J. Mater. Sci. Technol. ›› 2021, Vol. 89: 141-149.DOI: 10.1016/j.jmst.2021.01.086
Previous Articles Next Articles
Min Zhaa,b,c, Hong-Min Zhangb, Xiang-Tao Mengb, Hai-Long Jiab,c, Shen-Bao Jine, Gang Shae, Hui-Yuan Wanga,b,c,*(), Yan-Jun Lid,**(
), Hans J. Rovend
Received:
2020-10-28
Revised:
2020-12-22
Accepted:
2021-01-02
Published:
2021-10-30
Online:
2021-10-30
Contact:
Hui-Yuan Wang,Yan-Jun Li
About author:
** yanjun.li@ntnu.no(Y.-J. Li).Min Zha, Hong-Min Zhang, Xiang-Tao Meng, Hai-Long Jia, Shen-Bao Jin, Gang Sha, Hui-Yuan Wang, Yan-Jun Li, Hans J. Roven. Stabilizing a severely deformed Al-7Mg alloy with a multimodal grain structure via Mg solute segregation[J]. J. Mater. Sci. Technol., 2021, 89: 141-149.
Fig. 1. (a) A representative EBSD map of the homogenized Al-7Mg alloy, (b) a typical TEM-based orientation map (Nanomegas-ASTAR), (c) the corresponding KAM map, (d) the grain size distribution and (e) the GB misorientation angle distribution of the as-ECAPed Al-7Mg alloy; inserts in (a) and (c) are the corresponding grain size distribution and local misorientation angle distribution, respectively, while the one in the bottom right is the color coded map of crystal orientations parallel to ND.
Fig. 2. Misorientation profiles measured along lines L1-L4 in Fig. 1(b). The black lines show the point-to-point misorientation while the red lines show the point-to-origin misorientation.
Fig. 3. Typical TEM images of the as-ECAPed Al-7Mg alloy. The inserts in (a) and (b) are the corresponding grain size distribution and representative SAD pattern, respectively.
Fig. 4. XRD patterns of the Al-7Mg alloy: (a) in the as-homogenized state and (b) in the as-ECAPed state. For comparison, theoretical diffraction peak positions of pure Al (lattice constant a = 4.0412 Å [35]) are included and presented as vertical dotted lines.
Samples | Lattice parameter (Å) | ΔMg (wt.%) |
---|---|---|
As-homogenized | 4.0860 ± 0.0002 | - |
As-ECAPed | 4.0810 ± 0.0001 | 0.96 |
200 ℃-24 h | 4.0735 ± 0.0003 | 2.42 |
250 ℃-30 min | 4.0747 ± 0.0001 | 2.19 |
275 ℃-75 min | 4.0778 ± 0.0002 | 1.59 |
300 ℃-30 s | 4.0840 ± 0.0001 | 0.38 |
Table 1 Lattice parameters estimated from XRD data by using a least squares refinement. Compared with the Mg content in the as-homogenized condition, the loss of Mg (ΔMg) in as-ECAPed and annealed Al-7Mg samples is also included.
Samples | Lattice parameter (Å) | ΔMg (wt.%) |
---|---|---|
As-homogenized | 4.0860 ± 0.0002 | - |
As-ECAPed | 4.0810 ± 0.0001 | 0.96 |
200 ℃-24 h | 4.0735 ± 0.0003 | 2.42 |
250 ℃-30 min | 4.0747 ± 0.0001 | 2.19 |
275 ℃-75 min | 4.0778 ± 0.0002 | 1.59 |
300 ℃-30 s | 4.0840 ± 0.0001 | 0.38 |
Fig. 5. APT analyses of the as-ECAPed Al-7Mg alloy: (a) and (d) element distribution maps, where Al (blue) and Mg (pink) atoms are presented; (b), (c) and (e) concentration profiles showing the local Mg distribution along GBs.
