J. Mater. Sci. Technol. ›› 2021, Vol. 89: 209-224.DOI: 10.1016/j.jmst.2020.12.008
Previous Articles Next Articles
Sheng Dinga, Yuanfeng Wanga,*(), Jianna Lib, Shiguo Chena,*(
)
Received:
2020-09-30
Revised:
2020-11-04
Accepted:
2020-11-10
Published:
2021-10-30
Online:
2021-10-30
Contact:
Yuanfeng Wang,Shiguo Chen
About author:
csg@szu.edu.cn (S. Chen).Sheng Ding, Yuanfeng Wang, Jianna Li, Shiguo Chen. Progress and prospects in chitosan derivatives: Modification strategies and medical applications[J]. J. Mater. Sci. Technol., 2021, 89: 209-224.
Modification strategies | Systems | Enhanced property | Refs. | |||
---|---|---|---|---|---|---|
Antimicrobial activity | Water solubility | Biocompatibility | Mechanical property | |||
Positive charges | QAS | + | + | + | [ | |
N-QPCS | + | + | [ | |||
Ammonium | + | [ | ||||
Zwitterion | COOH group, QAS | + | [ | |||
Betaine | + | + | + | [ | ||
CS ascorbate | + | [ | ||||
QAS/Betaine | + | + | + | [ | ||
Neutral antimicrobial compound | CS derivative bearing with multi-NH2 groups | + | + | + | + | [ |
CS-g-PCL | + | + | + | [ | ||
CPC | + | [ | ||||
Catechol | + | + | [ | |||
Brij-S20 | + | [ | ||||
Arg | + | [ | ||||
Reactive Blue 19 | + | [ | ||||
Diethoxyphosphoryl polyaminoethyl CS Schiff bases | + | + | + | [ | ||
NO-release CS derivative | + | [ | ||||
polyNiPAAm | + | [ | ||||
Glycol CS | + | [ | ||||
CMCS | + | + | [ | |||
HA/mPEG | + | [ | ||||
Ferulic acid/ethyl ferulate | + | [ | ||||
Metal | Cu (II) CS complex | + | + | [ | ||
Ag (I) CS complex | + | [ | ||||
AgNPs | + | + | [ | |||
Cu (II)/Zn (II) CS complex | + | + | [ | |||
Gelatin/Ag@ZnO | + | + | [ | |||
Carbon | MWCNT based CS derivatives | + | [ | |||
GO based CS derivatives | + | [ | ||||
+ | + | [ | ||||
PPS/rGO | + | + | [ | |||
Hybridization | Capsaicin | + | [ | |||
PAA | + | [ | ||||
Cellulose nanocrystals | + | [ | ||||
Gelatin | + | + | [ | |||
BNNTs | + | + | [ | |||
1%Ga2O3/MBG | + | [ | ||||
SA/Ca (II) | + | [ | ||||
SA | + | [ | ||||
PVA | + | + | [ | |||
DN hydrogel | + | + | + | [ |
Table 1 Various kinds of medical antimicrobial agent based on CS.
Modification strategies | Systems | Enhanced property | Refs. | |||
---|---|---|---|---|---|---|
Antimicrobial activity | Water solubility | Biocompatibility | Mechanical property | |||
Positive charges | QAS | + | + | + | [ | |
N-QPCS | + | + | [ | |||
Ammonium | + | [ | ||||
Zwitterion | COOH group, QAS | + | [ | |||
Betaine | + | + | + | [ | ||
CS ascorbate | + | [ | ||||
QAS/Betaine | + | + | + | [ | ||
Neutral antimicrobial compound | CS derivative bearing with multi-NH2 groups | + | + | + | + | [ |
CS-g-PCL | + | + | + | [ | ||
CPC | + | [ | ||||
Catechol | + | + | [ | |||
Brij-S20 | + | [ | ||||
Arg | + | [ | ||||
Reactive Blue 19 | + | [ | ||||
Diethoxyphosphoryl polyaminoethyl CS Schiff bases | + | + | + | [ | ||
NO-release CS derivative | + | [ | ||||
polyNiPAAm | + | [ | ||||
Glycol CS | + | [ | ||||
CMCS | + | + | [ | |||
HA/mPEG | + | [ | ||||
Ferulic acid/ethyl ferulate | + | [ | ||||
Metal | Cu (II) CS complex | + | + | [ | ||
Ag (I) CS complex | + | [ | ||||
AgNPs | + | + | [ | |||
Cu (II)/Zn (II) CS complex | + | + | [ | |||
Gelatin/Ag@ZnO | + | + | [ | |||
Carbon | MWCNT based CS derivatives | + | [ | |||
GO based CS derivatives | + | [ | ||||
+ | + | [ | ||||
PPS/rGO | + | + | [ | |||
Hybridization | Capsaicin | + | [ | |||
PAA | + | [ | ||||
Cellulose nanocrystals | + | [ | ||||
Gelatin | + | + | [ | |||
BNNTs | + | + | [ | |||
1%Ga2O3/MBG | + | [ | ||||
SA/Ca (II) | + | [ | ||||
SA | + | [ | ||||
PVA | + | + | [ | |||
DN hydrogel | + | + | + | [ |
Form | System | Preparation | Mechanism & Advantages | Refs. |
---|---|---|---|---|
Textile | CS/(α)-tocopherol nanosphere on CF | Emulsion formation, and pad-dry-cure | In vitro release of α-tocopherol and preserve skin moisture | [ |
CS hydrogel/CF | in-situ crosslinking | pH-responsive, altered basic mechanical and comfort | [ | |
CMCS/Met/Ag/CF | Pad-dry-cure, in-situ reduction | Outstanding laundering durability (98 % BR after 150 washes) due to the covalent bonds | [ | |
CS/Ag/linen fabric | Padding, in-situ reduction | Green synthesis, 100 % bacterial reduction, UPF 50 +, 97 % antioxidant activity, LOI of 23, and sustained for 50 washes | [ | |
Film/coating | CS/P(PA-co-AA) micelles | Layer-by-layer assembly | UV-induced generation of ROS to destroy biofilms, and increased roughness and hydrophilicity for better tissue integration | [ |
Carrot cellulose nanofibrils/low-viscosity CS | Vacuum filtration | Good optical transparency, good stability at high temperature (degradation occurred above 300 °C) | [ | |
AQCS/EDTA/Cu2+ | Substrate plasma treatment, AQCS spreading, EDTA grafting, Cu2+ loading in CuSO4·5H2O solution | Cu2+ release for bacterial membrane damage and death, transparent, sustained for 100 wipes | [ | |
CMC/CS/PEG | Layer-by-layer assembly and subsequent crosslinking | Super hydrophilic surface, formed thin water film to prevent biofilm adhesion, improved chemical resistance and mechanical stability | [ | |
Capsaicin@CS/PDPA/sodium alginate | Microemulsion polymerization, alternately deposition | pH-responsive release of capsaicin, self-healing in artificial sea water | [ | |
CS/PAA brushes/TOB | Surface-initiated ATRP | pH-responsive TOB delivery, changeable adhesion, and elastic modulus | [ | |
CNF/ZnO-CS-Cl | Vacuum filtration and heat-press processing | Remarkable UV light stability, quick in vitro contact antimicrobial activity | [ | |
Particle/fiber | TSC-PGMA-malic acidic CS | Esterification of MA with CS and surface grafting of GMA and TSC | Hg(II) adsorption (242.7 mg/g), reusable for 5 cycles | [ |
Ce6 | Amide formation between COOH group in Ce6 and free NH2 group in CS | Light-induced localized singlet oxygen generation, kill drug-resistance bacteria, photodynamic therapy | [ | |
QCS (carbon) nanospheres | One-pot hydrothermal treatment | Homogeneous size distribution (∼110 nm), superior antimicrobial activity with a MIC of 2.0 - 5.0 μg/mL, biocompatibility for liver, lung, and red blood cells | [ | |
CS/PHA-g-AA nanofibers | Grinding black soldier fly pupa shell in water-acid-alkali to obtain CS and electrospinning with PHA-g-AA | Fully degradable, enhanced interface compatibility, and mechanical properties, excellent cytocompatibility | [ | |
PLNP@PANI-GCS | Grafting PANI and glycol GCS onto the surface of persistent luminescence nanoparticles (PLNPs) | Photothermal therapy, combating multidrug-resistant bacteria, developing no drug resistance, little harm to normal cells | [ | |
Mannosylated CS/imatinib-laden NPs | Covalently conjugated of mannose with CS oligosaccharides, then incubated with imatinib-laden NPs | Induce macrophage polarization toward the M1 phenotype, decrease M2 phenotype production, lessen fungus burden | [ | |
Others | CS/PVAm/cellulose fiber foam | One-batch foam-forming process with drying under ambient conditions | Low density (33 - 66 kg/m3), water-stability, and microbial growth inhibition, | [ |
CS-g-PAM | UV-initiation grafting copolymerization | Enhanced sterilization and flocculation | [ |
Table 2 Various kinds of medical antimicrobial agent based on CS derivatives.
