J. Mater. Sci. Technol. ›› 2021, Vol. 89: 199-208.DOI: 10.1016/j.jmst.2021.01.085
Previous Articles Next Articles
Yang Lia, Ziyang Luoa, Shunfei Lianga, Huizhen Qina, Xun Zhaoa, Lingyun Chena,*(
), Huayu Wanga, Shaowei Chenb,*(
)
Received:2020-09-04
Revised:2021-01-25
Accepted:2021-01-26
Published:2021-10-30
Online:2021-10-24
Contact:
Lingyun Chen,Shaowei Chen
About author:shaowei@ucsc.edu (S. Chen).Yang Li, Ziyang Luo, Shunfei Liang, Huizhen Qin, Xun Zhao, Lingyun Chen, Huayu Wang, Shaowei Chen. Two-dimensional porous zinc cobalt sulfide nanosheet arrays with superior electrochemical performance for supercapatteries[J]. J. Mater. Sci. Technol., 2021, 89: 199-208.
Fig. 2. TEM images of (a-c) Zn0.5Co0.5S, (d, e) Zn0.25Co0.75S, (f, g) Zn0.75Co0.25S, (h, i) CoS, and (j, k) ZnS nanosheets. Panel (b) inset is a zoom in of the boxed area. Top inset to panel (c) is the corresponding SAED patterns, and the bottom insets are the zoom in of the boxed areas.
Fig. 4. (a) Full-survey spectrum of Zn0.5Co0.5S nanosheets, and the corresponding high-resolution XPS scans of the (b) Co 2p, (c) Zn 2p, and (d) S 2p electrons. (e) N2 adsorption-desorption isotherm and (f) pore size distribution of Zn0.5Co0.5S nanosheets.
Fig. 5. (a) CV curves of the ZnxCo1-xS nanosheets at the potential sweep rate of 40 mV s-1. (b) CV curves of the Zn0.5Co0.5S nanosheets with the potential sweep rate varied from 10 to 100 mV s-1. (c) Plot of cathodic and anodic peak currents of the Zn0.5Co0.5S electrode with the square root of the potential sweep rate. (d) Linear regressions of log (i) and log (v) of the Zn0.5Co0.5S electrode. (e) Capacitive and diffusion-controlled contributions to the total current of the Zn0.5Co0.5S electrode at 10 mV s-1. (f) Fraction of the capacitive contribution of the Zn0.5Co0.5S electrode at various potential sweep rates.
Fig. 6. (a) GCD profiles of the ZnxCo1-xS nanosheets at the 4 A g-1 fixed current density. (b) GCD curves of the Zn0.5Co0.5S nanosheets at 1 to 10 A g-1. (c) Comparison of the specific capacity of the ZnxCo1-xS electrodes at various current densities. (d) Specific capacity over 10, 000 GCD cycles at 10 A g-1, and (e) Nyquist plots of the ZnxCo1-xS electrodes. Top inset to panel (e) is the equivalent circuit, whereas the bottom inset is a zoom in of the low-impedance region.
Fig. 7. (a) Structural schematic of the ZnxCo1-xS//AC supercapattery. (b) CV curves of the Zn0.5Co0.5S and AC electrodes at the fixed potential sweep rate of 10 mV s-1. (c) CV curves at the potential sweep rate of 40 mV s-1 and (d) GCD profiles at 4 A g-1 current density of the Zn0.5Co0.5S//AC supercapattery in varied potential windows. (e) CV at different potential sweep rates and (f) GCD profiles at different current densities of the Zn0.5Co0.5S//AC supercapattery. (g) Variation of the specific capacitance of the ZnxCo1-xS//AC supercapatteries with current density. (h) Nyquist plots of the Zn0.5Co0.5S//AC supercapattery. Insets to panel (h) are (top) equivalent circuit and (bottom) zoom in of the low-impedance region.
Fig. 8. (a) Reversibility tests of 10, 000 GCD cycles at 10 A g-1 of the Zn0.5Co0.5S//AC supercapattery. (b) Ragone plot of the various ZnxCo1-xS//AC devices.
| [1] | A. Aricò, P. Bruce, B. Scrosati, J. Tarascon, W. van Schalkwijk, Nat.Mater. 4 (2005) 366-377. |
| [2] |
C. Liu, F. Li, L. Ma, H. Cheng, Adv. Mater. 22 (2010) E28-E62.
DOI URL |
| [3] |
P. Simon, Y. Gogotsi, Nat. Mater. 7 (2008) 845-854.
DOI URL |
| [4] |
L. Zhang, X. Zhao, Chem. Soc. Rev. 38 (2009) 2520-2531.
DOI PMID |
| [5] |
G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev. 41 (2012) 797-828.
