J. Mater. Sci. Technol. ›› 2021, Vol. 89: 186-198.DOI: 10.1016/j.jmst.2021.01.088
Previous Articles Next Articles
Kai Xua, Keke Changa,b,*(
), Miao Yua, Dapeng Zhoua, Yong Duc, Liping Wanga,*(
)
Received:2020-09-09
Revised:2020-12-23
Accepted:2021-01-15
Published:2021-10-30
Online:2021-10-30
Contact:
Keke Chang,Liping Wang
About author:wangliping@nimte.ac.cn(L. Wang).Kai Xu, Keke Chang, Miao Yu, Dapeng Zhou, Yong Du, Liping Wang. Design of novel NiSiAlY alloys in marine salt-spray environment: Part II. Al-Ni-Si-Y thermodynamic dataset[J]. J. Mater. Sci. Technol., 2021, 89: 186-198.
| Compounds | Space group | Lattice parametersa (Å) | Enthalpyb (kJ/mol) | Refs. | ||
|---|---|---|---|---|---|---|
| a | b | c | ||||
| Al-Si-Y | ||||||
| τ1-Al2Si2Y | P3m1 | 4.181 | 6.559 | -38.00 | [ | |
| τ2-AlSiY | Cmcm | 3.99476(7) | 10.2983(2) | 5.7085(1) | -61.23 | [ |
| τ3-Al3SiY6 | I4/mcm | 11.581(6) | 15.039(3) | -54.00 | [ | |
| τ4-AlSi2Y2 | Immm | 4.050(1) | 5.748(1) | 8.663(2) | -70.00 | [ |
| τ5-Al14SiY5 | P63/mmc | 6.247 | 4.590 | -46.20 | [ | |
| τ6-Al3Si2Y2 | C2/m | 10.220(3) | 4.0354(9) | 6.617(2) 101.36(3) ˚ | -53.71 | [ |
| τ7-Al1.4Si0.6Y | - | - | - | - | -63.33 | [ |
| Ni-Si-Y | ||||||
| τ9-Ni15Si2Y2 | P63/mmc | 8.289 | 8.085 | -39.58 | [ | |
| τ10-Ni6Si6Y | $P\bar{4}b2$ | 7.7351(1) | 11.1278(2) | -53.08 | [ | |
| τ11-Ni4SiY | Cmmm | 5.0482(3) | 8.2017(4) | 3.9474(2) | -62.07 | [ |
| τ12-Ni2Si2Y | I4/mmm | 3.959(3) | 9.548 | -85.00 | [ | |
| τ13-Ni3Si5Y2 | Ibam | 5.6453(2) | 9.5651(4) | 11.1284(6) | -77.00 | [ |
| τ14-Ni6Si2Y3 | $Im\bar{3}m$ | 8.77979 | -65.10 | [ | ||
| τ15-NiSi2Y | Cmcm | 3.99558 | 16.50299 | 3.95844 | -81.00 | [ |
| τ16-NiSiY | Pnma | 4.155(4) | 6.870(5) | 7.205(5) | -81.67 | [ |
| τ17-NiSi2Y3 | Pnma | 11.505 | 4.189 | 11.388 | -73.67 | [ |
| τ18-NiSi3Y3 | Immm | 3.9605(5) | 4.125(1) | 17.63(1) | -84.29 | [ |
| τ19-Ni10Si2Y | I4/mmm | 8.20843(3) | 4.67155(3) | -40.67 | [ | |
| τ20-Ni5Si3Y | Pnma | 3.779(5) | 6.706(2) | 18.62(2) | -68.44 | [ |
| τ21-Ni12Si4Y3 | P63/mmc | - | - | - | -63.89 | [ |
| τ22-NiSi3Y | Amm2 | 3.94043 | 21.04579 | 3.9588 | -67.00 | [ |
| τ23-Ni2SiY | Pnma | - | - | - | -73.25 | [ |
| τ24-Ni49Si20Y7 | $I\bar{4}3m$ | 12.38344 | -57.00 | [ | ||
| τ25-Ni16Si7Y6 | $Fm\bar{3}m$ | 11.74578 | -68.62 | [ | ||
| τ26-Ni0.8Si1.2Y | P6/mmm | 3.973 | 4.100 | -86.67 | [ | |
| Al-Ni-Si | ||||||
| τ27-AlNi16Si9 | Cmcm | 12.137 | 11.265 | 8.533 | -45.45 | [ |
| τ28-Al6Ni3Si | $Im\bar{3}m$ | 8.316 | -53.86 | [ | ||
| τ29-AlNi2Si | P213 | 4.530 | -62.91 | [ | ||
| Al-Ni-Y | ||||||
| τ30-Al23Ni6Y4 | C2/m | 15.836(2) | 4.0681(7) | 18.311(2) 112.97(1) ˚ | -50.94 | [ |
| τ31-Al9Ni3Y | R32 | 7.2894(7) | 27.430(5) | -52.23 | [ | |
| τ32-Al4NiY | Cmcm | 4.08 | 15.44 | 6.62 | -56.77 | [ |
| τ33-Al3NiY | Pnma | 8.156(1) | 4.0462(4) | 10.638(2) | -70.10 | [ |
| τ34-Al7Ni3Y2 | -52.18 | [ | ||||
| τ35-Al3Ni2Y | P6/mmm | 9.02 | 4.07 | -65.90 | [ | |
| τ36-Al2NiY | Cmcm | 4.07 | 10.13 | 7.06 | -64.30 | [ |
| τ37-AlNiY | $P\bar{6}2m$ | 7.03 | 3.81 | -64.30 | [ | |
| τ38-AlNi2Y2 | Immm | 5.418 | 8.420 | 4.181 | -54.10 | [ |
| τ39-Al2Ni6Y3 | $Im\bar{3}m$ | 8.94 | -51.77 | [ | ||
| τ40-AlNi3Y2 | -52.00 | [ | ||||
| τ41-AlNi8Y3 | P63/mmc | 5.084 | 16.24 | -40.48 | [ | |
Table 1 Structure data of the ternary compounds in the Al-Ni-Si-Y system.