Form | System | Preparation | Mechanism & Advantages | Refs. |
---|---|---|---|---|
Textile | CS/(α)-tocopherol nanosphere on CF | Emulsion formation, and pad-dry-cure | In vitro release of α-tocopherol and preserve skin moisture | [ |
CS hydrogel/CF | in-situ crosslinking | pH-responsive, altered basic mechanical and comfort | [ | |
CMCS/Met/Ag/CF | Pad-dry-cure, in-situ reduction | Outstanding laundering durability (98 % BR after 150 washes) due to the covalent bonds | [ | |
CS/Ag/linen fabric | Padding, in-situ reduction | Green synthesis, 100 % bacterial reduction, UPF 50 +, 97 % antioxidant activity, LOI of 23, and sustained for 50 washes | [ | |
Film/coating | CS/P(PA-co-AA) micelles | Layer-by-layer assembly | UV-induced generation of ROS to destroy biofilms, and increased roughness and hydrophilicity for better tissue integration | [ |
Carrot cellulose nanofibrils/low-viscosity CS | Vacuum filtration | Good optical transparency, good stability at high temperature (degradation occurred above 300 °C) | [ | |
AQCS/EDTA/Cu2+ | Substrate plasma treatment, AQCS spreading, EDTA grafting, Cu2+ loading in CuSO4·5H2O solution | Cu2+ release for bacterial membrane damage and death, transparent, sustained for 100 wipes | [ | |
CMC/CS/PEG | Layer-by-layer assembly and subsequent crosslinking | Super hydrophilic surface, formed thin water film to prevent biofilm adhesion, improved chemical resistance and mechanical stability | [ | |
Capsaicin@CS/PDPA/sodium alginate | Microemulsion polymerization, alternately deposition | pH-responsive release of capsaicin, self-healing in artificial sea water | [ | |
CS/PAA brushes/TOB | Surface-initiated ATRP | pH-responsive TOB delivery, changeable adhesion, and elastic modulus | [ | |
CNF/ZnO-CS-Cl | Vacuum filtration and heat-press processing | Remarkable UV light stability, quick in vitro contact antimicrobial activity | [ | |
Particle/fiber | TSC-PGMA-malic acidic CS | Esterification of MA with CS and surface grafting of GMA and TSC | Hg(II) adsorption (242.7 mg/g), reusable for 5 cycles | [ |
Ce6 | Amide formation between COOH group in Ce6 and free NH2 group in CS | Light-induced localized singlet oxygen generation, kill drug-resistance bacteria, photodynamic therapy | [ | |
QCS (carbon) nanospheres | One-pot hydrothermal treatment | Homogeneous size distribution (∼110 nm), superior antimicrobial activity with a MIC of 2.0 - 5.0 μg/mL, biocompatibility for liver, lung, and red blood cells | [ | |
CS/PHA-g-AA nanofibers | Grinding black soldier fly pupa shell in water-acid-alkali to obtain CS and electrospinning with PHA-g-AA | Fully degradable, enhanced interface compatibility, and mechanical properties, excellent cytocompatibility | [ | |
PLNP@PANI-GCS | Grafting PANI and glycol GCS onto the surface of persistent luminescence nanoparticles (PLNPs) | Photothermal therapy, combating multidrug-resistant bacteria, developing no drug resistance, little harm to normal cells | [ | |
Mannosylated CS/imatinib-laden NPs | Covalently conjugated of mannose with CS oligosaccharides, then incubated with imatinib-laden NPs | Induce macrophage polarization toward the M1 phenotype, decrease M2 phenotype production, lessen fungus burden | [ | |
Others | CS/PVAm/cellulose fiber foam | One-batch foam-forming process with drying under ambient conditions | Low density (33 - 66 kg/m3), water-stability, and microbial growth inhibition, | [ |
CS-g-PAM | UV-initiation grafting copolymerization | Enhanced sterilization and flocculation | [ |
Form | System | Preparation | Mechanism & Advantages | Refs. |
---|---|---|---|---|
Hydrogel | Fe3O4@PDA@Ru-NO@FA imbedded CS-PVA hydrogel | Imbedding during crosslinking | Mild NIR light-controlled NO delivery, selectively accumulate in magnetic field-guided target area | [ |
CS/gelatin/sodium hyaluronate/AgNPs | Mixed solution crosslinking | Blood absorption and promoting platelet aggregation, antimicrobial, liquid absorption, and wound healing of full thickness | [ | |
CS/PSBMA DN | UV initiated polymerization and crosslinking | High tensile strength (2.0 MPa), strong elastic modulus (0.5 MPa), fast self-recovery ability, toughness retention, anti-fouling | [ | |
Au nanorod@graphitic doped PVA/CS | Aldol condensation reaction | Stable photothermal antibacterial properties under near-infrared laser irradiation, swell to absorb the bacterial solution and kill | [ | |
QCS/ AA-co-MADA-co-DMAEMA | UV-polymerization | Inherent contact-active antibacterial activities, high toughness of 9168 J/m, high cell and tissue affinity | [ | |
GCS/EPL/polysaccharide-peptide cryogels | Radical polymerization | Against MDR bacterial infection, excellent biocompatibility, low cost, lower blood loss | [ | |
CS/AM NSs | Ultrasonic liquid phase exfoliation, bidirectional freeze-casting approach | Gather bacteria on the surface, full-thickness defect wound healing, capture and elimination of bacteria | [ | |
Catechol-methacryloyl CS/ methacryloyl CS | Simultaneous crosslinking | Double-network, injectable, strong adhesion to biological tissues (lap shear strength of 18.1 kPa) | [ | |
CMCS/NB/O-nitrobenzene | UV irradiation | Crosslinking between functional groups and tissue surface upon UV irradiation, strong adhesive performance (97.65 kPa) | [ | |
Film | HKUST-1/CS film | Mixing, freeze drying | Local infection therapy, slow release of copper ions and reduced cytotoxicity, promote vessel regeneration | [ |
Cu-BTTri MOF/CS | Blend | Water stable, impediment of biofilm formation, 85 % bacterial attachment reduction | [ | |
PCL/QCS-PANi | Electrospinning | Young’s modulus ranged from 2.4 - 4.9 MPa, 81.7%-48.1% stretchable, hemocompatibility and cytocompatibility | [ | |
Nanocomposite | Cellulose/CS/CuO NPs | Film casting, gelation | Reproducible antibacterial and antiviral activity, green and facile synthesis, against highly resistant bacteria and fungi | [ |
CS inverse opal particles | Employing CS as scaffold | Inflammation reaction-induced intelligent drug release, real time monitoring of drug release, | [ | |
CS/antibacterial peptide | Self-assembly | On-site transformation, site-specific targeting, accumulation, and retention | [ | |
CS-g-oligolysine | Self-assembly | Selectively kills MDR bacteria, ultralow molecular weight (1450 Da), small zeta potential (+15 mV) and lack of hydrophobicity | [ | |
O-bacterial cellulose/CS/ collagen | Electrostatic attraction self-assembly | Rapid internal hemostasis, a faster biodegradability in vivo, procoagulant property, adhesion of erythrocytes and platelets | [ |
Table 3 Various kinds of wound healing material systems based on CS derivatives.
Form | System | Preparation | Mechanism & Advantages | Refs. |
---|---|---|---|---|
Hydrogel | Fe3O4@PDA@Ru-NO@FA imbedded CS-PVA hydrogel | Imbedding during crosslinking | Mild NIR light-controlled NO delivery, selectively accumulate in magnetic field-guided target area | [ |
CS/gelatin/sodium hyaluronate/AgNPs | Mixed solution crosslinking | Blood absorption and promoting platelet aggregation, antimicrobial, liquid absorption, and wound healing of full thickness | [ | |
CS/PSBMA DN | UV initiated polymerization and crosslinking | High tensile strength (2.0 MPa), strong elastic modulus (0.5 MPa), fast self-recovery ability, toughness retention, anti-fouling | [ | |
Au nanorod@graphitic doped PVA/CS | Aldol condensation reaction | Stable photothermal antibacterial properties under near-infrared laser irradiation, swell to absorb the bacterial solution and kill | [ | |
QCS/ AA-co-MADA-co-DMAEMA | UV-polymerization | Inherent contact-active antibacterial activities, high toughness of 9168 J/m, high cell and tissue affinity | [ | |
GCS/EPL/polysaccharide-peptide cryogels | Radical polymerization | Against MDR bacterial infection, excellent biocompatibility, low cost, lower blood loss | [ | |
CS/AM NSs | Ultrasonic liquid phase exfoliation, bidirectional freeze-casting approach | Gather bacteria on the surface, full-thickness defect wound healing, capture and elimination of bacteria | [ | |
Catechol-methacryloyl CS/ methacryloyl CS | Simultaneous crosslinking | Double-network, injectable, strong adhesion to biological tissues (lap shear strength of 18.1 kPa) | [ | |
CMCS/NB/O-nitrobenzene | UV irradiation | Crosslinking between functional groups and tissue surface upon UV irradiation, strong adhesive performance (97.65 kPa) | [ | |
Film | HKUST-1/CS film | Mixing, freeze drying | Local infection therapy, slow release of copper ions and reduced cytotoxicity, promote vessel regeneration | [ |
Cu-BTTri MOF/CS | Blend | Water stable, impediment of biofilm formation, 85 % bacterial attachment reduction | [ | |
PCL/QCS-PANi | Electrospinning | Young’s modulus ranged from 2.4 - 4.9 MPa, 81.7%-48.1% stretchable, hemocompatibility and cytocompatibility | [ | |
Nanocomposite | Cellulose/CS/CuO NPs | Film casting, gelation | Reproducible antibacterial and antiviral activity, green and facile synthesis, against highly resistant bacteria and fungi | [ |
CS inverse opal particles | Employing CS as scaffold | Inflammation reaction-induced intelligent drug release, real time monitoring of drug release, | [ | |
CS/antibacterial peptide | Self-assembly | On-site transformation, site-specific targeting, accumulation, and retention | [ | |
CS-g-oligolysine | Self-assembly | Selectively kills MDR bacteria, ultralow molecular weight (1450 Da), small zeta potential (+15 mV) and lack of hydrophobicity | [ | |
O-bacterial cellulose/CS/ collagen | Electrostatic attraction self-assembly | Rapid internal hemostasis, a faster biodegradability in vivo, procoagulant property, adhesion of erythrocytes and platelets | [ |
Form | System | Preparation | Mechanism & Advantages | Refs. |
---|---|---|---|---|
Nanoparticle/spheres | PANI/GCS/Zn1.2Ga1.6Ge0.2O4 | In situ chemical oxidative polymerization | Effective response to acid region that bacterial infected | [ |
CS/ZM241385/ceria nanoparticles | Sol-gel method and ultra-sonication | Intraocular drug delivery, open corneal epithelial tight junctions | [ | |
CS/selenium/cisplatin | Stir and dialysis | Antitumor performance, elimination of ROS, prevent HIF-1 activation. | [ | |
CS/connexin 43/lipid bilayers | Ionic gelation followed by mixing and evaporation | Efficient cellular uptake and silencing, surface shielding effect of positive charge of CS | [ | |
Montmorillonite/CS | Ultrasonic process, rinsing and freeze-drying | Efficient drug delivery, high surface area, hierarchical mesoporous structure | [ | |
PAH/Eudragit/Triton X100 composite/ silica NPs/CS | Spray-drying process | High entrapment efficiency of drug (up to 46 %), larger pore size | [ | |
Hydrogel | Dopamine hydrochloride/GCS | Dissolved GCS and PDA NPs in DI water and standing for 48 h | Spatio-temporal control of drug release, in vivo minimal leakage of the hydrogel | [ |
Ag nanoclusters/CS-PEG | Casting | Inhibit the biofilm formation, controlled release of naproxen in vivo | [ | |
C-6-OH allyl-modified CS/ PNIPAM | Thiol-ene click chemistry and crosslinking network, UV irradiation. | pH- and thermo-responsive, functionalization of CS and PNIPAM | [ | |
CS/methacrylated gellan gum | Complexation and microfluidics | Encapsulation of cells inside the fibers, controlled peptide functionalization | [ | |
N-CBCS/A-ALG/C-dots | Mixing | Relieve the oxidative stress at inflammation site/C-dots scavenge excess ROS | [ | |
QCS/AgNPs/GO/Vor | Ultrasonication | Improved fungal keratitis in 7 days, poor solubility of Vor | [ |
Table 4 Various kinds of drug delivery material systems based on CS derivatives.
