J. Mater. Sci. Technol. ›› 2021, Vol. 63: 1-8.DOI: 10.1016/j.jmst.2020.05.018
• Research Article • Next Articles
Kyubae Leea,b, Yazhou Chena,b, Xiaomeng Lia,c, Naoki Kawazoea, Yingnan Yangd, Guoping Chena,b,*()
Received:
2019-12-01
Revised:
2020-04-24
Accepted:
2020-05-03
Published:
2021-02-10
Online:
2021-02-15
Contact:
Guoping Chen
About author:
*Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan. E-mail address: Guoping.CHEN@nims.go.jp (G. Chen).Kyubae Lee, Yazhou Chen, Xiaomeng Li, Naoki Kawazoe, Yingnan Yang, Guoping Chen. Influence of viscosity on chondrogenic differentiation of mesenchymal stem cells during 3D culture in viscous gelatin solution-embedded hydrogels[J]. J. Mater. Sci. Technol., 2021, 63: 1-8.
Fig. 1. Viscosity curves of gelatin aqueous solutions having a concentration of 5 (w/v)%, 10 (w/v)% and 15 (w/v)% and serum-free cell culture medium at 37 °C.
Fig. 2. Phase-contrast micrographs of biphasic hydrogels embedded with cell-laden gelatin microcubes (a, c) and cell-laden GelMA hydrogels (b, d) without gelatin microcubes immediately after preparation. Dexamethasone and TGF-β3 were added in the hydrogels shown in (c) and (d), but not added in hydrogels shown in (a) and (b) 5 (w/v)%, 10 (w/v)% and 15 (w/v)% indicate concentrations of gelatin solutions. GelMA indicates cell-laden GelMA hydrogels.
Fig. 3. Live/dead staining of hMSCs in biphasic hydrogels embedded with cell-laden gelatin microcubes and cell-laden GelMA hydrogels immediately after preparation (a) and after 21 days of culture (b). Dexamethasone and TGF-β3 were not added to the hydrogels. Low, Mid and High indicate the viscosity of gelatin solution at a concentration of 5 (w/v)%, 10 (w/v)% and 15 (w/v)%. GelMA indicates cell-laden GelMA hydrogels. Live cells were stained green, while dead cells red. Scale bar: 250 μm.
Fig. 4. Live/dead staining of hMSCs in biphasic hydrogels embedded with cell-laden gelatin microcubes and cell-laden GelMA hydrogels under the presence of dexamethasone and TGF-β3 immediately after preparation (a) and after 21 days of culture (b). Low, Mid and High indicate the viscosity of gelatin solution at a concentration of 5 (w/v)%, 10 (w/v)% and 15 (w/v)%. GelMA indicates cell-laden GelMA hydrogels. Live cells were stained green, while dead cells red. Scale bar: 250 μm.
Fig. 5. Quantification of DNA amount (a, d), sGAG content (b, e) and normalized sGAG/DNA ratio (c, f) in biphasic hydrogels embedded with cell-laden gelatin microcubes and cell-laden GelMA hydrogels without (a-c) and with (d-f) dexamethasone and TGF-β3. Low, Mid and High indicate the viscosity of gelatin solution at a concentration of 5 (w/v)%, 10 (w/v)% and 15 (w/v)%. GelMA indicates cell-laden GelMA hydrogels. Data are shown as mean ± SD, n = 3. *, p < 0.05, **, p < 0.01 and ***, p < 0.001.
Fig. 6. Quantification of gene expression of type Ⅰ collagen (a, c), type II collagen (d) and aggrecan (b, e) of hMSCs in biphasic hydrogels embedded with cell-laden gelatin microcubes and cell-laden GelMA hydrogels without (a, b) and with (c-e) dexamethasone and TGF-β3. Low, Mid and High indicate the viscosity of gelatin solution at a concentration of 5 (w/v)%, 10 (w/v)% and 15 (w/v)%. GelMA indicates cell-laden GelMA hydrogels. Data are normalized by gene expression levels measured in P5 hMSCs. Data are shown as mean ± SD, n = 3. *, p < 0.05, **, p < 0.01 and ***, p < 0.001.
[1] |
G.S. Hussey, J.L. Dziki, S.F. Badylak, Nat. Rev. Mater. 3 (2018) 159-173.
DOI URL |
[2] |
T. Hoshiba, N. Kawazoe, G. Chen, Biomaterials 33 (2012) 2025-2031.
DOI URL PMID |
[3] |
Y. Chen, K. Lee, N. Kawazoe, Y. Yang, G. Chen, J. Mater. Chem. B Mater. Biol. Med. 7 (2019) 7195-7206.
DOI URL PMID |
[4] |
A. Higuchi, Q.D. Ling, S.S. Kumar, Y. Chang, A.A. Alarfaj, M.A. Munusamy, K. Murugan, S.T. Hsu, A. Umezawa, J. Mater. Chem. B Mater. Biol. Med. 3 (2015) 8032-8058.