| Compounds | Space group | Lattice parametersa (Å) | Enthalpyb (kJ/mol) | Refs. | ||
|---|---|---|---|---|---|---|
| a | b | c | ||||
| Al-Si-Y | ||||||
| τ1-Al2Si2Y | P3m1 | 4.181 | 6.559 | -38.00 | [ | |
| τ2-AlSiY | Cmcm | 3.99476(7) | 10.2983(2) | 5.7085(1) | -61.23 | [ |
| τ3-Al3SiY6 | I4/mcm | 11.581(6) | 15.039(3) | -54.00 | [ | |
| τ4-AlSi2Y2 | Immm | 4.050(1) | 5.748(1) | 8.663(2) | -70.00 | [ |
| τ5-Al14SiY5 | P63/mmc | 6.247 | 4.590 | -46.20 | [ | |
| τ6-Al3Si2Y2 | C2/m | 10.220(3) | 4.0354(9) | 6.617(2) 101.36(3) ˚ | -53.71 | [ |
| τ7-Al1.4Si0.6Y | - | - | - | - | -63.33 | [ |
| Ni-Si-Y | ||||||
| τ9-Ni15Si2Y2 | P63/mmc | 8.289 | 8.085 | -39.58 | [ | |
| τ10-Ni6Si6Y | $P\bar{4}b2$ | 7.7351(1) | 11.1278(2) | -53.08 | [ | |
| τ11-Ni4SiY | Cmmm | 5.0482(3) | 8.2017(4) | 3.9474(2) | -62.07 | [ |
| τ12-Ni2Si2Y | I4/mmm | 3.959(3) | 9.548 | -85.00 | [ | |
| τ13-Ni3Si5Y2 | Ibam | 5.6453(2) | 9.5651(4) | 11.1284(6) | -77.00 | [ |
| τ14-Ni6Si2Y3 | $Im\bar{3}m$ | 8.77979 | -65.10 | [ | ||
| τ15-NiSi2Y | Cmcm | 3.99558 | 16.50299 | 3.95844 | -81.00 | [ |
| τ16-NiSiY | Pnma | 4.155(4) | 6.870(5) | 7.205(5) | -81.67 | [ |
| τ17-NiSi2Y3 | Pnma | 11.505 | 4.189 | 11.388 | -73.67 | [ |
| τ18-NiSi3Y3 | Immm | 3.9605(5) | 4.125(1) | 17.63(1) | -84.29 | [ |
| τ19-Ni10Si2Y | I4/mmm | 8.20843(3) | 4.67155(3) | -40.67 | [ | |
| τ20-Ni5Si3Y | Pnma | 3.779(5) | 6.706(2) | 18.62(2) | -68.44 | [ |
| τ21-Ni12Si4Y3 | P63/mmc | - | - | - | -63.89 | [ |
| τ22-NiSi3Y | Amm2 | 3.94043 | 21.04579 | 3.9588 | -67.00 | [ |
| τ23-Ni2SiY | Pnma | - | - | - | -73.25 | [ |
| τ24-Ni49Si20Y7 | $I\bar{4}3m$ | 12.38344 | -57.00 | [ | ||
| τ25-Ni16Si7Y6 | $Fm\bar{3}m$ | 11.74578 | -68.62 | [ | ||
| τ26-Ni0.8Si1.2Y | P6/mmm | 3.973 | 4.100 | -86.67 | [ | |
| Al-Ni-Si | ||||||
| τ27-AlNi16Si9 | Cmcm | 12.137 | 11.265 | 8.533 | -45.45 | [ |
| τ28-Al6Ni3Si | $Im\bar{3}m$ | 8.316 | -53.86 | [ | ||
| τ29-AlNi2Si | P213 | 4.530 | -62.91 | [ | ||
| Al-Ni-Y | ||||||
| τ30-Al23Ni6Y4 | C2/m | 15.836(2) | 4.0681(7) | 18.311(2) 112.97(1) ˚ | -50.94 | [ |
| τ31-Al9Ni3Y | R32 | 7.2894(7) | 27.430(5) | -52.23 | [ | |
| τ32-Al4NiY | Cmcm | 4.08 | 15.44 | 6.62 | -56.77 | [ |
| τ33-Al3NiY | Pnma | 8.156(1) | 4.0462(4) | 10.638(2) | -70.10 | [ |
| τ34-Al7Ni3Y2 | -52.18 | [ | ||||
| τ35-Al3Ni2Y | P6/mmm | 9.02 | 4.07 | -65.90 | [ | |
| τ36-Al2NiY | Cmcm | 4.07 | 10.13 | 7.06 | -64.30 | [ |
| τ37-AlNiY | $P\bar{6}2m$ | 7.03 | 3.81 | -64.30 | [ | |
| τ38-AlNi2Y2 | Immm | 5.418 | 8.420 | 4.181 | -54.10 | [ |
| τ39-Al2Ni6Y3 | $Im\bar{3}m$ | 8.94 | -51.77 | [ | ||
| τ40-AlNi3Y2 | -52.00 | [ | ||||
| τ41-AlNi8Y3 | P63/mmc | 5.084 | 16.24 | -40.48 | [ | |
| Phases | Models | Parameters |
|---|---|---|
| fcc_A1 | (Al, Ni, Si, Y)1(Va)1 | GAl,Y:Vafcc_A1=-130000 |
| GAl,Y:Vafcc_A1=-70000 | ||
| bcc_A2 | (Al, Ni, Si, Y, Va)1(Va)3 | GVa:Vabcc_A2=+30T |
| bcc_B2 | (Al, Ni, Si, Y, Va)0.5(Al, Ni, Si, Y, Va)0.5 (Va)3 | GNi:Si:Vabcc_B2=GSi:Ni:Vabcc_B2=-21482.26 |