Form | System | Preparation | Mechanism & Advantages | Refs. |
---|---|---|---|---|
Nanoparticle/spheres | PANI/GCS/Zn1.2Ga1.6Ge0.2O4 | In situ chemical oxidative polymerization | Effective response to acid region that bacterial infected | [ |
CS/ZM241385/ceria nanoparticles | Sol-gel method and ultra-sonication | Intraocular drug delivery, open corneal epithelial tight junctions | [ | |
CS/selenium/cisplatin | Stir and dialysis | Antitumor performance, elimination of ROS, prevent HIF-1 activation. | [ | |
CS/connexin 43/lipid bilayers | Ionic gelation followed by mixing and evaporation | Efficient cellular uptake and silencing, surface shielding effect of positive charge of CS | [ | |
Montmorillonite/CS | Ultrasonic process, rinsing and freeze-drying | Efficient drug delivery, high surface area, hierarchical mesoporous structure | [ | |
PAH/Eudragit/Triton X100 composite/ silica NPs/CS | Spray-drying process | High entrapment efficiency of drug (up to 46 %), larger pore size | [ | |
Hydrogel | Dopamine hydrochloride/GCS | Dissolved GCS and PDA NPs in DI water and standing for 48 h | Spatio-temporal control of drug release, in vivo minimal leakage of the hydrogel | [ |
Ag nanoclusters/CS-PEG | Casting | Inhibit the biofilm formation, controlled release of naproxen in vivo | [ | |
C-6-OH allyl-modified CS/ PNIPAM | Thiol-ene click chemistry and crosslinking network, UV irradiation. | pH- and thermo-responsive, functionalization of CS and PNIPAM | [ | |
CS/methacrylated gellan gum | Complexation and microfluidics | Encapsulation of cells inside the fibers, controlled peptide functionalization | [ | |
N-CBCS/A-ALG/C-dots | Mixing | Relieve the oxidative stress at inflammation site/C-dots scavenge excess ROS | [ | |
QCS/AgNPs/GO/Vor | Ultrasonication | Improved fungal keratitis in 7 days, poor solubility of Vor | [ |
Form | System | Preparation | Mechanism & Advantages | Refs. |
---|---|---|---|---|
Coatings/films | CS/PDA/AgNPs/HAP | Spin coating | Sustained release of silver ions | [ |
CS/fluoride/diopside nanocomposite | Co-precipitation method ultrasonication | Enhancement of in vitro corrosion resistance, improved cell attachment on the surfaces | [ | |
CS/heparin mimicking polymer/AgNPs/oxidized carbon nanotube | Sonication | Anti-thrombus activity, endothelial cell compatibility, shielding effects of the polymer coatings | [ | |
Polymer multilayers | CS/HA/antimicrobial peptide | Chemical crosslinking | Prevent formation of biofilms (24 days), long term release of beta-peptide | [ |
CS/HA | Deposition | Active delivery of triclosan, smooth multilayers with prepared pattern, decreased contact angle values | [ | |
CS/ Gel/levofloxacin | Multilayers spin-coated | Chelating effect of CS and Gel that reduced the hydrolysis of multilayers | [ | |
Sleeves | Ag/CS/chlorhexidine | Electrospinning | Prevention of pin tract infections, sustained release of silver from the sleeve | [ |
Scaffolds | CS/collagen | Freeze-drying process | Support mesenchymal stem cell differentiation, increased in compressive modulus (1.23 kPa) | [ |
Table 5 Various kinds of medical implants materials based on CS derivatives.
Form | System | Preparation | Mechanism & Advantages | Refs. |
---|---|---|---|---|
Coatings/films | CS/PDA/AgNPs/HAP | Spin coating | Sustained release of silver ions | [ |
CS/fluoride/diopside nanocomposite | Co-precipitation method ultrasonication | Enhancement of in vitro corrosion resistance, improved cell attachment on the surfaces | [ | |
CS/heparin mimicking polymer/AgNPs/oxidized carbon nanotube | Sonication | Anti-thrombus activity, endothelial cell compatibility, shielding effects of the polymer coatings | [ | |
Polymer multilayers | CS/HA/antimicrobial peptide | Chemical crosslinking | Prevent formation of biofilms (24 days), long term release of beta-peptide | [ |
CS/HA | Deposition | Active delivery of triclosan, smooth multilayers with prepared pattern, decreased contact angle values | [ | |
CS/ Gel/levofloxacin | Multilayers spin-coated | Chelating effect of CS and Gel that reduced the hydrolysis of multilayers | [ | |
Sleeves | Ag/CS/chlorhexidine | Electrospinning | Prevention of pin tract infections, sustained release of silver from the sleeve | [ |
Scaffolds | CS/collagen | Freeze-drying process | Support mesenchymal stem cell differentiation, increased in compressive modulus (1.23 kPa) | [ |
Form | System | Preparation | Mechanism & Advantages | Refs. |
---|---|---|---|---|
Nanocomposite Scaffold | PCL/CS/cellulose nanocrystals | Electrospinning | Maintenance of tendon cell, anisotropic hierarchical structure | [ |
HPA/CS | Freeze-drying | Promote osteogenic differentiation, the scaffold enhanced cell attachment | [ | |
CS/agarose/HA | N2 frozen | Bone regeneration, compressive strength (approx. 1∼1.4 MPa) | [ | |
N-CECS/PEG-DA/HPA/oxidized hyaluronic acid sodium | Oxidized ultrasound disperse | Bilayered scaffold, self-healing between subchondral layer and chondral layer | [ | |
Polymer | PCL/CS | Electrospinning | Reduced platelet adhesion, heparin functionalization | [ |
Fibers | CS/PLGA | Electrospinning | Prevent the pH decrease during the degradation/PLGA, CS coating | [ |
Hydrogels | CS/aniline tetramer/PEG-DA | CS-g-aniline/PEG-DA mixing | Good adhesiveness, conductivity close to native tissue | [ |
Hyaluronate/sodium periodate/GCS | Schiff base bonding | Over 6 weeks to degrade in vivo, imine bonds hydrolysis | [ | |
XG/CS/iron oxide magnetic NPs | Self-organization | Improve cell proliferation, internalized under magnetic field | [ |
Table 6 Various kinds of tissue engineering materials based on CS derivatives.
Form | System | Preparation | Mechanism & Advantages | Refs. |
---|---|---|---|---|
Nanocomposite Scaffold | PCL/CS/cellulose nanocrystals | Electrospinning | Maintenance of tendon cell, anisotropic hierarchical structure | [ |
HPA/CS | Freeze-drying | Promote osteogenic differentiation, the scaffold enhanced cell attachment | [ | |
CS/agarose/HA | N2 frozen | Bone regeneration, compressive strength (approx. 1∼1.4 MPa) | [ | |
N-CECS/PEG-DA/HPA/oxidized hyaluronic acid sodium | Oxidized ultrasound disperse | Bilayered scaffold, self-healing between subchondral layer and chondral layer | [ | |
Polymer | PCL/CS | Electrospinning | Reduced platelet adhesion, heparin functionalization | [ |
Fibers | CS/PLGA | Electrospinning | Prevent the pH decrease during the degradation/PLGA, CS coating | [ |
Hydrogels | CS/aniline tetramer/PEG-DA | CS-g-aniline/PEG-DA mixing | Good adhesiveness, conductivity close to native tissue | [ |
Hyaluronate/sodium periodate/GCS | Schiff base bonding | Over 6 weeks to degrade in vivo, imine bonds hydrolysis | [ | |
XG/CS/iron oxide magnetic NPs | Self-organization | Improve cell proliferation, internalized under magnetic field | [ |
[1] | B.R. Riegger, B. Bäurer, A. Mirzayeva, G.E.M.Tovar, M. Bach, Carbohydr.Polym. 180 (2018) 46-54. |
[2] | T. Di Nardo, C. Hadad, A. Nguyen Van Nhien, A.Moores, Green Chem. 21 (2019) 3276-3285. |
[3] |
R. Apjok, A.M. Cozmuta, A. Peter, L.M. Cozmuta, C. Nicula, M. Baia, A. Vulpoi, Cellulose 26 (2019) 1923-1946.
DOI URL |
[4] |
C. Nadejde, M. Neamtu, V.D. Hodoroaba, R.J. Schneider, G. Ababei, U. Panne, Chem. Eng. J. 302 (2016) 587-594.
DOI URL |
[5] |
C.M. Lin, Y.C. Chang, L.C. Cheng, C.H. Liu, S.C. Chang, T.Y. Hsien, D.M. Wang, H.J. Hsieh, Cellulose 27 (2020) 2651-2667.