Fig. 6. The microhardness evolution of the ECAPed Al-7Mg alloy annealed at different conditions: (a) at various temperatures for 30 min, (b) at 200 and 275 ℃ with increasing time and (c) at 300 ℃ with increasing time.
Fig. 7. Typical EBSD maps of the ECAPed Al-7Mg alloy annealed at: (a) 200 ℃ for 30 min, (b) 250 ℃ for 30 min and (c) 200 ℃ for 24 h. The insert in the bottom right is the color coded map of crystal orientations parallel to ND.
Fig. 8. Typical EBSD maps of the ECAPed Al-7Mg alloy annealed at 275 ℃ for (a) 75 min and (b) 8 h. The insert in the bottom right is the color coded map of crystal orientations parallel to ND.
Fig. 9. Typical EBSD maps of the ECAPed Al-7Mg alloy annealed at 300 ℃ for (a) 30 s, (b) 60 s and (c) 300 s. The insert in the bottom right is the color coded map of crystal orientations parallel to ND.
Fig. 10. XRD patterns of the ECAPed Al-7Mg alloy annealed at different conditions: (a) at 200 ℃ for 24 h, (b) at 250 ℃ for 30 min, (c) at 275 ℃ for 75 min and (d) at 300 ℃ for 30 s. For comparison, theoretical diffraction peak positions of pure Al (lattice constant a = 4.0412 Å) are included and presented as vertical dotted lines.
Fig. 11. TEM images of ECAPed samples annealed at: (a-c) 250 ℃ for 30 min and (d-f) 200 ℃ for 24 h. Inserts in (a) and (d) are the corresponding grain size distribution charts while these in (b) and (e) are the corresponding SAD patterns.
[1] |
X. Sauvage, N. Enikeev, R. Valiev, Y. Nasedkina, M. Murashkin, Acta Mater. 72 (2014) 125-136.
DOI URL |
[2] |
Y. Zhao, M.N. Polyakov, M. Mecklenburg, M.E. Kassner, A.M. Hodge, Scr. Mater. 89 (2014) 49-52.
DOI URL |
[3] |
Y. Liu, M. Liu, X. Chen, Y. Cao, H.J. Roven, M. Murashkin, R.Z. Valiev, H. Zhou, Scr. Mater. 159 (2019) 137-141.
DOI URL |
[4] |
M. Jobba, R.K. Mishra, M. Niewczas, Int. J. Plast. 65 (2015) 43-60.
DOI URL |
[5] |
D. Zhao, O.M. Løvvik, K. Marthinsen, Y. Li, , J. Mater. Sci. 51 (2016) 6552-6568.
DOI URL |
[6] |
J. Xue, S. Jin, X. An, X. Liao, J. Li, G. Sha, , J. Mater. Sci. Technol. 35 (2019) 858-864.
DOI URL |
[7] | Y. Tang, W. Goto, S. Hirosawa, Z. Horita, S. Lee, K. Matsuda, D. Terada, ActaMater. 131 (2017) 57-64. |
[8] |
H.R. Peng, M.M. Gong, Y.Z. Chen, F. Liu, Int. Mater. Rev. 62 (2017) 303-333.
DOI URL |
[9] |
M. Saber, C.C. Koch, R.O. Scattergood, Mater. Res. Lett. 3 (2015) 65-75.
DOI URL |
[10] |
Q. Li, J. Cho, S. Xue, X. Sun, Y. Zhang, Z. Shang, H. Wang, X. Zhang, Acta Mater. 165 (2019) 142-152.
DOI URL |
[11] |
C. Meng, W. Hu, S. Sandlöbes, S. Korte-Kerzel, G. Gottstein, Acta Mater. 181 (2019) 67-77.
DOI |
[12] |
H. Hasegawa, S. Komura, A. Utsunomiya, Z. Horita, M. Furukawa, M. Nemoto, T.G. Langdon, Mater. Sci. Eng. A 265 (1999) 188-196.