DOI URL |
| [6] |
H. Wang, H. Casalongue, Y. Liang, H. Dai, J. Am. Chem. Soc. 132 (2010) 7472-7477.
DOI URL |
| [7] |
W. Wei, X. Cui, W. Chen, D. Ivey, Chem. Soc. Rev. 40 (2011) 1697-1721.
DOI URL |
| [8] | X. Xu, W. Shi, W. Liu, S. Ye, R. Yin, L. Zhang, L. Xu, M. Chen, M. Zhong, X. Cao, J.Mater. Chem. A 6 (2018) 24086-24091. |
| [9] | M. Chen, H. Fan, Y. Zhang, X. Liang, Q. Chen, X. Xia, Small 16 (2020), 2003434. |
| [10] |
Q. Li, J. Zhou, R. Liu, L. Han, Dalton Trans. 48 (2019) 17163-17168.
DOI URL |
| [11] | B. Huang, H. Wang, S. Liang, H. Qin, Y. Li, Z. Luo, C. Zhao, L. Xie, L. Chen, EnergyStorage Mater. 32 (2020) 105-114. |
| [12] |
C. Yuan, L. Yang, L. Hou, L. Shen, X. Zhang, X. Lou, Energ. Environ. Sci. 5 (2012) 7883-7887.
DOI URL |
| [13] |
X. Zhang, W. Shi, J. Zhu, W. Zhao, J. Ma, S. Mhaisalkar, T. Maria, Y. Yang, H. Zhang H. Hng, Q. Yan, Nano Res. 3 (2010) 643-652.
DOI URL |
| [14] |
S. Kim, J. Lee, H. Ahn, H. Song, J. Jang, ACS Appl. Mater. Inter. 5 (2013) 1596-1603.
DOI URL |
| [15] |
J. Yan, Z. Fan, T. Wei, W. Qian, M. Zhang, F. Wei, Carbon 48 (2010) 3825-3833.
DOI URL |
| [16] |
Y. He, G. Li, Z. Wang, C. Su, Y. Tong, Energ. Environ. Sci. 4 (2011) 1288-1292.
DOI URL |
| [17] | X. Zhao, L. Mao, Q. Cheng, J. Li, F. Liao, G. Yang, L. Xie, C. Zhao, L. Chen, Chem.Eng. J. 387 (2020), 124081. |
| [18] |
J. Bhagwan, S. Rani, V. Sivasankaran, K. Yadav, Y. Sharma, Appl. Surf. Sci. 426 (2017) 913-923.
DOI URL |
| [19] |
M. Zhu, D. Meng, C. Wang, G. Diao, ACS Appl. Mater. Inter. 5 (2013) 6030-6037.
DOI URL |
| [20] |
L. Ren, J. Chen, X. Wang, M. Zhi, J. Wu, X. Zhang, RSC Adv. 5 (2015) 30963-30969.
DOI URL |
| [21] |
S. Xiong, H. Zeng, Angew. Chem. Int. Edit. 51 (2012) 949-952.
DOI URL |
| [22] |
M. Gao, Y. Xu, J. Jiang, S. Yu, Chem. Soc. Rev. 42 (2013) 2986-3017.
DOI URL |
| [23] | Y. Wang, J. Wu, Y. Tang, X. Lü, C. Yang, M. Qin, F. Huang, X. Li, X. Zhang, ACSAppl. Mater. Inter. 4 (2012) 4246-4250. |
| [24] | X. Chen, Q. Liu, T. Bai, W. Wang, F. He, M. Ye, Chem. Eng. J. (2020), 127237. |
| [25] | X. Liang, Y. Li, H. Fan, S. Deng, X. Zhao, M. Chen, G. Pan, Q. Xiong, X. Xia, Nanotechnology 30 (2019), 484001. |
| [26] | F. Yang, S. Deng, S. Lin, M. Chen, X. Xia, X. Lu, Nanotechnology 30 (2019),404001. |
| [27] | P. Zhang, Y. Liu, M. Zhou, Y. Xue, X. Zeng, J. Qi, M. Chen, F. Sun, Nanotechnology 31 (2020), 395401. |