DOI URL |
[6] |
D. Mawad, C. Mansfield, A. Lauto, F. Perbellini, G.W. Nelson, J. Tonkin, S. O.Bello D.J. Carrad, A.P. Micolich, M.M. Mahat, J. Furman, D. Payne, A.R. Lyon, J.J. Gooding, S.E. Harding, C.M. Terracciano, M.M. Stevens, Sci. Adv. 2 (2016),e1601007.
DOI URL |
[7] | A.S. Montaser, M. Rehan, W.M.El Senousy, S.Zaghloul,Carbohydr. Polym. 244 (2020), 116479. |
[8] |
W.T. Liau, A.M. Kasko, Biomacromolecules 18 (2017) 4133-4140.
DOI URL |
[9] |
W.J. Zou, Y.X. Chen, X.C. Zhang, J.N. Li, L.M. Sun, Z.F. Gui, B. Du, S.G. Chen, Carbohydr. Polym. 202 (2018) 246-257.
DOI URL |
[10] |
Y.X. Chen, J.N. Li, Q.Q. Li, Y.Y. Shen, Z.C. Ge, W.W. Zhang, S.G. Chen, Carbohydr. Polym. 143 (2016) 246-253.
DOI URL |
[11] |
Z.R. Tong, J.Y. Yang, L.Z. Lin, R.Q. Wang, B. Cheng, Y. Chen, L.S. Tang, J.Y. Chen, X.L. Ma, Carbohydr. Polym. 221 (2019) 21-28.
DOI URL |
[12] |
M. Rinaudo, G. Pavlov, J. Desbrieres, Polymer 40 (1999) 7029-7032.
DOI URL |
[13] |
H. Huang, Y. Li, L. Zhao, Y. Yu, J. Xu, X.Z. Yin, S.H. Chen, J. Wu, H.S. Yue, H. Wang L.X. Wang, Cellulose 26 (2019) 2599-2611.
DOI |
[14] |
S. Hsu, S. Hsu, S. Chang, ACS Biomater. Sci. Eng. 6 (2020) 298-307.
DOI URL |
[15] |
Y.W. Jiang, G. Gao, X.D. Zhang, H.R. Jia, F.G. Wu, Nanoscale 9 (2017) 15786-15795.
DOI URL |
[16] | E. Oyervides-Mu˜noz, E. Pollet, G. Ulrich, G. de Jesús Sosa-Santillán, L.Avérous, Carbohydr. Polym. 157 (2017) 1922-1932. |
[17] |
I.V. Blagodatskikh, O.V. Vyshivannaya, N.A. Samoilova, E.A. Bezrodnykh, Z. S.Klemenkova V.N. Kuryakov, V.E. Tikhonov, A.R. Khokhlov, Polym. Sci. A 62 (2020) 162-173.
DOI URL |
[18] |
D. Zhu, H.H. Cheng, J.N. Li, W.W. Zhang, Y.Y. Shen, S.J. Chen, Z.C. Ge, S. G.Chen, Mater. Sci. Eng. C 61 (2016) 79-84.
DOI URL |
[19] |
Y. Lu, D.L. Slomberg, M.H. Schoenfisch, Biomaterials 35 (2014) 1716-1724.
DOI URL |
[20] |
Y. Yu, P. Li, C. Zhu, N. Ning, S. Zhang, G.J. Vancso, Adv. Funct. Mater. 29 (2019), 1904402.
DOI URL |
[21] |
R. Macedo, N.D. Marques, L.C.S.Paulucci, J.V.M.Cunha, M.A. Villetti, B.B.Castro, R.D. Balaban, Carbohydr. Polym. 215 (2019) 137-142.
DOI URL |
[22] |
A. Gutoaia, L. Schuster, S. Margutti, S. Laufer, B. Schlosshauer, R. Krastev, D. Stoll H. Hartmann, Carbohydr. Polym. 143 (2016) 25-34.
DOI URL |
[23] | D. Gan, T. Xu, W. Xing, X. Ge, L. Fang, K. Wang, F. Ren, X. Lu, Adv. Funct.Mater. 29 (2019), 1805964. |
[24] |
Q.F. Dang, K. Liu, C.S. Liu, T. Xu, J.Q. Yan, F.L. Yan, D.S. Cha, Q.Q. Zhang, Y. C.Cao , Carbohydr. Polym. 180 (2018) 1-12.
DOI URL |
[25] |
A.M. Diez-Pascual, A.L. Diez-Vicente, J. Mater. Chem. B 4 (2016) 600-612.
DOI URL |
[26] |
H. Chiu, R. Chen, P. Wu, T. Chiang, Polym. Plast. Technol. Eng. 46 (2007) 1121-1127.
DOI URL |
[27] | L.Y. Zheng, J.A.F.Zhu, Carbohydr. Polym. 54 (2003) 527-530. |
[28] |
S. Lee, E.Y. Choi, C.K. Kim, Ind. Eng. Chem. Res. 58 (2019) 6679-6686.
DOI URL |
[29] | W. Qian, C. Yan, D.F. He, X.Z. Yu, L. Yuan, M.L. Liu, G.X. Luo, J. Deng, ActaBiomater. 69 (2018) 256-264. |
[30] |
B. Qiang, J. Jung, Y. Zhao, Appl. Biochem. Biotechnol. 175 (2015) 2972-2985.
DOI URL |
[31] | O. Wiarachai, N. Thongchul, S. Kiatkamjornwong, V.P. Hoven, Colloids Surf. B92 (2012) 121-129. |
[32] |
K. Kalinov, M. Ignatova, N. Manolova, I. Rashkov, N. Markova, D. Momekova, Colloid Polym. Sci. 292 (2014) 2899-2912.
DOI URL |
[33] | Y. Tang, L. Xie, M. Sai, N. Xu, D. Ding, Mater. Sci. Eng. C 48 (2015) 1-4. |
[34] |
Y. Wen, F. Yao, F. Sun, Z. Tan, L. Tian, L. Xie, Q. Song, Mater. Sci. Eng. C 48 (2015) 220-227.
DOI URL |
[35] |
Y. Chen, W. Tan, Q. Li, F. Dong, G. Gu, Z. Guo, Int. J. Biol. Macromol. 113 (2018) 1273-1278.
DOI URL |
[36] |
T. Xu, M.H. Xin, M.C. Li, H.L. Huang, S.Q. Zhou, J.Z. Liu, Carbohydr. Res. 346 (2011) 2445-2450.
DOI URL |
[37] |
X. Li, H.L. Zheng, Y.L. Wang, Y.J. Sun, B.C. Xu, C.L. Zhao, Chem. Eng. J. 319 (2017) 119-130.
DOI URL |
[38] |
F. Qian, F.Y. Cui, J.Y. Ding, C. Tang, C.H. Yin, Biomacromolecules 7 (2006) 2722-2727.
DOI URL |
[39] |
N.A. Ibrahim, B.M. Eid, M.A. Youssef, H.M. Ibrahim, H.A. Ameen, A.M. Salah, Carbohydr. Polym. 97 (2013) 783-793.
DOI URL |
[40] |
M.H. Abu Elella, E. Abd ElHafeez, E.S. Goda, S. Lee, K.R. Yoon, Cellulose 26 (2019) 9179-9206.
DOI URL |
[41] |
M.M. Thanou, A.F. Kotzé, T. Scharringhausen, H.L. Lueßen, A.G. de Boer, J. C.Verhoef H.E. Junginger, J. Control. Release 64 (2000) 15-25.
DOI URL |
[42] |
P. Sahariah, B.S. Snorradottir, M.A. Hjalmarsdottir, O.E. Sigurjonsson, M. Masson J. Mater. Chem. B 4 (2016) 4762-4770.
DOI URL |
[43] |
B. Wang, C. Qiao, X. Gao, X. Yang, Y. Li, T. Li, Carbohydr. Polym. 171 (2017) 50-58.
DOI URL |
[44] | E. Oyervides-Mu˜noz, L. Avérous, Gd.J. Sosa-Santillán, E.Pollet, N.V.Pérez-Aguilar, C.M. Rojas-Caldera, J.G. Fuentes-Avilés, C.García-Astrain,Macromol. Chem. Phys. 220 (2019), 1800530. |
[45] | W. Tan, Q. Li, L. Wei, P. Wang, Z. Gao, Y. Chen, F. Dong, Z. Guo, Mater. Sci.Eng. C 76 (2017) 1048-1056. |
[46] |
J. Sun, F. Zeng, H. Jian, S. Wu, Biomacromolecules 14 (2013) 728-736.
DOI URL |
[47] |
S.G. Chen, L.J. Yuan, Q.Q. Li, J.N. Li, X.L. Zhu, Y.G. Jiang, O. Sha, X.H. Yang, J. H.Xin J.X. Wang, F.J. Stadler, P. Huang, Small 12 (2016) 3516-3521.
DOI URL |
[48] |
H. Liu, Y. Du, J. Yang, H. Zhu, Carbohydr. Polym. 55 (2004) 291-297.
DOI URL |
[49] |
T. Xu, M. Xin, M. Li, H. Huang, S. Zhou, J. Liu, Carbohydr. Res. 346 (2011) 2445-2450.
DOI URL |
[50] |
S. Chen, S. Chen, S. Jiang, Y. Mo, J. Luo, J. Tang, Z. Ge, Colloids Surf. B 85 (2011) 323-329.
DOI URL |
[51] |
P.K. Dutta, S. Tripathi, G.K. Mehrotra, J. Dutta, Food Chem. 114 (2009) 1173-1182.
DOI URL |
[52] |
G.B. Qi, D. Zhang, F.H. Liu, Z.Y. Qiao, H. Wang, Adv. Mater. 29 (2017),1703461.
