J. Mater. Sci. Technol. ›› 2021, Vol. 63: 236-245.DOI: 10.1016/j.jmst.2020.06.001
• Research Article • Previous Articles
Kai Chena, Changci Tongb, Jinge Yangc, Peifang Congb, Ying Liub, Xiuyun Shib, Xu Liub, Jun Zhangd, Rufei Zoue, Keshen Xiaoe, Yuyang Nia, Lei Xue, Mingxiao Houb,*(), Hongxu Jinb,*(
), Yunen Liub,*(
)
Received:
2019-12-25
Revised:
2020-04-09
Accepted:
2020-04-12
Published:
2021-02-10
Online:
2021-02-15
Contact:
Mingxiao Hou,Hongxu Jin,Yunen Liu
About author:
lye9901@163.com (Y. Liu).1The authors contributed equally to this work.
Kai Chen, Changci Tong, Jinge Yang, Peifang Cong, Ying Liu, Xiuyun Shi, Xu Liu, Jun Zhang, Rufei Zou, Keshen Xiao, Yuyang Ni, Lei Xu, Mingxiao Hou, Hongxu Jin, Yunen Liu. Injectable melatonin-loaded carboxymethyl chitosan (CMCS)-based hydrogel accelerates wound healing by reducing inflammation and promoting angiogenesis and collagen deposition[J]. J. Mater. Sci. Technol., 2021, 63: 236-245.
Fig. 2. SEM images of hydrogels without (A) and with (B) melatonin. The morphology of CMCS/alginate hydrogels with and without melatonin was observed by scanning electron microscopy (SEM, inspect F50, FEI).
Fig. 3. Injectable melatonin-loaded hydrogel significantly increased the wound healing rate. (A) Body weight change during the treatment period. (B) Healing rate of full-thickness wounds in each treatment group. *p < 0.05, vs. control and hydrogel groups. (C) Photographs of wound closure in the control, hydrogel, and melatonin-loaded hydrogel groups from 0 to 12 days after surgery.
Fig. 4. Injectable melatonin-loaded hydrogel accelerated wound healing in rats. (A) Representative histopathological images in each group (HE staining). Scale bar =50 μm. (B) ImageJ software was used to measure the levels of re-epithelialization of full-thickness wounds in each group. *p < 0.05, vs. control and hydrogel groups.
Fig. 5. Injectable melatonin-loaded hydrogel accelerated collagen deposition during wound healing in rats. (A) Representative histopathological images in each group (modified Masson staining). Scale bar =50 μm. (B) ImageJ software was used to measure collagen deposition in full-thickness wounds in each group. *p < 0.05, vs. control and hydrogel groups.
Fig. 6. Injectable melatonin-loaded hydrogel reduced inflammation and accelerated angiogenesis and collagen deposition. (A) Representative Western blot images of VEGFR, COX-2, iNOS, α-SMA, collagen III, collagen I, TGF-β1, and GAPDH. (B-H) Quantitative analysis of VEGFR, COX-2, iNOS, α-SMA, collagen III, collagen I, and TGF-β1 expression relative to GAPDH. All of the experiments were repeated at least three times. The results are expressed as mean ± SEM. *p < 0.05, vs. control and hydrogel groups.
Fig. 7. Effects of injectable melatonin-loaded hydrogel on VEGFR, collagen III, and α-SMA expression. (A, C, E) Representative immunofluorescent staining images of VEGFR, collagen III, and α-SMA. (B, D, F) Semi-quantitative analysis of VEGFR, collagen III, and α-SMA. All of the experiments were repeated at least three times. The results are expressed as mean ± SEM. *p < 0.05, vs. control and hydrogel groups.