| [28] |
S. Amaresh, K. Karthikeyan, I. Jang, Y. Lee, J. Mater. Chem. A 2 (2014) 11099-11106.
DOI URL |
| [29] | C. Dai, P. Chien, J. Lin, S. Chou, W. Wu, P. Li, K. Wu, T. Lin, ACS Appl. Mater.Interfaces 5 (2013) 12168-12174. |
| [30] |
J. Xu, Q. Wang, X. Wang, Q. Xiang, B. Liang, D. Chen, G. Shen, ACS Nano 7 (2013) 5453-5462.
DOI URL |
| [31] | X. Hou, T. Peng, J. Cheng, Q. Yu, R. Luo, Y. Lu, X. Liu, J. Kim, J. He, Y. Luo, NanoRes. 10 (2017) 2570-2583. |
| [32] |
F. Wu, J. Gao, X. Zhai, M. Xie, C. Gao, Y. Sun, Y. Liu, J. Yan, Electrochim. Acta 319 (2019) 859-868.
DOI URL |
| [33] |
I. Hussain, C. Lamiel, S. Mohamed, S. Vijayakumar, A. Ali, J. Shim, , J. Ind. Eng. Chem. 71 (2019) 250-259.
DOI URL |
| [34] |
J. Wu, X. Shi, W. Song, H. Ren, C. Tan, S. Tang, X. Meng, Nano Energy 45 (2018) 439-447.
DOI URL |
| [35] |
J. Xiao, L. Wan, S. Yang, F. Xiao, S. Wang, Nano Lett. 14 (2014) 831-838.
DOI URL |
| [36] | A. Elshahawy, X. Li, H. Zhang, Y. Hu, K. Ho, C. Guan, J. Wang, , J. Mater. Chem. A5 (2017) 7494-7506. |
| [37] |
J. Shen, J. Ji, P. Dong, R. Baines, Z. Zhang, P. Ajayan, M. Ye, J. Mater. Chem. A 4 (2016) 8844-8850.
DOI URL |
| [38] |
H. Chen, J. Jiang, L. Zhang, H. Wan, T. Qi, D. Xia, Nanoscale 5 (2013) 8879-8883.
DOI URL |
| [39] | S. Attia, Y. Barakat, H. Hassan, S. Mohamed, J. Energy Storage 29 (2020),101349. |
| [40] |
Y. Lv, A. Liu, Z. Shi, H. Che, J. Mu, Z. Guo, X. Zhang, Chem. Eng. J. 349 (2018) 397-407.
DOI URL |
| [41] |
B. Huang, W. Wang, T. Pu, J. Li, C. Zhao, L. Xie, L. Chen, Chem. Eng. J. 375 (2019),121969.
DOI URL |
| [42] | Y. Lu, Z. Li, Z. Bai, H. Mi, C. Ji, H. Pang, C. Yu, J. Qiu, Nano Energy 66 (2019),104132. |
| [43] | J. Yang, Y. Zhang, C. Sun, G. Guo, W. Sun, W. Huang, Q. Yan, X. Dong, J. Mater.Chem. A 3 (2015) 11462-11470. |
| [44] | Y. Zhang, N. Cao, S. Szunerits, A. Addad, P. Roussel, R. Boukherroub, Chem.Eng. J. 374 (2019) 347-358. |
| [45] | Z. Ji, N. Li, M. Xie, X. Shen, W. Dai, K. Liu, K. Xu, G. Zhu, Electrochim. Acta 334 (2020), 135632. |
| [46] |
H. Maruyama, H. Qiu, M. Hashimoto, K. Fudaba, H. Nakai, A. Barna, P. Barna, Thin Solid Films 299 (1997) 59-62.
DOI URL |
| [47] |
S. Thaiwatthana, N. Jantaping, P. Limthongkul, Surf. Eng. 28 (2012) 273-276.
DOI URL |
| [48] |
G. Greczynski, L. Hultman, Angew. Chem. Int. Edit. 59 (2020) 5002-5006.
DOI URL |
| [49] | M. Zhang, Y. Sui, X. Yuan, J. Qi, F. Wei, Q. Meng, Y. He, Y. Ren, Z. Sun, J. Liu, Nano 14 (2019), 1950030. |
| [50] |
X. Wei, Y. Zhang, B. Zhang, Z. Lin, X. Wang, P. Hu, S. Li, X. Tan, X. Cai, W. Yang, L. Mai, Nano Energy 64 (2019) 103899.