DOI URL |
[53] |
K. KovÁCs, A. KÓTai, I. SzabÓ, R. Mecseki, Nature 192 (1961) 190-191.
DOI URL |
[54] | H. Sang Duk, S. Hyun Jung, L. Ga Hyeon, J. Joon-Ho, S. Miwon, J. Microbiol.Biotechnol. 26 (2016) 953-958. |
[55] |
Y.R. Su, S.H. Yu, A.C. Chao, J.Y. Wu, Y.F. Lin, K.Y. Lu, F.L. Mi, Colloids Surf. A 494 (2016) 9-20.
DOI URL |
[56] |
R. Namivandi-Zangeneh, Z. Sadrearhami, A. Bagheri, M. Sauvage-Nguyen, K.K.K.Ho, N. Kumar, E.H.H. Wong, C. Boyer, ACS Macro Lett. 7 (2018) 592-597.
DOI URL |
[57] | K.P. Reighard, C. Ehre, Z.L. Rushton, M.J.R.Ahonen, D.B. Hill, M.H.Schoenfisch, ACS Biomater. Sci. Eng. 3 (2017) 1017-1026. |
[58] |
G. Li, S. Yu, W. Xue, D. Ma, W. Zhang, Chem. Eng. J. 347 (2018) 923-931.
DOI URL |
[59] |
J. Cao, J. Li, Y. Chen, L. Zhang, J. Zhou, Adv. Funct. Mater. 28 (2018), 1800739.
DOI URL |
[60] | J. Yang, Y. Chen, L. Zhao, Z. Feng, K. Peng, A. Wei, Y. Wang, Z. Tong, B. Cheng, Composites Part B 197 (2020), 108139. |
[61] |
L. Yan, Y. Xiang, J. Yu, Y. Wang, W. Cui, ACS Appl. Mater. Interfaces 9 (2017) 5023-5030.
DOI URL |
[62] | S. Chen, Y. Guo, S. Chen, H. Yu, Z. Ge, X. Zhang, P. Zhang, J. Tang, J. Mater.Chem. 22 (2012) 9092-9099. |
[63] | M. Potara, E. Jakab, A. Damert, O. Popescu, V. Canpean, S. Astilean, Nanotechnology 22 (2011), 135101. |
[64] |
W.X. Liu, Y.K. Qin, S. Liu, R.G. Xing, H.H. Yu, X.L. Chen, K.C. Li, P.C. Li, Carbohydr. Polym. 160 (2017) 97-105.
DOI URL |
[65] | C.H. Wang, W.S. Liu, J.F. Sun, G.G. Hou, Q. Chen, W. Cong, F. Zhao, Int. J. Biol.Macromol. 84 (2016) 418-427. |
[66] | N.A. Mohamed, , N.A. Abd El-Ghany, Cellulose 26 (2019) 1141-1156. |
[67] |
X. Hao, W. Wang, Z. Yang, L. Yue, H. Sun, H. Wang, Z. Guo, F. Cheng, S. Chen, Chem. Eng. J. 356 (2019) 130-141.
DOI URL |
[68] |
P.C. Nalam, H.S. Lee, N. Bhatt, R.W. Carpick, D.M. Eckmann, R.J. Composto, ACS Appl. Mater. Interfaces 9 (2017) 12936-12948.
DOI URL |
[69] |
P. Tyagi, R. Mathew, C. Opperman, H. Jameel, R. Gonzalez, L. Lucia, M. Hubbe, L. Pal, Langmuir 35 (2019) 104-112.
DOI URL |
[70] |
Q. Xin, H. Shah, A. Nawaz, W. Xie, M.Z. Akram, A. Batool, L. Tian, S.U. Jan, R. Boddula B. Guo, Q. Liu, J.R. Gong, Adv. Mater. 31 (2019), 1804838.
DOI URL |
[71] |
M. Rezazadeh Azari, Y. Mohammadian, Environ. Sci. Pollut. Res. 27 (2020) 15401-15406.
DOI URL |
[72] |
H. Joz Majidi, A. Babaei, Z. Arab Bafrani, D. Shahrampour, E. Zabihi, S. M.Jafari, Carbohydr. Polym. 225 (2019), 115220.
DOI URL |
[73] |
F. Qiao, J. Ke, Y. Liu, B. Pei, Q. Hu, B.Z. Tang, Z. Wang, Carbohydr. Polym. 230 (2020), 115614.
DOI URL |
[74] |
F. Tang, F. Gao, W. Xie, S. Li, B. Zheng, M. Ke, J. Huang, Carbohydr. Polym. 235 (2020), 115949.
DOI URL |
[75] |
J.H. Park, Y.W. Cho, H. Chung, I.C. Kwon, S.Y. Jeong, Biomacromolecules 4 (2003) 1087-1091.
DOI URL |
[76] |
M. Pei, J. Liang, C. Zhang, X. Wang, C. Zhang, G. Ma, H. Sun, Carbohydr. Polym. 224 (2019), 115172.
DOI URL |
[77] |
R. Tang, Y. Zhang, Y. Zhang, Z. Yu, Carbohydr. Polym. 139 (2016) 191-196.
DOI URL |
[78] | H.Q. Ren, S. Liu, J.X. Yang, X. Zhang, H. Zhou, J.T. Chen, T.Y. Guo, Carbohydr.Polym. 137 (2016) 222-230. |
[79] |
Y.I. Jeong, D.G. Kim, M.K. Jang, J.W. Nah, Carbohydr. Res. 343 (2008) 282-289.
DOI URL |
[80] |
S. Mao, X. Shuai, F. Unger, M. Wittmar, X. Xie, T. Kissel, Biomaterials 26 (2005) 6343-6356.
DOI URL |
[81] |
Z. Fan, Y. Qin, S. Liu, R. Xing, H. Yu, X. Chen, K. Li, P. Li, Carbohydr. Polym. 190 (2018) 1-11.
DOI URL |
[82] |
W. Xiong, G.D. Zhao, X. Yin, K.G. Linghu, J.M.T.Chu, G.T.C.Wong, H. Li, H. Yu,Y.T. Wang, Carbohydr. Polym. 204 (2019) 89-96.
DOI URL |
[83] |
H. Tang, P. Zhang, T.L. Kieft, S.J. Ryan, S.M. Baker, W.P. Wiesmann, S. Rogelj, Acta Biomater. 6 (2010) 2562-2571.
DOI URL |
[84] |
B.L. Farrugia, Y. Mi, H.N. Kim, J.M. Whitelock, S.M. Baker, W.P. Wiesmann, Z. Li P. Maitz, M.S. Lord, Adv. Funct. Mater. 28 (2018), 1802818.
DOI URL |
[85] |
H.C. Kim, W.H. Park, Int. J. Biol. Macromol. 135 (2019) 1217-1221.
DOI URL |
[86] |
R.L. Tang, Z.M. Yu, Y. Zhang, C.S. Qi, Cellulose 23 (2016) 1741-1749.
DOI URL |
[87] |
Y. Wang, H. Cao, X. Wang, Mater. Chem. Phys. 248 (2020), 122902.
DOI URL |
[88] |
V.A. Petrova, D.D. Chernyakov, Y.E. Moskalenko, E.R. Gasilova, I.A. Strelina, O.V. Okatova, Y.G. Baklagina, E.N. Vlasova, Y.A. Skorik, Carbohydr. Polym. 157 (2017) 866-874.
DOI URL |
[89] |
J.A. Edson, D. Ingato, S. Wu, B. Lee, Y.J. Kwon, Biomacromolecules 19 (2018) 1508-1516.
DOI URL |
[90] |
J. Liang, H. Wang, M. Libera, Biomaterials 204 (2019) 25-35.
DOI PMID |
[91] |
G. Sandri, C. Aguzzi, S. Rossi, M.C. Bonferoni, G. Bruni, C. Boselli, A. I.Cornaglia F. Riva, C. Viseras, C. Caramella, F. Ferrari, Acta Biomater. 57 (2017) 216-224.
DOI URL |
[92] | F. Barrère, T.A. Mahmood, K. de Groot, , C.A. van Blitterswijk, Mater. Sci. Eng.R 59 (2008) 38-71. |
[93] |
P. Kerativitayanan, J.K. Carrow, A.K. Gaharwar, Adv. Healthcare Mater. 4 (2015) 1600-1627.
DOI URL |
[94] | Z.W. Jiang, Y.A. Song, J. Qiao, Y. Yang, W. Zhang, W.S. Liu, B.Q. Han, Int. J. Biol.Macromol. 129 (2019) 997-1005. |
[95] |
T. Xu, M. Xin, M. Li, H. Huang, S. Zhou, Carbohydr. Polym. 81 (2010) 931-936.
DOI URL |
[96] |
R. Dong, X. Zhao, B. Guo, P.X. Ma, ACS Appl. Mater. Interfaces 8 (2016) 17138-17150.
DOI URL |
[97] |
S.B. Zhang, X.H. Yang, B. Tang, L.J. Yuan, K. Wang, X.Y. Liu, X.L. Zhu, J.N. Li, Z.C. Ge, S.G. Chen, Chem. Eng. J. 336 (2018) 123-132.
DOI URL |
[98] |
J.Y. Wen, M. Weinhart, B. Lai, J. Kizhakkedathu, D.E. Brooks, Biomaterials 86 (2016) 42-55.
DOI URL |
[99] | A.J. Keefe, S. Jiang, Nat. Chem. 4 (2012) 60-64. |
[100] | L. Zhang, Z. Cao, T. Bai, L. Carr, J.R.Ella-Menye, C.Irvin, B.D. Ratner, S. Jiang,Nat. Biotechnol. 31 (2013) 553-556. |
[101] | H. Zhang, H. Wang, C.G. Lin, L. Wang, S.L. Yuan, Acta Chim. Sin. 71 (2013) 649-656. |
[102] |
J. Wang, H. Sun, J. Li, D. Dong, Y. Zhang, F. Yao, Carbohydr. Polym. 117 (2015) 384-391.
DOI URL |
[103] |
P.J. Molino, D. Yang, M. Penna, K. Miyazawa, B.R. Knowles, S. MacLaughlin, T. Fukuma I. Yarovsky, M.J. Higgins, ACS Nano 12 (2018) 11610-11624.