| LAl:Ni,Si:Vabcc_B2=+451607.99-36.93594T | ||
| Al3Ni2 | (Al, Si)3(Al, Ni)2(Ni, Va)1 | GSi:Ni:VaAl3Ni2=-62006+3GSiSER+2GNiSER |
| LAl,Si:Ni:VaAl3Ni2=-382404.959+150T | ||
| Al2Y | (Al, Ni, Y)2(Al, Ni, Y)1 | GNi:NiAl2Y=+15000+3GNiSER |
| LAl,Ni:YAl2Y=-216000-280T | ||
| Ni17Y2 | (Al, Ni, Si)17(Y)2 | LAl,Ni:YNi17Y2=-2740000 |
| τ29-AlNi2Si | (Al, Si, Va)1(Ni)1 | GAl:Niτ29=-125820.6+24.96722T+GAlSER0+GNiSER |
| τ30-Al23Ni6Y4 | (Al)23(Ni)6(Y)4 | GAl:Ni:Yτ30=-1681000+13.8T+23GAlSER0+6GNiSER0+4GYSER0 |
| τ31-Al9Ni3Y | (Al)9(Ni)3(Y)1 | GAl:Ni:Yτ31=-679000+50T+9GAlSER0+3GNiSER0+GYSER0 |
| τ32-Al4NiY | (Al)4(Ni)1(Y)1 | GAl:Ni:Yτ32=-340600+6.0T+4GAlSER0+GNiSER0+GYSER |
| τ34-Al7Ni3Y2 | (Al)7(Ni)3(Y)2 | GAl:Ni:Yτ34=-626200-83T+7GAlSER0+3GNiSER0+2GYSER |
| τ35-Al3Ni2Y | (Al, Ni)3(Al, Ni)2(Y)1 | GAl:Ni:Yτ35=-395400+14T+3GAlSER0+2GNiSER0+GYSER0 |
| GAl:Al,Ni:Yτ35=-430000 | ||
| LAl,Ni:Ni:Yτ35=-290000-300T | ||
| τ36-Al2NiY | (Al)2(Ni)1(Y)1 | GAl:Ni:Yτ36=-257200-3.9T+2GAlSER0+GNiSER0+GYSER0 |
| τ37-AlNiY | (Al)1(Ni)1(Y)1 | GAl:Ni:Yτ37=-192900-10T+GAlSER0+GNiSER0+GYSER0 |
Table 2 Optimized thermodynamic parameters for the Al-Ni-Si-Y systema (J/mol).
| Phases | Models | Parameters |
|---|---|---|
| fcc_A1 | (Al, Ni, Si, Y)1(Va)1 | GAl,Y:Vafcc_A1=-130000 |
| GAl,Y:Vafcc_A1=-70000 | ||
| bcc_A2 | (Al, Ni, Si, Y, Va)1(Va)3 | GVa:Vabcc_A2=+30T |
| bcc_B2 | (Al, Ni, Si, Y, Va)0.5(Al, Ni, Si, Y, Va)0.5 (Va)3 | GNi:Si:Vabcc_B2=GSi:Ni:Vabcc_B2=-21482.26 |
| LAl:Ni,Si:Vabcc_B2=+451607.99-36.93594T | ||
| Al3Ni2 | (Al, Si)3(Al, Ni)2(Ni, Va)1 | GSi:Ni:VaAl3Ni2=-62006+3GSiSER+2GNiSER |
| LAl,Si:Ni:VaAl3Ni2=-382404.959+150T | ||
| Al2Y | (Al, Ni, Y)2(Al, Ni, Y)1 | GNi:NiAl2Y=+15000+3GNiSER |
| LAl,Ni:YAl2Y=-216000-280T | ||
| Ni17Y2 | (Al, Ni, Si)17(Y)2 | LAl,Ni:YNi17Y2=-2740000 |
| τ29-AlNi2Si | (Al, Si, Va)1(Ni)1 | GAl:Niτ29=-125820.6+24.96722T+GAlSER0+GNiSER |
| τ30-Al23Ni6Y4 | (Al)23(Ni)6(Y)4 | GAl:Ni:Yτ30=-1681000+13.8T+23GAlSER0+6GNiSER0+4GYSER0 |
| τ31-Al9Ni3Y | (Al)9(Ni)3(Y)1 | GAl:Ni:Yτ31=-679000+50T+9GAlSER0+3GNiSER0+GYSER0 |
| τ32-Al4NiY | (Al)4(Ni)1(Y)1 | GAl:Ni:Yτ32=-340600+6.0T+4GAlSER0+GNiSER0+GYSER |
| τ34-Al7Ni3Y2 | (Al)7(Ni)3(Y)2 | GAl:Ni:Yτ34=-626200-83T+7GAlSER0+3GNiSER0+2GYSER |
| τ35-Al3Ni2Y | (Al, Ni)3(Al, Ni)2(Y)1 | GAl:Ni:Yτ35=-395400+14T+3GAlSER0+2GNiSER0+GYSER0 |
| GAl:Al,Ni:Yτ35=-430000 | ||
| LAl,Ni:Ni:Yτ35=-290000-300T | ||
| τ36-Al2NiY | (Al)2(Ni)1(Y)1 | GAl:Ni:Yτ36=-257200-3.9T+2GAlSER0+GNiSER0+GYSER0 |
| τ37-AlNiY | (Al)1(Ni)1(Y)1 | GAl:Ni:Yτ37=-192900-10T+GAlSER0+GNiSER0+GYSER0 |
Fig. 1. Calculated Al-Ni-Si phase diagrams in this work along with experimental data [14,[24], [25], [26], [27]]: (a) isothermal section at 550 ℃; (b) isothermal section at 850 ℃; (c) isothermal section at 1000 ℃; (d) vertical section at x(Ni) = 0.1; (e) vertical section at x(Ni) = 0.45; (f) vertical section at x(Ni) = 0.8; (g) liquidus projection.