[1] |
J. Skiveren, S. Bermark, K. LeBlanc, S. Baranoski, J. Wound Care 24 (2015) 388-392.
DOI URL PMID |
[2] |
R. Jayakumar, M. Prabaharan, S.V. Nair, S. Tokura, H. Tamura, N. Selvamurugan, Prog. Mater. Sci. 55 (2010) 675-709.
DOI URL |
[3] |
L. Upadhyaya, J. Singh, V. Agarwal, R.P. Tewari, Carbohydr. Polym. 91 (2013) 452-466.
DOI URL PMID |
[4] | X. Li, X. Kong, Z. Zhang, Int. J. Mol. Sci. 50 (2012) 1299-1305. |
[5] |
N. Joondan, S. Jhaumeer-Laulloo, P. Caumul, Microbiol. Res. 169 (2014) 675-685.
DOI URL |
[6] |
T. Minagawa, Y. Okamura, Y. Shigemasa, S. Minami, Y. Okamoto, Carbohydr. Polym. 67 (2007) 640-644.
DOI URL |
[7] |
X. Huang, Y. Zhang, X. Zhang, L. Xu, X. Chen, S. Wei, Mater. Sci. Eng. C 33 (2013) 4816-4824.
DOI URL |
[8] |
X. Lv, Y. Liu, S. Song, C.C. Tong, X.Y. Shi, Y. Zhao, J. Zhang, M. Hou, Carbohydr. Polym. 205 (2019) 312-321.
DOI URL PMID |
[9] |
R. Hardeland, Int. J. Mol. Sci. 20 (2019) 1223-1256.
DOI URL |
[10] |
N.J. Prado, L. Ferder, W. Manucha, E.R. Diez, Curr. Hypertens. Rep. 20 (2018) 45-56.
DOI URL PMID |
[11] |
P. Maria, L.P. Mónica, G.C. Antonio, M. Fernando, Int. J. Mol. Sci. 18 (2017) 865-878.
DOI URL |
[12] |
T. Farias, R.I.D. Paixao, M.M. Cruz, R. deSa, J.J. Simao, V.J. Antraco, M.I.C. Alonso-Vale, Cells 8 (2019) E1041.
DOI URL PMID |
[13] |
K. Kleszczy´nski, S. Zwicker, S. Tukaj, M. Kasperkiewicz, D. Zillikens, R. Wolf, T.W. Fischer, J. Pineal Res. 58 (2015) 117-126.
DOI URL PMID |
[14] |
S. Goswami, C. Haldar, Br. J. Dermatol. 171 (2014) 1147-1155.
DOI URL PMID |
[15] |
T. Tunali, G. Sener, A. Yarat, N. Emekli, Life Sci. 76 (2005) 1259-1265.
DOI URL PMID |
[16] |
G. Soybir, C. Topuzlu, O. Odabas, K. Dolay, A. Bilir, F. Koksoy, Surg. Today 33 (2003) 896-901.
DOI URL |
[17] |
K. Pugazhenthi, M. Kapoor, A.N. Clarkson, I. Hall, I. Appleton, J. Pineal. Res. 44 (2008) 387-396.
DOI URL PMID |
[18] |
R. Song, L. Ren, H. Ma, R. Hu, J. Liu, Am. J. Transl. Res. 8 (2016) 4682-4693.
URL PMID |
[19] |
F. Blažević, T. Milekić, M. Duvnjak Romić, M. Juretić, I. Pepić, J. Filipović-Grčić, J. Lovrić, A. Hafner, Carbohydr. Polym. 146 (2016) 445-454.
DOI URL PMID |
[20] |
R. Fernanda, S.P.C.-F. de Abreu, Polímeros: Ciência e Tecnologia 15 (2005) 79-83.
DOI URL |
[21] |
X. Lv, W. Zhang, Y. Liu, Y. Zhao, J. Zhang, M. Hou, Carbohydr. Polym. 198 (2018) 86-93.
DOI URL PMID |
[22] |
X. Zhao, H. Wu, B. Guo, R. Dong, Y. Qiu, P.X. Ma, Biomaterials 122 (2017) 34-47.
DOI URL PMID |
[23] |
C.C. Tong, Y. Liu, Y.B. Zhang, P.F. Cong, X.Y. Shi, Y. Liu, L. Shi, H.X. Jin, M.X. Hou, Exp. Biol. Med. (Maywood) 243 (2018) 934-944.
