J. Mater. Sci. Technol. ›› 2021, Vol. 63: 228-235.DOI: 10.1016/j.jmst.2020.02.071
• Research Article • Previous Articles Next Articles
Yuxuan Maoa, Peng Lib, Jiewei Yina, Yanjie Baic, Huan Zhoud,e, Xiao Lina,**(
), Huilin Yangb, Lei Yanga,d,*(
)
Received:2019-12-27
Revised:2020-02-02
Accepted:2020-02-13
Published:2021-02-10
Online:2021-02-15
Contact:
Xiao Lin,Lei Yang
About author:**College of Chemistry, Chemical Engineering and Materials Science, Orthopaedic Institute, Soochow University, Suzhou, 215000, China.E-mail addresses: xlin@suda.edu.cn (X. Lin).1Equal contributions.
Yuxuan Mao, Peng Li, Jiewei Yin, Yanjie Bai, Huan Zhou, Xiao Lin, Huilin Yang, Lei Yang. Starch-based adhesive hydrogel with gel-point viscoelastic behavior and its application in wound sealing and hemostasis[J]. J. Mater. Sci. Technol., 2021, 63: 228-235.
Fig. 1. (a) Schematic of preparation procedure of starch hydrogels. (b) FTIR spectrum and (c) TEM images of various starch hydrogels. Scale bars: white 1 μm and black (inset) 200 nm.
Fig. 2. (a) Dependence of G’, G’’ and the G’’/G’ ratio of various starch gels on the frequency of oscillation. (b) Stress-displacement curves of adhesiveness test according to a modified method from ASTM standard C907-17. Inset, schematic of the pull-off adhesion test. (c) Material/porcine skin interfacial adhesion strengths. **P < 0.01, compared with GPAH group. (d) Material/porcine skin interfacial toughness. *P < 0.05, compared with GPAH group. (e) The photographs of GPAH adhered onto biological tissues.
Fig. 3. (a) Dependence of G’, G” and the G”/G’ ratio of GPAH on the frequency of oscillation, tested at various temperatures. (b) Stress-strain curves of the GPAH under two different strain rates. (c) Rheology analyses of GPAH deformation and recovery. Storage modulus G’ and loss modulus G” of GPAH evolving over time from low 1% to high 100 % and back to low 1 % strain oscillations at 6.28 rad/s. (d) Photograph showing the injectable ability of GPAH.
Fig. 4. (a) O. D. values of NIH/3T3 fibroblasts (left) and HUVECs (right) groups when cultured with the GPAH extracts or cell culture media for 2 d. (b) Fluorescence micrographs of NIH/3T3 fibroblasts after being cultured on a layer of gel with thickness of 50 μm for various time points. (c) Hemolysis rate of GPAH extracts. (d) Photographs of survival S. aureus and E. coli bacterial clones on agar plates after contacting with GPAH. (e) Antibacterial rate of GPAH to S. aureus and E.coli.
Fig. 5. (a) Photographs of the in vivo hemostasis test: (i) creating the injury of femoral artery; (ii) injecting GPAH into the bleeding wound; (iii) complete sealing of the wound with GPAH. (b) Blood loss within first 10 s and after application of GPAH or gauze, **P < 0.01, compared with gauze group. (c) H&E staining of the muscle tissue at the wound that treated with GPAH or gauze. The tissues were retrieved 3 d after surgery. Scale bar in (c): 200 μm.
| [1] |
S. Chun, D.W. Kim, S. Baik, H.J. Lee, J.H. Lee, S.H. Bhang, C. Pang, Adv. Funct. Mater. 28 (2018), 1805224.
DOI URL PMID |
| [2] | H. Liu, Z. Zhang, J. Ge, X. Lin, X. Ni, H. Yang, L. Yang, J. Mater. Sci. Technol. 1 (2019) 176-180. |