DOI URL |
[13] |
M.A. Atwater, D. Roy, K.A. Darling, B.G. Butler, R.O. Scattergood, C.C. Koch, Mater. Sci. Eng. A 558 (2012) 226-233.
DOI URL |
[14] |
P. Choi, M. Da Silva, U. Klement, T. Al-Kassab, R. Kirchheim, Acta Mater. 53 (2005) 4473-4481.
DOI URL |
[15] | B.K.VanLeeuwen, K.A. Darling, C.C. Koch, R.O. Scattergood, B.G. Butler, ActaMater. 58 (2010) 4292-4297. |
[16] |
W. Xu, X.C. Liu, X.Y. Li, K. Lu, Acta Mater. 182 (2020) 207-214.
DOI URL |
[17] |
R.K. Koju, Y. Mishin, Acta Mater. 201 (2020) 596-603.
DOI URL |
[18] |
D. Zhao, O.M. Løvvik, K. Marthinsen, Y. Li, Acta Mater. 145 (2018) 235-246.
DOI URL |
[19] |
Y. Zhang, S. Jin, P.W. Trimby, X. Liao, M.Y. Murashkin, R.Z. Valiev, J. Liu, J. M.Cairney S.P. Ringer, G. Sha, Acta Mater. 162 (2019) 19-32.
DOI URL |
[20] | Y. Zhang, S. Jin, P. Trimby, X. Liao, M.Y. Murashkin, R.Z. Valiev, G. Sha, Mater.Sci. Eng. A 752 (2019) 223-232. |
[21] |
R.Z. Valiev, Mater. Trans. 55 (2014) 13-18.
DOI URL |
[22] |
A. Devaraj, W. Wang, R. Vemuri, L. Kovarik, X. Jiang, M. Bowden, J.R. Trelewicz, S. Mathaudhu, A. Rohatgi, Acta Mater. 165 (2019) 698-708.
DOI |
[23] |
X. Sauvage, G. Wilde, S.V. Divinski, Z. Horita, R.Z. Valiev, Mater. Sci. Eng. A 540 (2012) 1-12.
DOI URL |
[24] |
Y. Wang, M. Chen, F. Zhou, E. Ma, Nature 419 (2002) 912-915.
DOI URL |
[25] |
M. Zha, Y. Li, R.H. Mathiesen, H.J. Roven, Scr. Mater. 105 (2015) 22-25.
DOI URL |
[26] |
M. Zha, Y. Li, R.H. Mathiesen, R. Bjørge, H.J. Roven, Mater. Sci. Eng. A 598 (2014) 141-146.
DOI URL |
[27] |
M. Zha, Y. Li, R.H. Mathiesen, R. Bjørge, H.J. Roven, Acta Mater. 84 (2015) 42-54.
DOI URL |
[28] |
Y.J. Chen, Y.C. Chai, H.J. Roven, S.S. Gireesh, Y.D. Yu, J. Hjelen, Mater. Sci. Eng. A 545 (2012) 139-147.
DOI URL |
[29] | H. Pan, R. Kang, J. Li, H. Xie, Z. Zeng, Q. Huang, C. Yang, Y. Ren, G. Qin, ActaMater. 186 (2020) 278-290. |
[30] | M. Liu, H.J. Roven, X. Liu, M. Murashkin, R.Z. Valiev, T. Ungár, L. Balogh, J.Mater. Sci. 45 (2010) 4659-4664. |
[31] | J. Gubicza, N.Q. Chinh, J.L. Lábár, S. Dobatkin, Z. Hegedus, T.G. Langdon, J.Alloys. Compd. 483 (2009) 271-274. |
[32] | J. Gubicza, N.Q. Chinh, Z. Horita, T.G. Langdon, Mater. Sci. Eng.A 387-389 (2004) 55-59. |
[33] |
M. Zha, X.T. Meng, H.M. Zhang, X.H. Zhang, H.L. Jia, Y.J. Li, J.Y. Zhang, H. Y.Wang Q.C. Jiang, , J. Alloys. Compd. 728 (2017) 872-877.