DOI URL |
[24] | Z. Atoufi, S.K. Kamrava, S.M. Davachi, M. Hassanabadi, S. Saeedi Garakani, R. Alizadeh, M. Farhadi, S. Tavakol, Z. Bagher, G. Hashemi Motlagh, Int. J. Mol. Sci. 139 (2019) 1168-1181. |
[25] |
Z. Naghizadeh, A. Karkhaneh, A. Khojasteh, J. Biomed. Mater. Res. A 106 (2018) 1932-1940.
DOI URL PMID |
[26] |
M.D. Romic, M.S. Klaric, J. Lovric, I. Pepic, B. Cetina-Cizmek, J. Filipovic-Grcic, A. Hafner, Eur. J. Pharm. Biopharm. 107 (2016) 67-79.
DOI URL PMID |
[27] |
Y. Hu, Z. Zhang, Y. Li, X. Ding, D. Li, C. Shen, F.J. Xu, Macromol. Rapid Commun. 39 (2018), e1800069.
DOI URL PMID |
[28] |
W.G. Deng, S.T. Tang, H.P. Tseng, K.K. Wu, Blood 108 (2006) 518-524.
DOI URL PMID |
[29] | R. Fardid, A. Salajegheh, M.A. Mosleh-Shirazi, S. Sharifzadeh, M.A. Okhovat, M. Najafi, A. Rezaeyan, A. Abaszadeh, Cells 19 (2017) 324-331. |
[30] | M. P. Ramírez-Fernández, J.L. Calvo-Guirado, Clin. Oral. Invesig. 17 (2013) 147-158. |
[31] |
Z. Jiang, B. Han, H. Li, Y. Yang, W. Liu, Carbohydr. Polym. 129 (2015) 1-8.
DOI URL PMID |
[32] | J. Chi, Z. Jiang, J. Qiao, Y. Peng, W. Liu, B. Han, Carbohydr. Polym. 15 (2019) 80-89. |
[33] |
N. Bulbuller, O. Dogru, H. Yekeler, Z. Cetinkaya, N. Ilhan, C. Kirkil, J. Surg. Res. 123 (2005) 3-7.
DOI URL PMID |
[34] |
C. Akyuz, N.F. Yasar, O. Uzun, K.D. Peker, O. Sunamak, M. Duman, A.O. Sehirli, S. Yol, Singapore Med. J. 59 (2018) 545-549.
DOI URL PMID |
[35] | H. Jin, Z. Zhang, C. Wang, Q. Tang, J. Wang, X. Bai, Q. Wang, M. Nisar, N. Tian, Q. Wang, C. Mao, X. Zhang, X. Wang, Exp. Mol. Med. 50 (2018) 154-160. |
[36] |
K. Pugazhenthi, M. Kapoor, A.N. Clarkson, I. Hall, I. Appleton, J. Pineal Res. 44 (2008) 387-396.
DOI URL PMID |
[37] | E.A. Vorotelyak, L.A. Malchenko, O.S. Rogovaya, D.S. Lazarev, N.N. Butorina, V.Y. Brodsky, Bull. Exp. Biol.Med. 168 (2019) 242-246. |
[38] |
S. Bona, G. Rodrigues, A.J. Moreira, F. C. Di Naso, A.S. Dias, T. R. Da Silveira, C.A. Marroni, N.P. Marroni, JGH Open 2 (2018) 117-123.