| [3] |
B. Ryplida, K.D. Lee, I. In, S.Y. Park, Adv. Funct. Mater. 29 (2019), 1903209.
URL PMID |
| [4] |
S. Liang, Y. Zhang, H. Wang, Z. Xu, J. Chen, R. Bao, B. Tan, Y. Cui, G. Fan, W. Wang, Adv. Mater. 30 (2018), 1704235.
DOI URL PMID |
| [5] |
Y. Zhao, Z. Li, S. Song, K. Yang, H. Liu, Z. Yang, J. Wang, B. Yang, Q. Lin, Adv. Funct. Mater. 29 (2019), 1901474.
URL PMID |
| [6] |
X. Lin, Y. Liu, A. Bai, H. Cai, Y. Bai, W. Jiang, H. Yang, X. Wang, L. Yang, N. Sun, Nat. Biomed. Eng. 3 (2019) 632-643.
DOI URL PMID |
| [7] |
M. Mehdizadeh, J. Yang, Macromol. Biosci. 13 (2013) 271-288.
DOI URL PMID |
| [8] |
K. Xu, Y. Liu, S. Bu, T. Wu, Q. Chang, G. Singh, X. Cao, C. Deng, B. Li, G. Luo, Adv. Healthc. Mater. 6 (2017), 1700132.
DOI URL PMID |
| [9] | Y. Liang, X. Zhao, T. Hu, B. Chen, Z. Yin, P.X. Ma, B. Guo, Small 15 (2019), 1900046. |
| [10] |
M. Allen, D. Wood, R. Hawkinson, D. Harpole, R. McKenna, G. Walsh, E. Vallieres, D. Miller, F. Nichols, W. Smythe, Ann. Thorac. Surg. 77 (2004) 1792-1801.
DOI URL |
| [11] |
C. Fuller, J. Cardiothorac. Surg. 8 (2013) 90.
DOI URL PMID |
| [12] |
N. Annabi, Y.-N. Zhang, A. Assmann, E.S. Sani, G. Cheng, A.D. Lassaletta, A. Vegh, B. Dehghani, G.U. Ruiz-Esparza, X. Wang, Sci. Transl. Med. 9 (2017) eaai7466.
DOI URL PMID |
| [13] |
J. Li, A. Celiz, J. Yang, Q. Yang, I. Wamala, W. Whyte, B. Seo, N. Vasilyev, J. Vlassak, Z. Suo, Science 357 (2017) 378-381.
DOI URL PMID |
| [14] |
R. Wang, J. Li, W. Chen, T. Xu, S. Yun, Z. Xu, Z. Xu, T. Sato, B. Chi, H. Xu, Adv. Funct. Mater. 27 (2017), 1604894.
DOI URL PMID |
| [15] | Y. Bu, L. Zhang, G. Sun, F. Sun, J. Liu, F. Yang, P. Tang, D. Wu, Adv. Mater. 31 (2019), 1901580. |
| [16] |
D. Martina, C. Creton, P. Damman, M. Jeusette, A. Lindner, Soft Matter 8 (2012) 5350-5357.
DOI URL |
| [17] |
C. Elvira, J. Mano, J. San Roman, R. Reis, Biomaterials 23 (2002) 1955-1966.
DOI URL |
| [18] |
H. Ismail, M. Irani, Z. Ahmad, Int. J. Polym. Mater. 62 (2013) 411-420.
DOI URL |
| [19] |
K.R. Kamath, K. Park, Adv. Drug Deliv. Rev. 11 (1993) 59-84.
DOI URL |
| [20] |
N. Ende, Cancer 14 (1961) 1109-1114.
DOI URL |
| [21] | L. Yang, N. Sun, X. Lin, W. Jiang, X. Wang, Y. Bai, H. Yang, A. Bai, Flexible substrate/liquid electrolyte viscous composite material and preparation method therefor, US Patent, No. 10500214B2, 2019. |
| [22] | X. Lin, L. Yang, Y. Bai, H. Yang, Conductive elastomer, preparation method and use thereof, US Patent, No. 10273343B2, 2019. |
| [23] |
M. Mehdizadeh, H. Weng, D. Gyawali, L. Tang, J. Yang, Biomaterials 33 (2012) 7972-7983.
DOI URL |
| [24] |
J. Guo, G.B. Kim, D. Shan, J.P. Kim, J. Yang, Biomaterials 112 (2016) 275-286.
DOI URL PMID |
| [25] |
B. H. Eun YoungJeon, Yun JungYang, Hyung JoonCha, Biomaterials 67 (2015) 11-19.
DOI URL PMID |
| [26] |
H.H. Winter, Polym. Eng. Sci. 27 (1987) 1698-1702.
