J. Mater. Sci. Technol. ›› 2021, Vol. 89: 179-185.DOI: 10.1016/j.jmst.2021.02.024
Previous Articles Next Articles
Ruijie Liua, Dongshi Zhanga,*(
), Zhuguo Lia,b,**(
)
Received:2020-12-31
Published:2021-10-30
Online:2021-10-30
Contact:
Dongshi Zhang,Zhuguo Li
About author:**Shanghai Key Laboratory of Materials Laser Processingand Modification, School of Materials Science and Engineering, Shanghai Jiao TongUniversity, Shanghai, 200240, China. lizg@sjtu.edu.cn (Z. Li).Ruijie Liu, Dongshi Zhang, Zhuguo Li. Femtosecond laser induced simultaneous functional nanomaterial synthesis, in situ deposition and hierarchical LIPSS nanostructuring for tunable antireflectance and iridescence applications[J]. J. Mater. Sci. Technol., 2021, 89: 179-185.
Fig. 1. Schematic illustration of fs-LA induced simultaneous nanoparticle production, in situ deposition and hierarchical LIPSSs nanostructuring to develop biomimetic interfaces with tunable UV-to-MIR ultrabroadband antireflectance and iridescence. Under the fixed fs-LA ablation condition (pulse duration: 400 fs, wavelength: 1030 nm, repetition rate: 400 kHz, laser power: 5 W, scanning speed: 200 mm/s), changing the scan interval allows the obtainment of hierarchical LIPSSs with low-, medium- and high-density of loosely deposited nanoparticles. After ultrasonic bath cleaning, hierarchical LIPSSs with low-, medium- and high-density of tightly deposited nanoparticles are obtained.
Fig. 2. SEM images of as-prepared hierarchical W-LIPSSs decorated by loosely deposited particles. These samples were obtained by fs-LA of W in air at the scanning intervals of 1, 2, 5, 10, 15 and 20 μm, respectively. Inset images are higher magnifications of the structures. SEM images shown in (a-f) and their inset images have the same scale bars of 2 and 1 μm, respectively.
Fig. 3. (a-f) Top view, cross-sectional and 3D AFM morphologies of hierarchical LIPSSs composed of tightly deposited particles obtained after the ultrasonic cleaning of samples obtained by fs-LA of W at scanning intervals of 1, 2, 5, 10, 15, and 20 μm, respectively. The cross-sections correspond to 2D structures marked by green lines.
Fig. 4. (a, b) UV-to-NIR and (d, e) NIR-to-MIR reflectance of hierarchical LIPSSs nanostructures consisting of loosely and tightly deposited particles prepared by fs-LA of W at the scanning intervals of 1, 2, 5, 10, 15 and 20 μm, respectively. (g, h) Schematic illustrations of the functions of a MOx metal-oxide particle and different densities of deposited MOx particles, respectively. Green and red arrow-lines indicate the incident light at different wavelengths.
Fig. 5. (a) Raman spectra of the hierarchical W-LIPSSs nanostructures with loosely deposited particles obtained by fs-LA at scanning intervals of 1, 2, 5, 10, 15, and 20 μm, respectively. (b-d, e, f) TEM images, size distribution, and EDS spectrum of the loosely deposited particles of the W-1 μm sample. (g) Atomic fractions of carbon, oxygen and tungsten elements of the loosely deposited particles measured by SEM and TEM.
| [1] |
Z.W. Han, Z. Wang, X.M. Feng, B. Li, Z.Z. Mu, J.Q. Zhang, S.C. Niu, L.Q. Ren, Biosurf. Biotribol. 2 (2016) 137-150.
DOI URL |
| [2] |
J. Cai, L. Qi, Mater. Horiz. 2 (2015) 37-53.
DOI URL |
| [3] |
H.K. Raut, V.A. Ganesh, A.S. Nair, S. Ramakrishna, Energy Environ. Sci. 4 (2011) 3779-3804.
DOI URL |
| [4] | Y.Y. Zhang, Y.L. Jiao, C.Z. Li, C. Chen, J.W. Li, Y.L. Hu, D. Wu, J.R. Chu, Int. J.Extrem. Manuf. 2 (2020), 032002. |
| [5] |
W. Ouyang, F. Teng, J.H. He, X. Fang, Adv. Funct. Mater. 29 (2019), 1807672.
DOI URL |
| [6] |
S. Yang, K. Yin, J. Wu, Z.P. Wu, D.K. Chu, J. He, J.A. Duan, Nanoscale 11 (2019) 17607-17614.
DOI URL |
| [7] |
X.C. Sun, H. Xia, X.L. Xu, C. Lv, Y. Zhao, Sens. Actuators B-Chem. 322 (2020),128620.