DOI URL PMID |
[39] |
I. Crespo, B.S. Miguel, A. Fernández, J.O. Urbina, J. González-Gallego, M.J. Tũnón, Transl. Res. 165 (2015) 346-357.
DOI URL PMID |
[1] | Jianglong Yan, Dandan Xia, Pan Xiong, Yangyang Li, Wenhao Zhou, Qiyao Li, Pei Wang, Yufeng Zheng, Yan Cheng. Polyetheretherketone with citrate potentiated influx of copper boosts osteogenesis, angiogenesis, and bacteria-triggered antibacterial abilities [J]. J. Mater. Sci. Technol., 2021, 71(0): 31-43. |
[2] | Donglin Han, Yuan Li, Xiangmei Liu, Kelvin Wai Kwok Yeung, Yufeng Zheng, Zhenduo Cui, Yanqin Liang, Zhaoyang Li, Shengli Zhu, Xianbao Wang, Shuilin Wu. Photothermy-strengthened photocatalytic activity of polydopamine-modified metal-organic frameworks for rapid therapy of bacteria-infected wounds [J]. J. Mater. Sci. Technol., 2021, 62(0): 83-95. |
[3] | Xiaoxue Yuan, Ran Liu, Wenchang Zhang, Xiaoqiang Song, Lei Xu, Yan Zhao, Lei Shang, Jingsong Zhang. Preparation of carboxylmethylchitosan and alginate blend membrane for diffusion-controlled release of diclofenac diethylamine [J]. J. Mater. Sci. Technol., 2021, 63(0): 210-215. |
[4] | Yongjin Sun, Juntao Zhang, Bi Chen, Yunlong Yang, Haiyan Li, Xin Niu, Qing Li, Weidong Wu, Zongping Xie, Yunfeng Chen, Fuyue Wu, Yang Wang. Small extracellular vesicles secreted by urine-derived stem cells enhanced wound healing in aged mice by ameliorating cellular senescence [J]. J. Mater. Sci. Technol., 2021, 63(0): 216-227. |
[5] | Shi Cheng, Jin Ke, Mengyu Yao, Hongwei Shao, Jielong Zhou, Ming Wang, Xiongfa Ji, Guoqing Zhong, Feng Peng, Limin Ma, Yu Zhang. Improved osteointegration and angiogenesis of strontium-incorporated 3D-printed tantalum scaffold via bioinspired polydopamine coating [J]. J. Mater. Sci. Technol., 2021, 69(0): 106-118. |
[6] | Yiming Xiang, Qilin Zhou, Zhaoyang Li, Zhenduo Cui, Xiangmei Liu, Yanqin Liang, Shengli Zhu, Yufeng Zheng, Kelvin Wai Kwok Yeung, Shuilin Wu. A Z-scheme heterojunction of ZnO/CDots/C3N4 for strengthened photoresponsive bacteria-killing and acceleration of wound healing [J]. J. Mater. Sci. Technol., 2020, 57(0): 1-11. |
[7] | Mingli Lin, Huanhuan Liu, Jingjing Deng, Ran An, Minjuan Shen, Yanqiu Li, Xu Zhang. Carboxymethyl chitosan as a polyampholyte mediating intrafibrillar mineralization of collagen via collagen/ACP self-assembly [J]. J. Mater. Sci. Technol., 2019, 35(9): 1894-1905. |
[8] | Zhong Haoxiang, Lu Jidian, He Aiqin, Sun Minghao, He Jiarong, Zhang Lingzhi. Carboxymethyl chitosan/poly(ethylene oxide) water soluble binder: Challenging application for 5 V LiNi0.5Mn1.5O4 cathode [J]. J. Mater. Sci. Technol., 2017, 33(8): 763-767. |
[9] | Ma Jun,Zhao Nan,Betts Lexxus,Zhu Donghui. Bio-Adaption between Magnesium Alloy Stent and the Blood Vessel: A Review [J]. J. Mater. Sci. Technol., 2016, 32(9): 815-826. |
[10] | Jin Shujing,Ren Ling,Yang Ke. Bio-Functional Cu Containing Biomaterials: a New Way to Enhance Bio-Adaption of Biomaterials [J]. J. Mater. Sci. Technol., 2016, 32(9): 835-839. |
[11] | Chen Shaoming,Gao Manman,Zhou Zhiyu,Liang Jiabi,Gong Ming,Dai Xuejun,Liang Tangzhao,Ye Jiacheng,Wu Gang,Zou Lijin,Wang Yingjun,Zou Xuenong. Opposite Regulation of Chondrogenesis and Angiogenesis in Cartilage Repair ECM Materials under Hypoxia [J]. J. Mater. Sci. Technol., 2016, 32(9): 978-985. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||