DOI URL |
| [27] |
E. Dashtimoghadam, H. Mirzadeh, F.A. Taromi, B. Nystrom, RSC Adv. 4 (2014) 39386-39393.
DOI URL |
| [28] |
M. Liao, P. Wan, J. Wen, M. Gong, X. Wu, Y. Wang, R. Shi, L. Zhang, Adv. Funct. Mater. 27 (2017), 1703852.
DOI URL PMID |
| [29] |
A. Faghihnejad, K.E. Feldman, J. Yu, M.V. Tirrell, H. Zeng, Adv. Funct. Mater. 24 (2014) 2322-2333.
DOI URL |
| [30] |
A.H. Hofman, I.A. van Hees, J. Yang, M. Kamperman, Adv. Mater. 30 (2018), 1704640.
DOI URL PMID |
| [31] |
C.W. Peak, J.J. Wilker, G. Schmidt, Colloid Polym. Sci. 291 (2013) 2031-2047.
DOI URL |
| [32] |
P. Karami, Cl.S. Wyss, A. Khoushabi, A. Schmocker, M. Broome, C. Moser, P.-E. Bourban, D.P. Pioletti, ACS Appl. Mater. Interfaces 10 (2018) 38692-38699.
DOI URL PMID |
| [33] |
T.M. Shazly, N. Artzi, F. Boehning, E.R. Edelman, Biomaterials 29 (2008) 4584-4591.
DOI URL |
| [34] |
H. Yuk, T. Zhang, S. Lin, G.A. Parada, X. Zhao, Nat. Mater. 15 (2016) 190-196.
DOI URL PMID |
| [35] |
H. Yuk, T. Zhang, G.A. Parada, X. Liu, X. Zhao, Nat. Commun. 7 (2016) 12028.
DOI URL PMID |
| [36] |
X. Zhao, Soft Matter 10 (2014) 672-687.
DOI URL PMID |
| [37] |
S. Chun, D.W. Kim, S. Baik, H.J. Lee, J.H. Lee, S.H. Bhang, C. Pang, Adv. Funct. Mater. 28 (2018), 1805224.
DOI URL PMID |
| [38] |
J. Qu, X. Zhao, Y. Liang, T. Zhang, P.X. Ma, B. Guo, Biomaterials 183 (2018) 185-199.
DOI URL PMID |
| [39] |
S.C. Davis, C. Ricotti, A. Cazzaniga, E. Welsh, W.H. Eaglstein, P.M. Mertz, Wound Rep. Regen. 16 (2010) 23-29.
DOI URL |
| [40] | I. Pastar, A.G. Nusbaum, J. Gil, S.B. Patel, J. Chen, J. Valdes, O. Stojadinovic, L.R. Plano, M. Tomiccanic, S.C. Davis, PLoS One 8 (2013), e56846. |
| [41] |
K. Lewis, Antimicrob. Agents Chemother. 45 (2001) 999-1007.
DOI URL PMID |
| [42] |
G.A. James, E. Swogger, R. Wolcott, P. Ed, P. Secor, J. Sestrich, J.W. Costerton, P.S. Stewart, Wound Rep. Regen. 16 (2010) 37-44.
DOI URL |
| [43] |
J. Grzybowski, M.K. Janiak, E. Oldak, K. Lasocki, J. Wrembel-Wargocka, A. Cheda, M. Antos-Bielska, Z. Pojda, Int. J. Pharm. 184 (1999) 179-187.
DOI URL PMID |
| [44] |
L. Li, B. Yan, J. Yang, L. Chen, H. Zeng, Adv. Mater. 27 (2015) 1294-1299.
DOI URL PMID |
| [45] |
M. Black, A. Trent, Y. Kostenko, J.S. Lee, C. Olive, M. Tirrell, Adv. Mater. 24 (2012) 3845-3849.
DOI URL PMID |
| [46] |
A. Veves, Plast. Reconstr. Surg. 138 (2016) 29S-30S.
DOI URL PMID |
| [47] |
I. Pastar, O. Stojadinovic, N.C. Yin, H. Ramirez, A.G. Nusbaum, A. Sawaya, S.B. Patel, L. Khalid, R.R. Isseroff, M. Tomiccanic, Adv. Wound Care 3 (2014) 445-464.