DOI PMID |
[104] |
J. Yuan, J. Zhu, C.H. Zhu, J. Shen, S.C. Lin, Polym. Int. 53 (2004) 1722-1728.
DOI URL |
[105] |
A.S. Kritchenkov, A.R. Egorov, A.A. Artemjev, I.S. Kritchenkov, O.V. Volkova, A.V. Kurliuk, T.V. Shakola, V.V. Rubanik, V.V. Rubanik, A.G. Tskhovrebov, N. Z.Yagafarov V.N. Khrustalev, Int. J. Biol. Macromol. 143 (2020) 143-152.
DOI PMID |
[106] |
B. Layek, M.K. Haldar, G. Sharma, L. Lipp, S. Mallik, J. Singh, Mol. Pharm. 11 (2014) 982-994.
DOI URL |
[107] | T. Satomi, Y. Nagasaki, H. Kobayashi, T. Tateishi, K. Kataoka, H. Otsuka, J.Nanosci. Nanotechnol. 7 (2007) 2394-2399. |
[108] |
Y. Li, X. Wang, Y. Wei, L. Tao, Chin. Chem. Lett. 28 (2017) 2053-2057.
DOI URL |
[109] |
Y. Zhu, J. Shen, L. Yin, X. Wei, F. Chen, M. Zhong, Z. Gu, Y. Xie, W. Jin, Z. Liu, C. Chitrakar L. Chang, Chem. Eng. J. 366 (2019) 112-122.
DOI URL |
[110] |
S.H. Ajili, N.G. Ebrahimi, M. Soleimani, Acta Biomater. 5 (2009) 1519-1530.
DOI URL |
[111] |
R. Augustine, P. Dan, I. Schlachet, D. Rouxel, P. Menu, A. Sosnik, Int. J. Pharm. 559 (2019) 420-426.
DOI URL |
[112] | M. Mochizuki, Y. Kadoya, Y. Wakabayashi, K. Kato, I. Okazaki, M. Yamada, T. Sato N. Sakairi, N. Nishi, M. Nomizu, FASEB J. 17 (2003) 1-20. |
[113] | A. Aljawish, L. Muniglia, J. Jasniewski, A. Klouj, J. Scher, I. Chevalot, ProcessBiochem. 49 (2014) 863-871. |
[114] | A.R. Boccaccini, S. Keim, R. Ma, Y. Li, I. Zhitomirsky, J. R. Soc. Interface 7 (2010) S581-S613. |
[115] |
J. Song, Q. Chen, Y. Zhang, M. Diba, E. Kolwijck, J. Shao, J.A. Jansen, F. Yang, A.R. Boccaccini, S.C.G. Leeuwenburgh, ACS Appl. Mater. Interfaces 8 (2016) 13785-13792.
DOI URL |
[116] |
B. Noorani, F. Tabandeh, F. Yazdian, Z.S. Soheili, M. Shakibaie, S. Rahmani, Int. J. Polym. Mater. Polym. Biomater. 67 (2018) 754-763.
DOI URL |
[117] | H. Zhang, B. Yang, Z.M. Wang, C. Xie, P. Tang, L. Bian, F. Dong, Y. Tang, Eur.Polym. J. 119 (2019) 114-119. |
[118] |
S. Das, S. Singh, V. Singh, D. Joung, J.M. Dowding, D. Reid, J. Anderson, L. Zhai, S.I. Khondaker, W.T. Self, S. Seal, Part. Part. Syst. Charact. 30 (2013) 148-157.
DOI URL |
[119] |
T.D. Andreeva, S. Stoichev, S.G. Taneva, R. Krastev, Carbohydr. Polym. 181 (2018) 78-85.
DOI URL |
[120] |
R. Khalili, P. Zarrintaj, S.H. Jafari, H. Vahabi, M.R. Saeb, Int. J. Biol. Macromol. 154 (2020) 18-24.
DOI PMID |
[121] |
M. Emanet, E. Kazanç, Z. Çobandede, M. Çulha, Carbohydr. Polym. 151 (2016) 313-320.
DOI URL |
[122] |
M. Pan, Z. Tang, J. Tu, Z. Wang, Q. Chen, R. Xiao, H. Liu, Mater. Sci. Eng. C 85 (2018) 27-36.
DOI URL |
[123] |
Y. Chen, C. Ni, F. Teng, Y. Ding, T. Lee, J. Ho, Tetrahedron 70 (2014) 1748-1762.
DOI URL |
[124] |
S. Pourshahrestani, E. Zeimaran, N.A. Kadri, N. Gargiulo, H.M. Jindal, S. V.Naveen S.D. Sekaran, T. Kamarul, M.R. Towler, ACS Appl. Mater. Interfaces 9 (2017) 31381-31392.
DOI URL |
[125] | F. Guilak, D.M. Cohen, B.T. Estes, J.M. Gimble, W. Liedtke, C.S. Chen, Cell StemCell 5 (2009) 17-26. |
[126] |
J. Zhang, B. Shen, L. Chen, L. Chen, J. Mo, J. Feng, ACS Appl. Mater. Interfaces 11 (2019) 31594-31604.
DOI URL |
[127] |
A.J. Engler, S. Sen, H.L. Sweeney, D.E. Discher, Cell 126 (2006) 677-689.
PMID |
[128] |
L. Zhong, Y. Qu, K. Shi, B. Chu, M. Lei, K. Huang, Y. Gu, Z. Qian, Sci. China Chem. 61 (2018) 1553-1567.
DOI URL |
[129] |
Z.Y. Yu, Y. Li, Z.P. Feng, Z.H. Zhang, P. Li, Y. Chen, S.S. Chen, P.W. Li, Z.M. Yang, Express Polym. Lett. 13 (2019) 785-793.
DOI |
[130] |
S. Tang, J. Yang, L. Lin, K. Peng, Y. Chen, S. Jin, W. Yao, Chem. Eng. J. 393 (2020), 124728.
DOI URL |
[131] |
J. Zhao, Y. Chen, Y. Yao, Z.R. Tong, P.W. Li, Z.M. Yang, S.H. Jin, J. Power Sources 378 (2018) 603-609.
DOI URL |
[132] |
S. Murali, S. Kumar, J. Koh, S. Seena, P. Singh, A. Ramalho, A. Sobral, Cellulose 26 (2019) 5347-5361.
DOI URL |
[133] |
S. Bi, P. Wang, S. Hu, S. Li, J. Pang, Z. Zhou, G. Sun, L. Huang, X. Cheng, S. Xing, X. Chen, Carbohydr. Polym. 224 (2019), 115176.
DOI URL |
[134] |
S.W. Li, S.S. Cui, D.Y. Yin, Q.Y. Zhu, Y.X. Ma, Z.Y. Qian, Y.Q. Gu, Nanoscale 9 (2017) 3912-3924.
DOI URL |
[135] |
G.W. Li, S.M. Yu, W. Xue, D. Ma, W. Zhang, Chem. Eng. J. 347 (2018) 923-931.
DOI URL |
[136] |
D. Stular, I. Jerman, B. Simoncic, K. Grgic, B. Tomsic, Cellulose 25 (2018) 6231-6245.
DOI URL |
[137] |
G. Gao, Y.W. Jiang, H.R. Jia, F.G. Wu, Biomaterials 188 (2019) 83-95.
DOI PMID |
[138] |
J.F. Cao, J.H. Li, Y.M. Chen, L.N. Zhang, J.P. Zhou, Adv. Funct. Mater. 28 (2018),1800739.
DOI URL |
[139] |
A. Rogina, A. Lončarević, M. Antunović, I. Marijanović, M. Ivanković, H. Ivanković, Int. J. Biol. Macromol. 129 (2019) 645-652.
DOI URL |
[140] |
Z.A. Raza, S. Abid, A. Azam, A. Rehman, Cellulose 27 (2020) 1717-1731.
DOI URL |
[141] |
S. Benltoufa, W. Miled, M. Trad, R.B. Slama, F. Fayala, Carbohydr. Polym. 227 (2020), 115352.
DOI URL |
[142] |
J. Zhou, X.Y. Hu, Y.Y. Zhu, H.F. Lyu, L. Zhang, F.Y. Fu, X.D. Liu, Cellulose 26 (2019) 9323-9333.
DOI URL |
[143] |
J. Sheikh, I. Bramhecha, Cellulose 26 (2019) 8895-8905.
DOI |
[144] |
H. Zhang, D. Wang, X. Zuo, C. Gao, ACS Appl. Mater. Interfaces 11 (2019) 17283-17293.
DOI URL |
[145] |
M. Szymanska Chargot, M. Chylinska, G. Pertile, P.M. Pieczywek, K.J. Cieslak, A. Zdunek, M. Frac, Cellulose 26 (2019) 9613-9629.
DOI |
[146] | S. Park, H.H. Kim, S.B. Yang, J.H. Moon, H.W. Ahn, J. Hong, ACS Appl. Mater.Interfaces 10 (2018) 17714-17721. |
[147] | W. Ma, L. Li, X.T. Xiao, H.S. Du, X.H. Ren, X.Y. Zhang, T.S. Huang, Macromol.Mater. Eng. (2020), 2000228. |
[148] | R. Zhang, Y. Li, M. Zhou, C. Wang, P. Feng, W. Miao, H. Huang, ACS Appl.Mater. Interfaces 11 (2019) 26711-26721. |
[149] |
C.S. Wu, S.S. Wang, ACS Appl. Mater. Interfaces 10 (2018) 42127-42135.
DOI URL |
[150] |
L.X. Yan, L.J. Chen, X. Zhao, X.P. Yan, Adv. Funct. Mater. 30 (2020), 1909042.