Fig. 2. Calculated Al-Ni-Y phase diagrams in this work along with experimental data [31,33,36,39]: (a) isothermal section at 500 ℃; (b) isothermal section at 600 ℃; (c) isothermal section at 800 ℃; (d) isothermal section at 1000 ℃; (e) liquidus projection; (f) local magnification in the Al-rich region for the liquidus projection. Chain-like lines in Fig. 2(a)-2(d) highlights the experimental phase equilibria.
Fig. 3. Predicted isothermal sections of the Al-Ni-Si-Y system at 1 wt% Y and (a) 500 ℃; (b) 750 ℃; and (c) 1300 ℃, compared with the experimental results [43]. Three green triangles (#1, #2, and #3) denote the coatings prepared by multi-arc ion plating, the L12 and bcc_B2 phases can always be identified in these coatings at 500 ℃ by XRD; three red circles (#4, #5, and #6) denote the alloys prepared by arc-melting in this work, no bcc_B2 phase appears in alloy #4 while the samples #5 and #6 are calculated to show the coexistence of the L12, bcc_B2, and Ni5Y phases at 750 ℃.
Fig. 4. Predicted non-equilibrium solidification behaviors and equilibrium phase fractions of the NiSiAlY alloys at various mass fractions of Al: (a)(b) #1 Ni-13Al-3Si-1Y; (c)(d) #2 Ni-17Al-3Si-1Y; (e)(f) #3 Ni-21Al-3Si-1Y.
Fig. 5. Predicted non-equilibrium solidification behaviors and equilibrium phase fractions of the NiSiAlY alloys at various mass fractions of Si: (a)(b) #4 Ni-12Al-1Si-1Y; (c)(d) #5 Ni-12Al-3Si-1Y; (e)(f) #6 Ni-12Al-5Si-1Y.
| No. | Compositions (wt%) | Phases (750 ℃, Cal.) | Phases (1300 ℃, Cal.) | Experimental results (at.%) | ||
|---|---|---|---|---|---|---|
| Al | Si | Y | ||||
| 4 | Ni-12Al-1Si-1Y | L12+Ni5Y | Liquid + L12 | L12 a = 3.562(1) Å | ||
| 23.45 | 1.84 | 0 | ||||
| Ni5Y | ||||||
| 2.96 | 7.02 | 15.21 | ||||
| 5 | Ni-12Al-3Si-1Y | L12+bcc_B2+Ni5Y | Liquid + L12+bcc_B2 | Liquid a = 2.8887(9) Åa | ||
| 33.25 | 3.99 | 0 | ||||
| L12 a = 3.5503(9) Å | ||||||
| 22.00 | 5.24 | 0 | ||||
| Ni5Y | ||||||
| 3.52 | 14.04 | 14.02 | ||||
| 6 | Ni-12Al-5Si-1Y | L12+bcc_B2+Ni5Y | Liquid + bcc_B2 | Liquid a = 2.887(1) Åa | ||
| 28.64 | 7.08 | 0 | ||||
| L12b a = 3.556(2) Å | ||||||
| 20.35 | 7.04 | 0 | ||||
| Ni5Y | ||||||
| 3.21 | 15.81 | 13.55 | ||||
Table 3 Nominal compositions and identified information for NiSiAlY candidates.