DOI URL |
| [48] |
S. Hamdan, I. Pastar, S. Drakulich, E. Dikici, M. Tomic-Canic, S. Deo, S. Daunert, ACS Cent. Sci. 3 (2017) 163-175.
DOI URL PMID |
| [49] |
J. Xiao, S. Chen, J. Yi, H.F. Zhang, G.A. Ameer, Adv. Funct. Mater. 27 (2017), 1604872.
URL PMID |
| [50] |
G. Chen, Y. Yu, X. Wu, G. Wang, J. Ren, Y. Zhao, Adv. Funct. Mater. 28 (2018), 1801386.
DOI URL PMID |
| [51] |
X. Zhao, H. Wu, B. Guo, R. Dong, Y. Qiu, P.X. Ma, Biomaterials 122 (2017) 34-47.
DOI URL PMID |
| [52] |
Y. Liang, X. Zhao, T. Hu, Y. Han, B. Guo, J. Colloid Interface Sci. 556 (2019) 514-528.
DOI URL PMID |
| [53] |
J. Qu, X. Zhao, Y. Liang, Y. Xu, P.X. Ma, B. Guo, Chem. Eng. J. 362 (2019) 548-560.
DOI URL |
| [54] |
B.S. Atiyeh, M. Costagliola, S.N. Hayek, S.A. Dibo, Burns 33 (2007) 139-148.
DOI URL |
| [55] |
A. Konvalinka, L. Errett, I. Fong, J. Hosp. Infect. 64 (2006) 162-168.
DOI URL PMID |
| [56] |
J.O. Lundberg, E. Weitzberg, M.T. Gladwin, Nat. Rev. Drug Discov. 7 (2008) 156-167.
DOI URL PMID |
| [57] |
Z.H. Chohan, A. Rauf, Met. -Based Drugs 3 (1996) 211-217.
DOI URL PMID |
| [58] |
J.J. Grzesiak, M.D. Pierschbacher, J. Clin. Invest. 95 (1995) 227-233.
DOI URL PMID |
| [59] | K. Kenichiro, B.J. Larson, I. Hisako, C. Antoine Lyonel, N. Soh, L. Michael, L.H. Peter, PLoS One 6 (2011), e27106. |
| [60] |
A.B. Lansdown, Wound Rep. Regen. 10 (2010) 271-285.
DOI URL |
| [61] | J.S. Huang, J.J. Mukherjee, T. Chung, K.S. Crilly, Z. Kiss, FEBS J. 266 (2010) 943-951. |
| [62] | M. Li, J. Chen, M. Shi, H. Zhang, P.X. Ma, B. Guo, Chem. Eng. J. 375 (2019) 121999. |
| [1] | Xu Han, Jianhua Wu, Xianhui Zhang, Junyou Shi, Jiaxin Wei, Yang Yang, Bo Wu, Yonghui Feng. Special issue on advanced corrosion-resistance materials and emerging applications. The progress on antifouling organic coating: From biocide to biomimetic surface [J]. J. Mater. Sci. Technol., 2021, 61(0): 46-62. |
| [2] | Mengyang Wang, Shichao Bi, Jianhui Pang, Zhongzheng Zhou, Di Qin, Honglei Wang, Xiaojie Cheng, Xiguang Chen. Precise quantification of the antibacterial activity of chitosan by NB medium neutralizer [J]. J. Mater. Sci. Technol., 2021, 70(0): 224-232. |
| [3] | Yi Zou, Yanxia Zhang, Qian Yu, Hong Chen. Dual-function antibacterial surfaces to resist and kill bacteria: Painting a picture with two brushes simultaneously [J]. J. Mater. Sci. Technol., 2021, 70(0): 24-38. |
| [4] | Xinrui Zhang, Xiaofang Liu, Chunguang Yang, Tong Xi, Jinlong Zhao, Lichu Liu, Ke Yang. New strategy to delay food spoilage: Application of new food contact material with antibacterial function [J]. J. Mater. Sci. Technol., 2021, 70(0): 59-66. |
| [5] | Qian Wu, Xiangmei Liu, Bo Li, Lei Tan, Yong Han, Zhaoyang Li, Yanqin Liang, Zhenduo Cui, Shengli Zhu, Shuilin Wu, Yufeng Zheng. Eco-friendly and degradable red phosphorus nanoparticles for rapid microbial sterilization under visible light [J]. J. Mater. Sci. Technol., 2021, 67(0): 70-79. |