DOI URL |
| [51] | F. Hekmat, H. Hosseini, S. Shahrokhian, H. Unalan, Energy Storage Mater. 25 (2020) 621-635. |
| [52] |
M. Zhang, H. Fan, X. Ren, N. Zhao, H. Peng, C. Wang, X. Wu, G. Dong, C. Long, W. Wang, Y. Gao, L. Ma, P. Wu, H. Li, X. Jiang, J. Power Sources 418 (2019) 202-210.
DOI URL |
| [53] | B. Wu, H. Qian, Z. Nie, Z. Luo, Z. Wu, P. Liu, H. He, J. Wu, S. Chen, F. Zhang, J.Energy Chem. 46 (2020) 178-186. |
| [54] |
X. Wang, R. Zhou, C. Zhang, S. Xi, M. Jones, T. Tesfamichael, A. Du, K. Gui, K. Ostrikov H. Wang, J. Mater. Chem. A 8 (2020) 9278-9291.
DOI URL |
| [55] |
B. Huang, W. Wang, T. Pu, J. Li, J. Zhu, C. Zhao, L. Xie, L. Chen, , J. Colloid Interf. Sci. 532 (2018) 630-640.
DOI PMID |
| [56] |
Y. Li, Z. Luo, H. Qin, S. Liang, L. Chen, H. Wang, C. Zhao, S. Chen, , J. Colloid Interf. Sci. 582 (2021) 842-851.
DOI URL |
| [57] |
J. Li, T. Pu, B. Huang, X. Hou, C. Zhao, L. Xie, L. Chen, , J. Colloid Interf. Sci. 531 (2018) 360-368.
DOI URL |
| [58] |
N. Padmanathan, H. Shao, K. Razeeb, ACS Appl. Mater. Inter. 10 (2018) 8599-8610.
DOI URL |
| [59] | H. Shao, N. Padmanathan, D. McNulty, C. O’Dwyer, K. Razeeb, ACS Appl. Energ.Mater. 2 (2019) 569-578. |
| [60] | Q. Hu, M. Tang, M. He, N. Jiang, C. Xu, D. Lin, Q. Zheng, J. Power Sources 446 (2020), 227335. |
| [61] | J. Zhu, D. Song, T. Pu, J. Li, B. Huang, W. Wang, C. Zhao, L. Xie, L. Chen, Chem.Eng. J. 336 (2018) 679-689. |
| [62] |
T. Liu, J. Liu, L. Zhang, B. Cheng, J. Yu, , J. Mater. Sci. Technol. 47 (2020) 113-121.
DOI URL |
| [63] | H. Wan, X. Ji, J. Jiang, J. Yu, L. Miao, L. Zhang, S. Bie, H. Chen, Y. Ruan, J. PowerSources 243 (2013) 396-402. |
| [64] |
W. Kong, C. Lu, W. Zhang, J. Pu, Z. Wang, J. Mater. Chem. A 3 (2015) 12452-12460.
DOI URL |
| [65] |
S. Liu, S.C. Jun, J. Power Sources 342 (2017) 629-637.
DOI URL |
| [66] |
Z. Wang, Z. Zhu, Q. Zhang, M. Zhai, J. Gao, C. Chen, B. Yang, Ceram. Int. 45 (2019) 21286-21292.
DOI URL |
| [1] | Yanmei Zheng, Yuanyuan Liu, Xinli Guo, Zhongtao Chen, Weijie Zhang, Yixuan Wang, Xuan Tang, Yao Zhang, Yuhong Zhao. Sulfur-doped g-C3N4/rGO porous nanosheets for highly efficient photocatalytic degradation of refractory contaminants [J]. J. Mater. Sci. Technol., 2020, 41(0): 117-126. |
| [2] | Renfei Cheng, Tao Hu, Minmin Hu, Changji Li, Yan Liang, Zuohua Wang, Hui Zhang, Muchan Li, Hailong Wang, Hongxia Lu, Yunyi Fu, Hongwang Zhang, Quan-Hong Yang, Xiaohui Wang. MXenes induce epitaxial growth of size-controlled noble nanometals: A case study for surface enhanced Raman scattering (SERS) [J]. J. Mater. Sci. Technol., 2020, 40(0): 119-127. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