DOI URL |
[151] |
Q.Q. Gao, J. Zhang, C. Chen, M.L. Chen, P. Sun, W. Du, S.C. Zhang, Y. Liu, R. Zhang M. Bai, C.C. Fan, J.B. Wu, T.Y. Men, X.Y. Jiang, ACS Nano 14 (2020) 3980-3990.
DOI URL |
[152] |
A. Ottenhall, T. Seppanen, M. Ek, Cellulose 25 (2018) 2599-2613.
DOI URL |
[153] |
D. Mitra, M. Li, E.T. Kang, K.G. Neoh, ACS Appl. Mater. Interfaces 11 (2019)73-83.
DOI URL |
[154] | M. Li, D. Mitra, E.T. Kang, T. Lau, E. Chiong, K.G. Neoh, ACS Appl. Mater.Interfaces 9 (2017) 1847-1857. |
[155] |
H. Liu, X. Sui, H. Xu, L. Zhang, Y. Zhong, Z. Mao, Macromol. Mater. Eng. 301 (2016) 725-732.
DOI URL |
[156] |
O. Guaresti, C. Garcia-Astrain, R.H. Aguirresarobe, A. Eceiza, N. Gabilondo, Carbohydr. Polym. 183 (2018) 278-286.
DOI URL |
[157] |
X. Zhang, L.Y. Xia, X. Chen, Z. Chen, F.G. Wu, Sci. China Mater. 60 (2017) 487-503.
DOI URL |
[158] | H. Xue, L. Hu, Y. Xiong, X. Zhu, C. Wei, F. Cao, W. Zhou, Y. Sun, Y. Endo, M. Liu, Y. Liu, J. Liu, A. Abududilibaier, L. Chen, C. Yan, B. Mi, G. Liu, Carbohydr.Polym. 226 (2019), 115302. |
[159] |
A. Konwar, S. Kalita, J. Kotoky, D. Chowdhury, ACS Appl. Mater. Interfaces 8 (2016) 20625-20634.
DOI URL |
[160] |
C. Cui, C. Shao, L. Meng, J. Yang, ACS Appl. Mater. Interfaces 11 (2019) 39228-39237.
DOI URL |
[161] |
R.H. Fang, A.V. Kroll, W. Gao, L. Zhang, Adv. Mater. 30 (2018), 1706759.
DOI URL |
[162] | A. Keirouz, N. Radacsi, Q. Ren, A. Dommann, G. Beldi, K. Maniura-Weber, R.M. Rossi, G. Fortunato, J. Nanobiotechnol. 18 (2020) 51. |
[163] | Y.T. Yu, S.W. Shi, Y. Wang, Q.L. Zhang, S.H. Gao, S.P. Yang, J.G. Liu, ACS Appl.Mater. Interfaces 12 (2020) 312-321. |
[164] |
G.Q. Lan, Q. Li, F. Lu, K. Yu, B.T. Lu, R. Bao, F.Y. Dai, Cellulose 27 (2020) 385-400.
DOI URL |
[165] |
M.L. Xu, L.Y. Guan, S.K. Li, L. Chen, Z. Chen, Chem. Commun. 55 (2019) 5359-5362.
DOI URL |
[166] |
S. Hou, Y.Y. Liu, F. Feng, J. Zhou, X.X. Feng, Y.B. Fan, Adv. Healthcare Mater. 9 (2020), 1901041.
DOI URL |
[167] | Y. Liu, Y. Xiao, Y. Cao, Z. Guo, F. Li, L. Wang, Adv. Funct. Mater. (2020),2003196. |
[168] | L. Wang, X. Zhang, K. Yang, Y.V. Fu, T. Xu, S. Li, D. Zhang, L. Wang, C. Lee, Adv.Funct. Mater. 30 (2020), 1904156. |
[169] | Y. Ma, J. Yao, Q. Liu, T. Han, J. Zhao, X. Ma, Y. Tong, G. Jin, K. Qu, B. Li, F. Xu, Adv. Funct. Mater. (2020), 2001820. |
[170] |
X.Y. Ren, C.Y. Yang, L. Zhang, S.H. Li, S. Shi, R. Wang, X. Zhang, T.L. Yue, J. Sun, J.L. Wang, Nanoscale 11 (2019) 11830-11838.
DOI URL |
[171] | B.H. Neufeld, M.J. Neufeld, A. Lutzke, S.M. Schweickart, M.M. Reynolds, Adv.Funct. Mater 27 (2017), 1702255. |
[172] |
J.H. He, Y.P. Liang, M.T. Shi, B.L. Guo, Chem. Eng. J. 385 (2020), 123464.
DOI URL |
[173] |
C.D. Tran, J. Makuvaza, E. Munson, B. Bennett, ACS Appl. Mater. Interfaces 9 (2017) 42503-42515.
DOI URL |
[174] |
C.W. Chen, Y.X. Liu, H. Wang, G.P. Chen, X.W. Wu, J.A. Ren, H.D. Zhang, Y. J.Zhao ACS Nano 12 (2018) 10493-10500.
DOI URL |
[175] | Z. Hou, Y.V. Shankar, Y. Liu, F. Ding, J.L. Subramanion, V. Ravikumar, R.Zamudio Vázquez, D. Keogh, H. Lim, M.Y.F. Tay, S. Bhattacharjya, S.A. Rice, J. Shi H. Duan, X. Liu, Y. Mu, N.S. Tan, K.C. Tam, K. Pethe, , M.B. Chan Park, ACSAppl. Mater. Interfaces 9 (2017) 38288-38303. |
[176] |
H. Yuan, L. Chen, F.F. Hong, ACS Appl. Mater. Interfaces 12 (2020) 3382-3392.
DOI URL |
[177] |
M.T. Khorasani, A. Joorabloo, H. Adeli, Z. Mansoori-Moghadam, A. Moghaddam , Carbohydr. Polym. 207 (2019) 542-554.
DOI URL |
[178] |
B. Singh, S. Sharma, A. Dhiman, Carbohydr. Polym. 165 (2017) 294-303.
DOI URL |
[179] |
Z. Liu, K. Guo, N. Zhao, F.J. Xu, Sci. China Mater. 62 (2019) 1831-1836.
DOI URL |
[180] | S.Y. Kwak, T.T.S.Lew, C.J. Sweeney, V.B. Koman, M.H. Wong, K.Bohmert-Tatarev, K.D. Snell, J.S. Seo, N.H. Chua, M.S. Strano, Nat.Nanotechnol. 14 (2019) 447-455. |
[181] |
B. Shi, H. Zhang, Z. Shen, J. Bi, S. Dai, Polym. Chem. 4 (2013) 840-850.
DOI URL |
[182] |
X. Liang, X. Li, J. Chang, Y. Duan, Z. Li, Langmuir 29 (2013) 8683-8693.
DOI URL |
[183] | L. Luo, D.D. Nguyen, J. Lai, Biomaterials 243 (2020), 119961. |
[184] |
X. Zhang, C. He, R. Yan, Y. Chen, P. Zhao, M. Li, T. Fan, T. Yang, Y. Lu, J. Luo, X. Ma G. Xiang, Chem. Eng. J. 380 (2020), 122540.
DOI URL |
[185] | M. Lu, X. Zhao, H. Xing, H. Liu, L. Lang, T. Yang, Z. Xun, D. Wang, P. Ding, ActaBiomater. 96 (2019) 517-536. |
[186] |
Y.Z.P.Chen, Y.L. Zhao, T.X. Chen, T.T. Zhang, S.X. Song, J. Mater. Sci. Technol. 35 (2019) 2325-2330.
DOI |
[187] |
J. Poostforooshan, S. Belbekhouche, M. Shaban, V. Alphonse, D. Habert, N. Bousserrhine J. Courty, A.P. Weber, ACS Appl. Mater. Interfaces 12 (2020) 6885-6898.
DOI URL |
[188] |
S.K. Mishra, S. Raveendran, J.M.F. Ferreira, S. Kannan, Langmuir 32 (2016) 10305-10316.
DOI URL |
[189] | H. Ding, B. Li, Z. Liu, G. Liu, S. Pu, Y. Feng, D. Jia, Y. Zhou, Adv. HealthcareMater. 9 (2020), 2000454. |
[190] |
S. Sant, D.F. Coutinho, A.K. Gaharwar, N.M. Neves, R.L. Reis, M.E. Gomes, A. Khademhosseini, Adv. Funct. Mater. 27 (2017), 1606273.
DOI URL |
[191] | J. Chen, S. Li, Y. Zhang, W. Wang, X. Zhang, Y. Zhao, Y. Wang, H. Bi, Adv.Healthcare Mater. 6 (2017), 1700746. |
[192] |
J.F. Huang, J. Zhong, G.P. Chen, Z.T. Lin, Y.Q. Deng, Y.L. Liu, P.Y. Cao, B. W.Wang Y.T. Wei, T.F. Wu, J. Yuan, G.B. Jiang, ACS Nano 10 (2016) 6464-6473.
DOI PMID |
[193] |
T. Georgelin, S. Bombard, J.M. Siaugue, V. Cabuil, Angew. Chem. Int. Ed. 49 (2010) 8897-8901.
DOI URL |
[194] |
A.J. Shen, X.F. Meng, X.L. Gao, X.W. Xu, C.L. Shoo, Z.M. Tang, Y.Y. Liu, W.B. Bu, P.J. Wang, Adv. Funct. Mater. 29 (2019), 1803832.
DOI URL |
[195] |
X. Cui, L. Dong, S. Zhong, C. Shi, Y. Sun, P. Chen, Chem. Eng. J. 326 (2017) 839-848.
DOI URL |
[196] |
G.B. Lan, M. Li, Y. Tan, L.H. Li, X.M. Yang, L.M. Ma, Q.S. Yin, H. Xia, Y. Zhang, G.X. Tan, C.Y. Ning, , J. Mater. Sci. Technol. 31 (2015) 182-190.