DOI URL |
[34] | R.Z. Valiev, N.A. Enikeev, M.Y. Murashkin, V.U. Kazykhanov, X. Sauvage, Scr.Mater. 63 (2010) 949-952. |
[35] | H.J. Axon, W. Hume-Rothery, Proc. R. Soc. London Ser. A 193 (1948) 1-24. |
[36] |
H. Zhao, F. De Geuser, A. Kwiatkowski da Silva, A.Szczepaniak, B. Gault, D.Ponge, D. Raabe , Acta Mater. 156 (2018) 318-329.
DOI URL |
[37] |
M. Zha, Y. Li, R.H. Mathiesen, R. Bjørge, H.J. Roven, Mater. Sci. Eng. A 586 (2013) 374-381.
DOI URL |
[38] |
D.G. Morris, M.A. Mu˜noz-Morris, Acta Mater. 50 (2002) 4047-4060.
DOI URL |
[39] | M.A.Muñoz-Morris, C.Garcia Oca, G. Gonzalez-Doncel, D.G. Morris, Mater.Sci. Eng. A 375-377 (2004) 853-856. |
[40] |
Y.B. Lee, D.H. Shin, K.T. Park, W.J. Nam, Scr. Mater. 51 (2004) 355-359.
DOI URL |
[41] |
I. Roy, M. Chauhan, E.J. Lavernia, F.A. Mohamed, Metall. Mater. Trans. A 37 (2006) 721-730.
DOI URL |
[42] |
B. Gwalani, R. Salloom, T. Alam, S.G. Valentin, X. Zhou, G. Thompson, S.G. Srinivasan, R. Banerjee, Mater. Res. Lett. 7 (2019) 267-274.
DOI |
[43] | F.J. Humphreys, M. Hatherly, Elsevier, 2004. |
[44] |
H.K. Zhang, H. Xiao, X.W. Fang, Q. Zhang, R.E. Logé, K. Huang, Mater. Des. 193 (2020), 108873.
DOI URL |
[45] |
K. Huang, K. Marthinsen, Mater. Charact. 110 (2015) 215-221.
DOI URL |
[46] |
Y. Huang, F.J. Humphreys, Mater. Chem. Phys. 132 (2012) 166-174.
DOI URL |
[1] | Jiang Bi, Zhenglong Lei, Yanbin Chen, Xi Chen, Nannan Lu, Ze Tian, Xikun Qin. An additively manufactured Al-14.1Mg-0.47Si-0.31Sc-0.17Zr alloy with high specific strength, good thermal stability and excellent corrosion resistance [J]. J. Mater. Sci. Technol., 2021, 67(0): 23-35. |
[2] | Shenbao Jin, Zhenjiao Luo, Xianghai An, Xiaozhou Liao, Jiehua Li, Gang Sha. Composition-dependent dynamic precipitation and grain refinement in Al-Si system under high-pressure torsion [J]. J. Mater. Sci. Technol., 2021, 68(0): 199-208. |
[3] | Xutong Yang, Xiao Zhong, Junliang Zhang, Junwei Gu. Intrinsic high thermal conductive liquid crystal epoxy film simultaneously combining with excellent intrinsic self-healing performance [J]. J. Mater. Sci. Technol., 2021, 68(0): 209-215. |
[4] | Milad Ghayoor, Saereh Mirzababaei, Anumat Sittiho, Indrajit Charit, Brian K. Paul, Somayeh Pasebani. Thermal stability of additively manufactured austenitic 304L ODS alloy [J]. J. Mater. Sci. Technol., 2021, 83(0): 208-218. |
[5] | Xing Zhou, Jingrui Deng, Changqing Fang, Wanqing Lei, Yonghua Song, Zisen Zhang, Zhigang Huang, Yan Li. Additive manufacturing of CNTs/PLA composites and the correlation between microstructure and functional properties [J]. J. Mater. Sci. Technol., 2021, 60(0): 27-34. |