| No. | Compositions (wt%) | Phases (750 ℃, Cal.) | Phases (1300 ℃, Cal.) | Experimental results (at.%) | ||
|---|---|---|---|---|---|---|
| Al | Si | Y | ||||
| 4 | Ni-12Al-1Si-1Y | L12+Ni5Y | Liquid + L12 | L12 a = 3.562(1) Å | ||
| 23.45 | 1.84 | 0 | ||||
| Ni5Y | ||||||
| 2.96 | 7.02 | 15.21 | ||||
| 5 | Ni-12Al-3Si-1Y | L12+bcc_B2+Ni5Y | Liquid + L12+bcc_B2 | Liquid a = 2.8887(9) Åa | ||
| 33.25 | 3.99 | 0 | ||||
| L12 a = 3.5503(9) Å | ||||||
| 22.00 | 5.24 | 0 | ||||
| Ni5Y | ||||||
| 3.52 | 14.04 | 14.02 | ||||
| 6 | Ni-12Al-5Si-1Y | L12+bcc_B2+Ni5Y | Liquid + bcc_B2 | Liquid a = 2.887(1) Åa | ||
| 28.64 | 7.08 | 0 | ||||
| L12b a = 3.556(2) Å | ||||||
| 20.35 | 7.04 | 0 | ||||
| Ni5Y | ||||||
| 3.21 | 15.81 | 13.55 | ||||
Fig. 6. (a) XRD patterns and BSE images of the NiSiAlY candidates at various contents of Si: (b) #4 Ni-12Al-1Si-1Y; (c) #5 Ni-12Al-3Si-1Y; (d) #6 Ni-12Al-5Si-1Y.Fig. 7 shows the element distribution images of the NiSiAlY candidates at various content of Si (1, 3, and 5 wt.%), where nickel exhibits a dispersive distribution. The detailed atomic ratios for different phases detected in the EDS program are listed in Table 3 as well. Little yttrium is determined in the L12 or bcc_B2 phases, which is consistent with the calculated Al-Ni-Y isothermal sections in Fig. 2(a)-(d). As shown in Fig. 7(c), it is noted that there are two different contrasts for Si in alloy #6, indicating a minor discrepancy of Si in the L12 phase due to the insufficient annealing time.
Fig. 7. Element distribution images of the NiSiAlY candidates at various content of Si: (a) #4 Ni-13Al-3Si-1Y; (b) #5 Ni-17Al-3Si-1Y; (c) #6 Ni-21Al-3Si-1Y.
Fig. 8. Summary of the composition-structure-performance relationships of the NiSiAlY candidates based on the calculated phase diagrams at 750 and 1140 ℃ together with the material design regime. The region highlighted with red dashed lines denotes the compositional range proposed in this work, which may possess a combination of good strength, toughness, high-temperature oxidation, and corrosion resistance simultaneously.
| [1] | G.W. Goward, Surf. Coat. Technol. 108 (1998) 73-79. |
| [2] | A.G. Evans, D.R. Mumm, J.W. Hutchinson, G.H. Meier, F.S. Pettit, Prog. Mater.Sci. 46 (2001) 505-553. |
| [3] |
F.H. Yuan, Z.X. Chen, Z.W. Huang, Z.G. Wang, S.J. Zhu, Corros. Sci. 50 (2008) 1608-1617.
DOI URL |
| [4] |
N.P. Padture, M. Gell, E.H. Jordan, Science 296 (2002) 280-284.
PMID |
| [5] | M. Pomeroy, Mate. Des. 26 (2005) 223-231. |
| [6] |
C. Jiang, L. Qian, M. Feng, H. Liu, Z. Bao, M. Chen, S. Zhu, F. Wang, , J. Mater. Sci. Technol. 35 (2019) 1334-1344.
DOI URL |
| [7] |
D.B. Lewis, L.A. Donohue, M. Lembke, W.D. Münz, R. Kuzel, V. Valvoda, C. J.Blomfield , Surf. Coat. Technol. 114 (1999) 187-199.
DOI URL |
| [8] |
N.M. Yanar, E.M. Meier, F.S. Pettit, G.H. Meier, Mater. High Temp. 26 (2009) 331-338.
DOI URL |
| [9] |
G.R. Wallwork, A.Z. Hed, Oxid. Met. 3 (1971) 171-184.
DOI URL |
| [10] |
C. Giggins, F. Pettit, , J. Electrochem. Soc. 118 (1971) 1782-1790.
DOI URL |
| [11] |
L. Fan, L. Liu, Z. Yu, M. Cao, Y. Li, F. Wang, Sci. Rep. 6 (2016) 29019.
DOI URL |
| [12] |
Y. Shu, F. Wang, W. Wu, Oxid. Met. 54 (2000) 457-471.
DOI URL |
| [13] |
M. Cao, L. Liu, Z. Yu, L. Fan, L. Ying, F. Wang, Corros. Sci. 133 (2018) 165-177.
DOI URL |
| [14] | W. Xiong, Y. Du, R.-X. Hu, J.Wang, W.-W. Zhang, P. Nash, X.-G. Lu, Int. J. Mater.Res. 99 (2008) 598-612. |
| [15] |
H.W. Grünling, R. Bauer, Thin Solid Films 95 (1982) 3-20.
DOI URL |
| [16] | K. Shirvani, M. Saremi, A. Nishikata, T. Tsuru, Mater. Sci.Forum 461- 464 (2004) 335-342. |
| [17] |
S.M. Jiang, C.Z. Xu, H.Q. Li, S.C. Liu, J. Gong, C. Sun, Corros. Sci. 52 (2010) 435-440.
DOI URL |
| [18] |
J. Jing, J. He, H. Guo, , J. Mater. Sci. Technol. 35 (2019) 2038-2047.
DOI |
| [19] | J. Allison, JOM 63 (2011) 15-18. |
| [20] |
B. Sundman, B. Jansson, J.-O. Andersson, Calphad 9 (1985) 153-190.
DOI URL |
| [21] |
K. Xu, K.K. Chang, Y. Du, L.P. Wang, , J. Mater. Sci. Technol. 88 (2021) 66-78.
DOI URL |
| [22] |
V. Raghavan, , J. Phase Equilib, Diffus. 26 (2005) 262-267.
DOI URL |
| [23] |
V. Raghavan, , J. Phase Equilib, Diffus. 27 (2006) 505-506.
DOI URL |
| [24] |
K.W. Richter, H. Ipser, Intermetallics 11 (2003) 101-109.