DOI URL |
[197] |
S. Sapru, S. Das, M. Mandal, A.K. Ghosh, S.C. Kundu, Acta Biomater. 78 (2018) 137-150.
DOI URL |
[198] | A. Buslovich, B. Horev, V. Rodov, A. Gedanken, E. Poverenov, J. Mater. Chem.B 5 (2017) 2655-2661. |
[199] |
J. Wongpreecha, D. Polpanich, T. Suteewong, C. Kaewsaneha, P. Tangboriboonrat , Carbohydr. Polym. 199 (2018) 641-648.
DOI URL |
[200] |
K. Xie, Z.A. Zhou, Y. Guo, L. Wang, G.Y. Li, S. Zhao, X.M. Liu, J. Li, W.B. Jiang, S.L. Wu, Y.Q. Hao, Adv. Healthcare Mater. 8 (2019), 1801465.
DOI URL |
[201] |
S. Karimi, E. Salahinejad, E. Sharifi, A. Nourian, L. Tayebi, Carbohydr. Polym. 202 (2018) 600-610.
DOI URL |
[202] |
C. Nie, Y. Yang, C. Cheng, L. Ma, J. Deng, L. Wang, C. Zhao, Acta Biomater. 51 (2017) 479-494.
DOI URL |
[203] |
A.D.L.Rodríguez López, M.R. Lee, B.J. Ortiz, B.D. Gastfriend, R. Whitehead,D.M. Lynn, S.P. Palecek, Acta Biomater. 93 (2019) 50-62.
DOI PMID |
[204] |
A. Valverde, L. Pérez-Álvarez, L.Ruiz-Rubio, M.A. Pacha Olivenza, M.B. GarcíaBlanco, M. Díaz-Fuentes, J.L. Vilas-Vilela, Carbohydr. Polym. 207 (2019) 824-833.
DOI URL |
[205] |
B.L. Tao, W.K. Zhao, C.C. Lin, Z. Yuan, Y. He, L. Lu, M.W. Chen, Y. Ding, Y. L.Yang, Z.Z.L. Xia, K.Y. Cai , Chem. Eng. J. 390 (2020), 124621.
DOI URL |
[206] |
J. Shao, B. Wang, C.J.M.Bartels, E.M. Bronkhorst, J.A. Jansen, X.F.Walboomers, F. Yang, Acta Biomater. 82 (2018) 102-110.
DOI URL |
[207] |
R.M. Raftery, B. Woods, A.L.P.Marques, J. Moreira-Silva, T.H. Silva, S.A. Cryan,R.L. Reis, F.J. O’Brien, Acta Biomater. 43 (2016) 160-169.
DOI URL |
[208] |
L. Grant, R. Raman, C. Cvetkovic, M.C. Ferrall-Fairbanks, J.G. Pagan-Diaz, P. Hadley E. Ko, M.O. Platt, R. Bashir, Tissue Eng. A 25 (2019) 1023-1036.
DOI URL |
[209] | M. Laranjeira, R.M.A.Domingues, R. Costa Almeida, R.L. Reis, M.E.Gomes,Small 13 (2017), 1700689. |
[210] | N. Li, L. Zhou, W. Xie, D. Zeng, D. Cai, H. Wang, C. Zhou, J. Wang, L. Li, Chem.Eng. J. 371 (2019) 618-630. |
[211] | P. Kazimierczak, A. Benko, K. Palka, C. Canal, D. Kolodynska, A. Przekora, J.Mater. Sci. Technol. 43 (2020) 52-63. |
[212] |
B.H. You, Q.T. Li, H. Dong, T. Huang, X.D. Cao, H. Liao, , J. Mater. Sci. Technol. 34 (2018) 1016-1025.
DOI URL |
[213] |
Y. Yao, J. Wang, Y. Cui, R. Xu, Z. Wang, J. Zhang, K. Wang, Y. Li, Q. Zhao, D. Kong , Acta Biomater. 10 (2014) 2739-2749.
DOI PMID |
[214] |
Y.B. Shen, T. Tu, B.C. Yi, X.L. Wang, H. Tang, W. Liu, Y.Z. Zhang, Acta Biomater. 97 (2019) 200-215.
DOI URL |
[215] |
D.Y. Kim, H. Park, S.W. Kim, J.W. Lee, K.Y. Lee, Carbohydr. Polym. 157 (2017) 1281-1287.
DOI URL |
[216] |
K.M. Rao, A. Kumar, S.S. Han, , J. Mater. Sci. Technol. 34 (2018) 1371-1377.
DOI URL |
[1] | Xiaoxue Yuan, Ran Liu, Wenchang Zhang, Xiaoqiang Song, Lei Xu, Yan Zhao, Lei Shang, Jingsong Zhang. Preparation of carboxylmethylchitosan and alginate blend membrane for diffusion-controlled release of diclofenac diethylamine [J]. J. Mater. Sci. Technol., 2021, 63(0): 210-215. |
[2] | Kai Chen, Changci Tong, Jinge Yang, Peifang Cong, Ying Liu, Xiuyun Shi, Xu Liu, Jun Zhang, Rufei Zou, Keshen Xiao, Yuyang Ni, Lei Xu, Mingxiao Hou, Hongxu Jin, Yunen Liu. Injectable melatonin-loaded carboxymethyl chitosan (CMCS)-based hydrogel accelerates wound healing by reducing inflammation and promoting angiogenesis and collagen deposition [J]. J. Mater. Sci. Technol., 2021, 63(0): 236-245. |
[3] | Gopinathan Janarthanan, Insup Noh. Recent trends in metal ion based hydrogel biomaterials for tissue engineering and other biomedical applications [J]. J. Mater. Sci. Technol., 2021, 63(0): 35-53. |
[4] | Mengmeng Zhang, Jiajun Wang, Yang Wang, Jinfeng Zhang, Xiaopeng Han, Yanan Chen, Yuesheng Wang, Zaghib Karim, Wenbin Hu, Yida Deng. Promoting the charge separation and photoelectrocatalytic water reduction kinetics of Cu2O nanowires via decorating dual-cocatalysts [J]. J. Mater. Sci. Technol., 2021, 62(0): 119-127. |
[5] | Kecheng Quan, Zexin Zhang, Yijin Ren, Henk J. Busscher, Henny C. van der Mei, Brandon W. Peterson. Possibilities and impossibilities of magnetic nanoparticle use in the control of infectious biofilms [J]. J. Mater. Sci. Technol., 2021, 69(0): 69-78. |
[6] | Jiangqi Xu, Zixu Xie, Fanglin Du, Xing Wang. One-step anti-superbug finishing of cotton textiles with dopamine-menthol [J]. J. Mater. Sci. Technol., 2021, 69(0): 79-88. |
[7] | Dan Liu, Hongying Yang, Jianhui Li, Jiaqi Li, Yizhe Dong, Chuntian Yang, Yuting Jin, Lekbach Yassir, Zhong Li, David Hernandez, Dake Xu, Fuhui Wang, Jessica A. Smith. Electron transfer mediator PCN secreted by aerobic marine Pseudomonas aeruginosa accelerates microbiologically influenced corrosion of TC4 titanium alloy [J]. J. Mater. Sci. Technol., 2021, 79(0): 101-108. |
[8] | Xiaofang Ye, Hongkun Cai, Jian Su, Jingtao Yang, Jian Ni, Juan Li, Jianjun Zhang. Preparation of hysteresis-free flexible perovskite solar cells via interfacial modification [J]. J. Mater. Sci. Technol., 2021, 61(0): 213-220. |
[9] | Kunming Pan, Yanping Yang, Shizhong Wei, Honghui Wu, Zhili Dong, Yuan Wu, Shuize Wang, Laiqi Zhang, Junping Lin, Xinping Mao. Oxidation behavior of Mo-Si-B alloys at medium-to-high temperatures [J]. J. Mater. Sci. Technol., 2021, 60(0): 113-127. |
[10] | Muhammad Akmal, Ahtesham Hussain, Muhammad Afzal, Young Ik Lee, Ho Jin Ryu. Systematic study of (MoTa)xNbTiZr medium- and high-entropy alloys for biomedical implants- In vivo biocompatibility examination [J]. J. Mater. Sci. Technol., 2021, 78(0): 183-191. |
[11] | Zhang Yuan, Ye He, Chuanchuan Lin, Peng Liu, Kaiyong Cai. Antibacterial surface design of biomedical titanium materials for orthopedic applications [J]. J. Mater. Sci. Technol., 2021, 78(0): 51-67. |
[12] | Wei Feng, Nian Liu, Lingling Gao, Qian Zhou, Luofeng Yu, Xiaoting Ye, Jingjing Huo, Xiao Huang, Peng Li, Wei Huang. Rapid inactivation of multidrug-resistant bacteria and enhancement of osteoinduction via titania nanotubes grafted with polyguanidines [J]. J. Mater. Sci. Technol., 2021, 69(0): 188-199. |
[13] | Mengyang Wang, Shichao Bi, Jianhui Pang, Zhongzheng Zhou, Di Qin, Honglei Wang, Xiaojie Cheng, Xiguang Chen. Precise quantification of the antibacterial activity of chitosan by NB medium neutralizer [J]. J. Mater. Sci. Technol., 2021, 70(0): 224-232. |
[14] | Suyun Liu, Li Liu, Ying Li, Fuhui Wang. Effects of N-alkylation on anticorrosion performance of doped polyaniline/epoxy coating [J]. J. Mater. Sci. Technol., 2020, 39(0): 48-55. |
[15] | Chengzhi Dai, Min Zhou, Weinan Jiang, Ximian Xiao, Jingcheng Zou, Yuxin Qian, Zihao Cong, Zhemin Ji, Longqiang Liu, Jiayang Xie, Zhongqian Qiao, Runhui Liu. Breaking or following the membrane-targeting mechanism: Exploring the antibacterial mechanism of host defense peptide mimicking poly(2-oxazoline)s [J]. J. Mater. Sci. Technol., 2020, 59(0): 220-226. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||