DOI URL |
| [8] | J.J.J.Nivas, E. Allahyari, A.Vecchione, Q. Hao, S. Amoruso, X. Wang, J. Mater.Sci. Technol. 48 (2020) 180-185. |
| [9] |
D.S. Zhang, B. Ranjan, T. Tanaka, K. Sugioka, Int. J. Extrem. Manuf. 2 (2020),015001.
DOI URL |
| [10] |
D.S. Zhang, L.C. Wu, M. Ueki, Y. Ito, K. Sugioka, Int. J. Extrem. Manuf. 2 (2020),045001.
DOI URL |
| [11] |
K. Yin, S. Yang, J.R. Wu, Y.J. Li, D.K. Chu, J. He, J.A. Duan, J. Mater. Chem. A 7 (2019) 8361-8367.
DOI URL |
| [12] |
K. Yin, D.K. Chu, X.R. Dong, C. Wang, J.A. Duan, J. He, Nanoscale 9 (2017) 14229-14235.
DOI URL |
| [13] |
K. Lee, H. Ki, Appl. Surf. Sci. 494 (2019) 187-195.
DOI URL |
| [14] |
D.Z. Tan, K.N. Sharafudeen, Y.Z. Yue, J.R. Qiu, Prog. Mater. Sci. 76 (2016) 154-228.
DOI URL |
| [15] |
R. Buividas, M. Mikutis, S. Juodkazis, Prog. Quantum. Electron. 38 (2014) 119-156.
DOI URL |
| [16] |
B. Zhang, X.F. Liu, J.R. Qiu, J. Materiomics 5 (2019) 1-14.
DOI |
| [17] |
C. Florian, S.V. Kirner, J. Krüger, J. Bonse,, J. Laser Appl. 32 (2020), 022063.
DOI URL |
| [18] |
J. Bonse, S. Gräf, Laser Photonics Rev. 14 (2020), 2000215.
DOI URL |
| [19] |
D.S. Zhang, B. Ranjan, T. Tanaka, K. Sugioka, ACS Appl. Nano Mater. 3 (2020) 1855-1871.
DOI URL |
| [20] | A. Papadopoulos, E. Skoulas, A. Mimidis, G. Perrakis, G. Kenanakis, G. D.Tsibidis E. Stratakis, Adv. Mater. 31 (2019), 1901123. |
| [21] | A.J. Parnell, J.E. Bradford, E.V. Curran, A.L. Washington, G. Adams, M.N. Brien, S.L. Burg, C. Morochz, J.P.A. Fairclough, P. Vukusic, J. R. Soc. Interface 15 (2018),20170948. |
| [22] |
B. Dusser, Z. Sagan, H. Soder, N. Faure, J.-P. Colombier, M. Jourlin, E. Audouard, Opt. Express 18 (2010) 2913-2924.
DOI PMID |
| [23] | H.G. Liu, W.X. Lin, M.H. Hong, APL Photonics 4 (2019), 051101. |
| [24] |
H.D. Yang, X.H. Li, G.Q. Li, C. Wen, R. Qiu, W.H. Huang, J.B. Wang, Appl. Phys. A 104 (2011) 749-753.
DOI URL |
| [25] |
S. Maragkaki, C.A. Skaradzinski, R. Nett, E.L. Gurevich, Sci. Rep. 10 (2020) 1-9.
DOI URL |
| [26] |
N. Livakas, E. Skoulas, E. Stratakis, Opto-Electron. Adv. 3 (2020), 190035.
DOI URL |
| [27] | G.Q. Li, J.W. Li, C.C. Zhang, Y. Hu, X. Li, J. Chu, W.H. Huang, D. Wu, ACS Appl.Mater. Interfaces 7 (2015) 383-390. |
| [28] |
P.X. Fan, B.F. Bai, M.L. Zhong, H.J. Zhang, J.Y. Long, J.P. Han, W.Q. Wang, G.F. Jin, ACS Nano 11 (2017) 7401-7408.
DOI URL |
| [29] |
D.S. Zhang, B. Ranjan, T. Tanaka, K. Sugioka, Nanomaterials 10 (2020) 1573.
DOI URL |
| [30] |
H. Reinhardt, H.C. Kim, C. Pietzonka, J. Kruempelmann, B. Harbrecht, B. Roling, N. Hampp, Adv. Mater. 25 (2013) 3313-3318.
DOI URL |
| [31] |
D.S. Zhang, F. Chen, Q. Yang, J. Yong, H. Bian, Y. Ou, J.H. Si, X.W. Meng, X. Hou, ACS Appl. Mater. Interfaces 4 (2012) 4905-4912.