DOI URL |
| [25] |
K.W. Richter, K. Chandrasekaran, H. Ipser, Intermetallics 12 (2004) 545-554.
DOI URL |
| [26] |
K. Chandrasekaran, K.W. Richter, H. Ipser, Intermetallics 14 (2006) 491-497.
DOI URL |
| [27] |
X. Pan, Z. Jin, J.-C. Zhao, Metall. Mater. Trans. A 36 (2005) 1757-1767.
DOI URL |
| [28] |
M. Bonnet, J. Rogez, R. Castanet, Thermochim. Acta 155 (1989) 39-56.
DOI URL |
| [29] |
V.T. Witusiewicz, I. Arpshofen, H.J. Seifert, F. Sommer, F. Aldinger, Thermochim. Acta 356 (2000) 39-57.
DOI URL |
| [30] |
M. Jain, S.P. Gupta, Mater. Charact. 51 (2003) 243-257.
DOI URL |
| [31] | R. Ferro, G. Zanicchi, R. Marazza, G. Petzow, G. Effenberg (Eds.), TernaryAlloys: A Comprehensive Compendium of Evaluated Constitutional Data andPhase Diagrams, Weily, Germany, 1992, pp. 58-62. |
| [32] | R. Rykhal, O. Zarechnyuk, Dop. Akad. Nauk. UKR. RSR 4 (1977) 375-377. |
| [33] |
S. Rosen, J.A. Goebel, J. Less-Common Met. 16 (1968) 285-287.
DOI URL |
| [34] | P. Nash, H.-n. Su, O. Kleppa, Trans. Nonferrous Met. Soc. China 12 (2002)754-758. |
| [35] | K.B. Povarova, N.K. Kazanskaya, A.A. Drozdov, A.E. Morozov, Russ. Metall. (2008) 46-51. |
| [36] |
R. Raggio, G. Borzone, R. Ferro, Intermetallics 8 (2000) 247-257.
DOI URL |
| [37] |
W.J. Golumbfskie, R. Arroyave, D. Shin, Z.K. Liu, Acta Mater. 54 (2006) 2291-2304.
DOI URL |
| [38] |
W.J. Golumbfskie, S.N. Prins, T.J. Eden, Z.K. Liu, Calphad 33 (2009) 124-135.
DOI URL |
| [39] |
M.Y. Na, K.C. Kim, W.T. Kim, D.H. Kim, Appl. Microsc. 43 (2013) 127-131.
DOI URL |
| [40] |
J. Huang, B. Yang, H. Chen, H. Wang, , J. Phase Equilib. Diffus. 36 (2015) 357-365.
DOI URL |
| [41] |
A.L. Vasiliev, M. Aindow, M.J. Blackburn, T.J. Watson, Intermetallics 12 (2004) 349-362.
DOI URL |
| [42] |
W. Huang, Y.A. Chang, Intermetallics 6 (1998) 487-498.
DOI URL |
| [43] |
Y. Wei, S. Zheng, J. Pu, D. Zhou, L. Wang, W. Guo, G. He, Corros. Sci. 165 (2020),108400.
DOI URL |
| [44] | T. Yanson, Lvov, 1975. |
| [45] | I. Dubenko, A. Evdokimov, N. Titov Yu, J. Inorg. Chem 30 (1985) 1707-1709. |
| [46] |
T.I. Yanson, M.B. Manyako, O.I. Bodak, R.E. Gladyshevskii, R. Cerny, K. Yvon, Acta Crystallogr. Sect. C 50 (1994) 1377-1379.
DOI URL |
| [47] | J. Gröbner, Konstitutionsberechnungen in System Y-Al-Si-C-O, Ph.D. Thesis,University of Stuttgart, Germany, 1994. |
| [48] | C. Kranenberg, A. Mewis, Z. Anorg, Allg. Chem. 626 (2000) 1448-1453. |
| [49] |
S. Pukas, Y. Lutsyshyn, M. Manyako, E. Gladyshevskii, , J. Alloy. Compd. 367 (2004) 162-166.
DOI URL |
| [50] |
W. Rieger, E. Parthé, Monatsh. Chem. 100 (1969) 444-454.
DOI URL |
| [51] | L.G. Aksel’Rud, V.I. Yarovets, O.I. Bodak, P. Yarmolyuk Ya, E.I. Gladyshevskij, Kristallografiya 21 (1976) 383-386. |
| [52] |
K. Klepp, E. Parthe, Acta Crystallogr. Sect. B 38 (1982) 2026-2028.
DOI URL |
| [53] |
E. Hovestreydt, N. Engel, K. Klepp, B. Chabot, E. Parthé, J. Less-Common Met. 85 (1982) 247-274.
DOI URL |
| [54] |
B. Chabot, E. Parthé, J. Less-Common Met. 97 (1984) 285-290.
DOI URL |
| [55] |
I. Das, E.V. Sampathkumaran, R. Vijayaraghavan, J. Less-Common Met. 171 (1991) L13-L15.
DOI URL |
| [56] |
O. Moze, R.M. Ibberson, K.H.J. Buschow, Solid State Commun. 78 (1991) 473-476.
DOI URL |
| [57] |
H. Tang, E. Brück, F.R. de Boer, K.H.J. Buschow, J. Alloy. Compd. 243 (1996) 85-89.
DOI URL |
| [58] | O. Bodak, Y. Gorelenko, V. Yarovets, Phys. Chem. Solid State 4 (2003) 401-403. |
| [59] | Y. Gorelenko, R. Matviishyn, I. Shcherba, V. Pavlyuk, R. Serkiz, Chem. Met.Alloy. 2 (2009) 18-24. |
| [60] |
A.V. Morozkin, A.V. Knotko, V.O. Yapaskurt, F. Yuan, Y. Mozharivskyj, R. Nirmala , J. Solid State Chem. 208 (2013) 9-13.
