2005) 4936-4940.
DOI URL |
[42] | K. Thummavichai, L. Trimby, N.N. Wang, C.D. Wright, Y.D. Xia, Y.Q. Zhu, J.Phys. Chem. C 121 (2017) 20498-20506. |
[43] |
K.B. Patel, B. Boizot, S.P. Facq, S. Peuget, I. Farnan, J. Non-Cryst. Solids 473 (2017) 1-16.
DOI URL |
[44] |
C.S. Guo, S. Yin, M. Yan, M. Kobayashi, M. Kakihana, T. Sato, Inorg. Chem. 51 (2012) 4763-4771.
DOI URL |
[45] |
X. Cao, Z. Chen, R. Lin, W.C. Cheong, S.J. Liu, J. Zhang, Q. Peng, C. Chen, T. Han, X.J. Tong, Y. Wang, R.G. Shen, W. Zhu, D.S. Wang, Y.D. Li, Nat. Catal. 1 (2018) 704-710.
DOI URL |
[46] | I.M. Szilágyi, J. Madarász, G. Pokol, P. Király, G. Tárkányi, S. Saukko, J. Mizsei, A.L. Tóth, A. Szabó, K. Varga-Josepovits, Chem. Mater. 20 (2008) 4116-4125. |
[47] |
J.S. Lee, H.C. Liu, G.D. Peng, Y. Tseng, J. Cryst. Growth 465 (2017) 27-33.
DOI URL |
[48] |
M. Okada, K. Ono, S. Yoshio, H. Fukuyama, K. Adachi, , J. Am. Ceram. Soc. 102 (2019) 5386-5400.
DOI |
[49] |
K. Machida, M. Okada, K. Adachi,, J. Appl. Phys. 125 (2019), 103103.
DOI URL |
[50] |
S. Raj, H. Matsui, S. Souma, T. Sato, M. Greenblatt, Phys. Rev. B 75 (2007) 155111-155116.
DOI URL |
[51] | J.H. Zheng, L. Li, H.W. Yin, Y. Wang, J. Wei, H.D. Zeng, F. Xia, G.R. Chen, Ceram.Int. 46 (2020) 22826-22830. |
[52] |
Y.C. Xin, X. Cao, S.H. Bao, S.D. Ji, R. Li, Y. Yang, H.J. Zhou, P. Jin, Crystengcomm 19 (2017) 3931- 3938.157
DOI URL |
[1] | Yanhong Yin, Chun, an Ma, Ziping Wu, Man Zhao, Litao Chen, Youqun Chu. Synthesis and Characterization of Sphere-like Pt Nanoparticles Supported on DWCNT/WO3 Nanorods with Electrocatalytic Activity [J]. J. Mater. Sci. Technol., 2015, 31(9): 888-894. |
[2] | Song Yue, Yuan Zhang. Electronic Transport Properties of Sodium Tungsten Bronzes Na0.54WO3 Single Crystals [J]. J Mater Sci Technol, 2012, 28(6): 569-571. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||