DOI URL |
| [32] |
S.S. Hou, Y.Y. Huo, P.X. Xiong, Y. Zhang, S. Zhang, T.Q. Jia, Z.R. Sun, J.R. Qiu, Z. Z.Xu, J. Phys. D Appl. Phys. 44 (2011), 505401.
DOI URL |
| [33] | Y. Fuentes-Edfuf, J.A. S´anchez-Gil, C. Florian, V. Giannini, J. Solis, J. Siegel, ACSOmega 4 (2019) 6939-6946. |
| [34] |
V. Rinnerbauer, A. Lenert, D.M. Bierman, Y.X. Yeng, W.R. Chan, R.D. Geil, J. J.Senkevich J.D. Joannopoulos, E.N. Wang, M. Soljačić, Adv. Energy Mater. 4 (2014), 1400334.
DOI URL |
| [35] |
D.S. Zhang, W. Choi, J. Jakobi, M.R. Kalus, S. Barcikowski, S.H. Cho, K. Sugioka, Nanomaterials 8 (2018) 529.
DOI URL |
| [36] | V. Hospodarova, E. Singovszka, N. Stevulova, Am. J. Analyt. Chem. 9 (2018) 303-310. |
| [37] | Z.S. Houweling, J.W. Geus, M. de Jong, P.P.R. Harks, K.H. van der Werf, R.E.Schropp, Mater. Chem. Phys. 131 (2011) 375-386. |
| [38] | D.S. Zhang, K. Sugioka, Opto-Electron. Adv. 2 (2019), 190002. |
| [39] |
X. Sedao, M.V. Shugaev, C.P. Wu, T. Douillard, C. Esnouf, C. Maurice, S. .Reynaud F. Pigeon, F. Garrelie, L.V. Zhigilei, ACS Nano 10 (2016) 6995-7007.
DOI PMID |
| [40] |
L. Sun, Z. Li, R. Su, Y.L. Wang, Z. Li, B.S. Du, Y. Sun, P.F. Guan, F. Besenbacher, M. Yu , Angew. Chem. 130 (2018) 10826-10831.
DOI URL |
| [41] | L. Kumari, Y.R. Ma, C.C. Tsai, Y.W. Lin, S.Y. Wu, K.W. Cheng, Y. Liou, Nanotechnology 18 (2007), 115717. |
| [42] | R. Dhunna, P. Koshy, C.C. Sorrell, , J. Aust. Ceram. Soc. 51 (2015) 18-22. |
| [43] |
J. Chen, Y.M. Ren, T.Z. Hu, T. Xu, Q. Xu, Appl. Surf. Sci. 465 (2019) 517-525.
DOI |
| [44] |
G.S. Song, J. Shen, F.R. Jiang, R.G. Hu, W.Y. Li, L. An, R.J. Zou, Z.G. Chen, Z.Y. Qin, J.Q. Hu, ACS Appl. Mater. Interfaces 6 (2014) 3915-3922.
DOI URL |
| [45] |
B.S. Guo, J.Y. Sun, Y.F. Lu, L. Jiang, Int. J. Extrem. Manuf. 1 (2019), 032004.
DOI URL |
| [46] |
D.S. Zhang, B. G¨okce, S. Barcikowski, Chem. Rev. 117 (2017) 3990-4103.
DOI URL |
| [47] |
M. Fernández-Arias, M. Boutinguiza, J. Del Val, A. Riveiro, D. Rodríguez, F. Arias-González J. Gil, J. Pou, Nanomaterials 10 (2020) 300.
DOI URL |
| [48] | J. Bonse, S. Hohm, S.V. Kirner, A. Rosenfeld, J. Kruger, IEEE J. Sel. Top. QuantumElectron. 23 (2017) 109-123. |
| [49] |
D. Emmony, R. Howson, L. Willis, Appl. Phys. Lett. 23 (1973) 598-600.
DOI URL |
| [50] |
J. Bonse, A. Rosenfeld, J. Krüger,, J. Appl. Phys. 106 (2009), 104910.
DOI URL |
| [51] |
M. Huang, F.L. Zhao, Y. Cheng, N.S. Xu, Z.Z. Xu, ACS Nano 3 (2009) 4062-4070.
DOI PMID |
| [52] |
R. Le Harzic, D. Dörr, D. Sauer, M. Neumeier, M. Epple, H. Zimmermann, F. Stracke , Opt. Lett. 36 (2011) 229-231.
DOI PMID |
| [53] |
L. Xue, J.J. Yang, Y. Yang, ce:surname>YangY.S. Wang, X.N. Zhu, Appl. Phys. A 109 (2012) 357-365.
DOI URL |
| No related articles found! |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