DOI URL |
| [61] |
M. Pani, P. Manfrinetti, A. Provino, F. Yuan, Y. Mozharivskyj, A.V. Morozkin, A.V. Knotko, A.V. Garshev, V.O. Yapaskurt, O. Isnard, J. Solid State Chem. 210 (2014) 45-52.
DOI URL |
| [62] |
A.V. Morozkin, A.V. Knotko, A.V. Garshev, V.O. Yapaskurt, R. Nirmala, S. Quezado S.K. Malik, J. Solid State Chem. 243 (2016) 290-303.
DOI URL |
| [63] |
M. Pasturel, N. Nasri, T. Guizouarn, B. Belgacem, R. Ben Hassen, O. Tougait, H. Noël , Intermetallics 90 (2017) 74-80.
DOI URL |
| [64] | R. Rykhal, O. Zarechnyuk, Y.P. Yarmolyuk, Kristallografiya 17 (1972) 521-524. |
| [65] |
R.E. Gladyshevskii, E. Parthé, Acta Crystallogr. Sect. C 48 (1992) 232-236.
DOI URL |
| [66] |
R.E. Gladyshevskii, E. Parthé, Acta Crystallogr. Sect. C 48 (1992) 229-232.
DOI URL |
| [67] |
R.E. Gladyshevskii, K. Cenzual, H.D. Flack, E. Parthé, Acta Crystallogr. Sect. B 49 (1993) 468-474.
DOI URL |
| [68] |
N. Li, D. Li, W. Zhang, K. Chang, F. Dang, Y. Du, H.J. Seifert, Prog. Nat. Sci. 29 (2019) 265-276.
DOI URL |
| [69] | K. Xu, L. Chen, K. Chang, P. Wan, M. Li, Z. Deng, F. Huang, Q. Huang, Calphad 68 (2020), 101738. |
| [70] | K. Xu, L. Shuhong, K. Chang, L. Yongpeng, D. Yong, J. Zhanpeng, J. Magnes, Alloy. 9 (2021) 144-155. |
| [71] | D. Huang, S. Liu, Y. Du, Calphad 68 (2020), 101693. |
| [72] |
S. Liu, K. Chang, D. Music, X. Chen, S. Mráz, D. Bogdanovski, M. Hans, D. Primetzhofer J.M. Schneider, Acta Mater. 196 (2020) 313-324.
DOI URL |
| [73] |
M. Lou, X. Chen, K. Xu, Z. Deng, L. Chen, J. Lv, K. Chang, L. Wang, Acta Mater. 205 (2021), 116545.
DOI URL |
| [74] |
N. Dupin, I. Ansara, B. Sundman, Calphad 25 (2001) 279-298.
DOI URL |
| [75] |
J. Gröbner, H.L. Lukas, F. Aldinger, Calphad 20 (1996) 247-254.
DOI URL |
| [76] |
Y. Du, J.C. Schuster, Metall. Mater. Trans. A 30 (1999) 2409-2418.
DOI URL |
| [77] |
S. Liu, Y. Du, H. Chen, Calphad 30 (2006) 334-340.
DOI URL |
| [78] |
Z. Du, W. Zhang, , J. Alloy. Compd. 245 (1996) 164-167.
DOI URL |
| [79] |
I. Ansara, N. Dupin, H.L. Lukas, B. Sundman, , J. Alloy. Compd. 247 (1997) 20-30.
DOI URL |
| [80] | N. Dupin, I. Ansara, Z. Metallkd 90 (1999) 76-85. |
| [81] |
K. Xu, S. Liu, Y. Du, L. Dreval, G. Cai, Z. Jin, , J. Alloy. Compd. 784 (2019) 769-787.
DOI URL |
| [82] |
J. Rogal, S.V. Divinski, M.W. Finnis, A. Glensk, J. Neugebauer, J.H. Perepezko, S. Schuwalow M.H.F. Sluiter, B. Sundman, Phys. Status Solidi B 251 (2014) 97-129.
DOI URL |
| [83] |
X. Peng, S. Jiang, J. Gong, X. Sun, C. Sun, , J. Mater. Sci. Technol. 32 (2016) 587-592.
DOI |
| [84] |
P. Zhao, M. Shen, Y. Gu, S. Zhu, F. Wang, Corros. Sci. 126 (2017) 317-323.
DOI URL |
| [85] |
D.B. Miracle, Acta Metall. Mater. 41 (1993) 649-684.