[6] | Xiaofei Cui, Wei Fu, Daqing Fang, Guangli Bi, Zijun Ren, Shengwu Guo, Suzhi Li, Xiangdong Ding, Jun Sun. Mechanical properties and deformation mechanisms of a novel fine-grained Mg-Gd-Y-Ag-Zr-Ce alloy with high strength-ductility synergy [J]. J. Mater. Sci. Technol., 2021, 66(0): 64-73. |
[7] | Binbin Zhang, Weichen Xu, Qingjun Zhu, Baorong Hou. Scalable, fluorine free and hot water repelling superhydrophobic and superoleophobic coating based on functionalized Al2O3 nanoparticles [J]. J. Mater. Sci. Technol., 2021, 66(0): 74-81. |
[8] | Xuefeng Liao, Jiasheng Zhang, Jiayi He, Wenbing Fan, Hongya Yu, Xichun Zhong, Zhongwu Liu. Development of cost-effective nanocrystalline multi-component (Ce,La,Y)-Fe-B permanent magnetic alloys containing no critical rare earth elements of Dy, Tb, Pr and Nd [J]. J. Mater. Sci. Technol., 2021, 76(0): 215-221. |
[9] | Jiang Bi, Zhenglong Lei, Yanbin Chen, Xi Chen, Ze Tian, Nannan Lu, Xikun Qin, Jingwei Liang. Microstructure, tensile properties and thermal stability of AlMgSiScZr alloy printed by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2021, 69(0): 200-211. |
[10] | Junyuan Bai, Hongbo Xie, Xueyong Pang, Guo Yuan, Lei Wang, Yuping Ren, Gaowu Qin. Nucleation and growth mechanisms of γ’’ phase with single-unit-cell height in Mg-RE-Zn(Ag) series alloys: a first-principles study [J]. J. Mater. Sci. Technol., 2021, 79(0): 133-140. |
[11] | Zhijie Huang, Li Yin, Chaoliang Hu, Jiajun Shen, Tiejun Zhu, Qian Zhang, Kaiyang Xia, Jiazhan Xin, Xinbing Zhao. Low contact resistivity and long-term thermal stability of Nb0.8Ti0.2FeSb/Ti thermoelectric junction [J]. J. Mater. Sci. Technol., 2020, 40(0): 113-118. |
[12] | Yanhui Li, Siwen Wang, Xuewei Wang, Meiling Yin, Wei Zhang. New FeNiCrMo(P, C, B) high-entropy bulk metallic glasses with unusual thermal stability and corrosion resistance [J]. J. Mater. Sci. Technol., 2020, 43(0): 32-39. |
[13] | Qing Du, Xiongjun Liu, Yihuan Cao, Yuren Wen, Dongdong Xiao, Yuan Wu, Hui Wang, Zhaoping Lu. Enhanced crystallization resistance and thermal stability via suppressing the metastable superlattice phase in Ni-(Pd)-P metallic glasses [J]. J. Mater. Sci. Technol., 2020, 42(0): 203-211. |
[14] | Changjian Yan, Yunchang Xin, Ce Wang, Huan Liu, Qing Liu. Microstructure and texture evolution of the β-Mg17A12 phase in a Mg alloy with an ultra-high Al content [J]. J. Mater. Sci. Technol., 2020, 52(0): 89-99. |
[15] | Yi Zhang, Lili Tan, Qingchuan Wang, Ming Gao, Iniobong P. Etim, Ke Yang. Effects of microstructure on the torsional properties of biodegradable WE43 Mg alloy [J]. J. Mater. Sci. Technol., 2020, 51(0): 102-110. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||