| [6] | Run Huang, Lei Liu, Bo Li, Liang Qin, Lei Huang, Kelvin W.K. Yeung, Yong Han. Nanograins on Ti-25Nb-3Mo-2Sn-3Zr alloy facilitate fabricating biological surface through dual-ion implantation to concurrently modulate the osteogenic functions of mesenchymal stem cells and kill bacteria [J]. J. Mater. Sci. Technol., 2021, 73(0): 31-44. |
| [7] | Mingjun Li, Christoph Schlaich, Jianguang Zhang, Ievgen S. Donskyi, Karin Schwibbert, Frank Schreiber, Yi Xia, Jörg Radnik, Tanja Schwerdtle, Rainer Haag. Mussel-inspired multifunctional coating for bacterial infection prevention and osteogenic induction [J]. J. Mater. Sci. Technol., 2021, 68(0): 160-171. |
| [8] | Mingjun Li, Li Nan, Chunyong Liang, Ziqing Sun, Lei Yang, Ke Yang. Antibacterial behavior and related mechanisms of martensitic Cu-bearing stainless steel evaluated by a mixed infection model of Escherichia coli and Staphylococcus aureus in vitro [J]. J. Mater. Sci. Technol., 2021, 62(0): 139-147. |
| [9] | Jiajun Qiu, Lu Liu, Shi Qian, Wenhao Qian, Xuanyong Liu. Why does nitrogen-doped graphene oxide lose the antibacterial activity? [J]. J. Mater. Sci. Technol., 2021, 62(0): 44-51. |
| [10] | Donglin Han, Yuan Li, Xiangmei Liu, Kelvin Wai Kwok Yeung, Yufeng Zheng, Zhenduo Cui, Yanqin Liang, Zhaoyang Li, Shengli Zhu, Xianbao Wang, Shuilin Wu. Photothermy-strengthened photocatalytic activity of polydopamine-modified metal-organic frameworks for rapid therapy of bacteria-infected wounds [J]. J. Mater. Sci. Technol., 2021, 62(0): 83-95. |
| [11] | Li Liu, Wan Peng, Xiao Zhang, Jiangmei Peng, Pingsheng Liu, Jian Shen. Rational design of phosphonate/quaternary amine block polymer as an high-efficiency antibacterial coating for metallic substrates [J]. J. Mater. Sci. Technol., 2021, 62(0): 96-106. |
| [12] | Kyubae Lee, Yazhou Chen, Xiaomeng Li, Naoki Kawazoe, Yingnan Yang, Guoping Chen. Influence of viscosity on chondrogenic differentiation of mesenchymal stem cells during 3D culture in viscous gelatin solution-embedded hydrogels [J]. J. Mater. Sci. Technol., 2021, 63(0): 1-8. |
| [13] | Keke Wang, Weinan Cheng, Zhaozhao Ding, Gang Xu, Xin Zheng, Meirong Li, Guozhong Lu, Qiang Lu. Injectable silk/hydroxyapatite nanocomposite hydrogels with vascularization capacity for bone regeneration [J]. J. Mater. Sci. Technol., 2021, 63(0): 172-181. |
| [14] | Mi Wu, Wen Liu, Jinrong Yao, Zhengzhong Shao, Xin Chen. Silk microfibrous mats with long-lasting antimicrobial function [J]. J. Mater. Sci. Technol., 2021, 63(0): 203-209. |
| [15] | Xiaoxue Yuan, Ran Liu, Wenchang Zhang, Xiaoqiang Song, Lei Xu, Yan Zhao, Lei Shang, Jingsong Zhang. Preparation of carboxylmethylchitosan and alginate blend membrane for diffusion-controlled release of diclofenac diethylamine [J]. J. Mater. Sci. Technol., 2021, 63(0): 210-215. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