DOI URL |
| [86] |
Z. Zhang, B. Gleeson, K. Jung, L. Li, J.C. Yang, Acta Mater. 60 (2012) 5273-5283.
DOI URL |
| [1] | Huhu Su, Xinzhe Zhou, Shijian Zheng, Hengqiang Ye, Zhiqing Yang. Atomic-resolution studies on reactions between basal dislocations and $\left\{ 10\bar{1}2 \right\}$ coherent twin boundaries in a Mg alloy [J]. J. Mater. Sci. Technol., 2021, 66(0): 28-35. |
| [2] | Xiaofei Cui, Wei Fu, Daqing Fang, Guangli Bi, Zijun Ren, Shengwu Guo, Suzhi Li, Xiangdong Ding, Jun Sun. Mechanical properties and deformation mechanisms of a novel fine-grained Mg-Gd-Y-Ag-Zr-Ce alloy with high strength-ductility synergy [J]. J. Mater. Sci. Technol., 2021, 66(0): 64-73. |
| [3] | Ying Niu, Yue Wang, Long Hou, Lansong Ba, Yanchao Dai, Yves Fautrelle, Zongbin Li, Zhongming Ren, Xi Li. Effect of γ phase on mechanical behavior and detwinning evolution of directionally solidified Ni-Mn-Ga alloys under uniaxial compression [J]. J. Mater. Sci. Technol., 2021, 66(0): 91-96. |
| [4] | Jiachen Zhang, Lin Liu, Taiwen Huang, Jia Chen, Kaili Cao, Xinxin Liu, Jun Zhang, Hengzhi Fu. Coarsening kinetics of γ′ precipitates in a Re-containing Ni-based single crystal superalloy during long-term aging [J]. J. Mater. Sci. Technol., 2021, 62(0): 1-10. |
| [5] | Baoxian Su, Liangshun Luo, Binbin Wang, Yanqing Su, Liang Wang, Robert O. Ritchie, Enyu Guo, Ting Li, Huimin Yang, Haiguang Huang, Jingjie Guo, Hengzhi Fu. Annealed microstructure dependent corrosion behavior of Ti-6Al-3Nb-2Zr-1Mo alloy [J]. J. Mater. Sci. Technol., 2021, 62(0): 234-248. |
| [6] | Ruobin Chang, Wei Fang, Jiaohui Yan, Haoyang Yu, Xi Bai, Jia Li, Shiying Wang, Shijian Zheng, Fuxing Yin. Microstructure and mechanical properties of CoCrNi-Mo medium entropy alloys: Experiments and first-principle calculations [J]. J. Mater. Sci. Technol., 2021, 62(0): 25-33. |
| [7] | Yuhui Zhang, Yuling Liu, Shuhong Liu, Hai-Lin Chen, Qing Chen, Shiyi Wen, Yong Du. Assessment of atomic mobilities and simulation of precipitation evolution in Mg-X (X=Al, Zn, Sn) alloys [J]. J. Mater. Sci. Technol., 2021, 62(0): 70-82. |
| [8] | Nana Kwabena Adomako, Giseung Shin, Nokeun Park, Kyoungtae Park, Jeoung Han Kim. Laser dissimilar welding of CoCrFeMnNi-high entropy alloy and duplex stainless steel [J]. J. Mater. Sci. Technol., 2021, 85(0): 95-105. |
| [9] | Jie Xiong, San-Qiang Shi, Tong-Yi Zhang. Machine learning of phases and mechanical properties in complex concentrated alloys [J]. J. Mater. Sci. Technol., 2021, 87(0): 133-142. |
| [10] | D.D. Zhang, H. Wang, J.Y. Zhang, H. Xue, G. Liu, J. Sun. Achieving excellent strength-ductility synergy in twinned NiCoCr medium-entropy alloy via Al/Ta co-doping [J]. J. Mater. Sci. Technol., 2021, 87(0): 184-195. |
| [11] | Peng-fei He, Guo-zheng Ma, Hai-dou Wang, Ling Tang, Ming Liu, Yu Bai, Yu Wang, Jian-jiang Tang, Dong-yu He, Hai-chao Zhao, Tian-yang Yu. Influence of in-flight particle characteristics and substrate temperature on the formation mechanisms of hypereutectic Al-Si-Cu coatings prepared by supersonic atmospheric plasma spraying [J]. J. Mater. Sci. Technol., 2021, 87(0): 216-233. |
| [12] | Sam Yaw Anaman, Solomon Ansah, Hoon-Hwe Cho, Min-Gu Jo, Jin-Yoo Suh, Minjung Kang, Jong-Sook Lee, Sung-Tae Hong, Heung Nam Han. An investigation of the microstructural effects on the mechanical and electrochemical properties of a friction stir processed equiatomic CrMnFeCoNi high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 87(0): 60-73. |
| [13] | Yaoxiang Duan, Han Chen, Zhe Chen, Lei Wang, Mingliang Wang, Jun Liu, Fengguo Zhang, Haowei Wang. The influence of nanosized precipitates on Portevin-Le Chatelier bands and surface roughness in AlMgScZr alloy [J]. J. Mater. Sci. Technol., 2021, 87(0): 74-82. |
| [14] | X. Luo, L.H. Liu, C. Yang, H.Z. Lu, H.W. Ma, Z. Wang, D.D. Li, L.C. Zhang, Y.Y. Li. Overcoming the strength-ductility trade-off by tailoring grain-boundary metastable Si-containing phase in β-type titanium alloy [J]. J. Mater. Sci. Technol., 2021, 68(0): 112-123. |
| [15] | Yufang Zhao, Jinyu Zhang, YaQiang Wang, Shenghua Wu, Xiaoqing Liang, Kai Wu, Gang Liu, Jun Sun. The metastable constituent effects on size-dependent deformation behavior of nanolaminated micropillars: Cu/FeCoCrNi vs Cu/CuZr [J]. J. Mater. Sci. Technol., 2021, 68(0): 16-29. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