DOI URL PMID |
[5] |
H. Lu, N. Kawazoe, T. Kitajima, Y. Myoken, M. Tomita, A. Umezawa, G. Chen, Y. Ito, Biomaterials 26 (2012) 6140-6146.
DOI URL |
[6] |
Y. Chen, K. Lee, Y. Yang, N. Kawazoe, G. Chen, Biofabrication 2 (2020), 025027.
DOI URL PMID |
[7] |
J. Carthew, J.E. Frith, J.S. Forsythe, V.X. Truong, J. Mater. Chem. B Mater. Biol. Med. 6 (2018) 1394-1401.
DOI URL PMID |
[8] |
A.J. Engler, S. Sen, H.L. Sweeney, D.E. Discher, Cell 126 (2006) 677-689.
URL PMID |
[9] |
S.H. Oh, D.B. An, T.H. Kim, J.H. Lee, Acta Biomater. 35 (2016) 23-31.
DOI URL PMID |
[10] | C.M.M. Murphy, A. Matsiko, M.G. Haugh, J.P. Gleeson, F.J. O’Brien, J. Mech. Behave. Biomed. Mater. 11 (2012) 53-62. |
[11] |
S.Q. Liu, Q. Tian, J.L. Hedrick, J.H.P. Hui, P.L.R. Ee, Y.Y. Yang, Biomaterials 31 (2010) 7298-7307.
DOI URL |
[12] | T. Wang, J.H. Lai, F. Yang, Tissue Eng. A 22 (2016) 23-24. |
[13] |
E.E. Charrier, K. Pogoda, R.G. Wells, P.A. Janmey, Nat. Commun. 9 (2018) 449.
DOI URL PMID |
[14] |
M. Bennett, M. Cantini, J. Reboud, J.M. Cooper, R. Roca-Cusachs, M. Salmeron-Sanchez, Proc. Natl. Acad. Sci. U. S. A. 115 (2018) 1192-1197.
DOI URL PMID |
[15] |
D. Kong, L. Peng, S.D. Cio, P. Novak, J.E. Gautrot, ACS Nano 12 (2018) 9206-9213.
DOI URL PMID |
[16] |
X. Li, S. Chen, J. Li, X. Wang, J. Zhang, N. Kawazoe, G. Chen, Polymers 8 (2016) 1-15.
DOI URL |
[17] |
G. Chen, D. Akahane, N. Kawazoe, K. Yamamoto, T. Tateishi, Mater. Sci. Eng. C 28 (2008) 195-201.
DOI URL |
[18] |
J. Gonzalez-Molina, X. Zhang, M. Borghesan, J. M. da Silva, M. Awan, B. Fuller, N. Gavara, C. Selden, Biomaterials 177 (2018) 113-124.
DOI URL PMID |
[19] |
Z. Qu, F.Z. Temel, R. Henderikx, K.S. Breuer, Proc. Natl. Acad. Sci. U. S. A. 115 (2018) 1707-1712.
DOI URL PMID |
[20] |
C. Frantz, K.M. Stewart, V.M. Weaver, J. Cell. Sci. 123 (2010) 4195-4200.
DOI URL PMID |
[21] | K. Lee, Y. Chen, X. Li, Y. Wang, N. Kawazoe, Y. Yang, G. Chen, J. Mater. Chem. BMater. Biol. Med. 48 (2019) 7713-7722. |
[22] |
I.E. Erickson, S.R. Kestle, K.H. Zellars, M.J. Farrell, M. Kim, J.A. Burdick, R.L. Mauck, Acta Biomater. 8 (2012) 3027-3034.
DOI URL PMID |
[23] |
S.J. Bryant, K.S. Anseth, J. Biomed. Mater. Res. 59 (2002) 63-72.
DOI URL PMID |
[24] |
J.H. Wen, L.G. Vincent, A. Fuhrmann, Y.S. Choi, K.C. Hribar, H. Taylor-Weiner, S. Chen, A.J. Engler, Nat. Mater. 13 (2014) 979-987.
DOI URL PMID |
[25] |
L. Bian, D.Y. Zhai, E. Tous, R. Rai, R. Mauck, J.A. Burdick, Biomaterials 32 (2011) 6425-6434.
DOI URL |
[26] | E.M. Florine, R.E. Miller, R.M. Porter, C.H. Evans, B. Kurz, A.J. Grodzinsky, Carti-lage 4 (2013) 63-74. |
[27] |
R. Cai, T. Nakamoto, N. Kawazoe, G. Chen, Biomaterials 52 (2015) 199-207.
DOI URL PMID |
[28] |
C. Tacchetti, S. Tavella, B. Dozin, R. Quarto, G. Robino, R. Cancedda, Exp. Cell Res. 200 (1992) 26-33.
DOI URL PMID |
[29] |
P. Singh, J.E. Schwarzbauer, J. Cell. Sci. 125 (2012) 3703-3712.
DOI URL PMID |
[30] |
X. Li, Y. Chen, N. Kawazoe, G. Chen, J. Mater. Chem. B Mater. Biol. Med. 5 (2017) 5753-5762.
DOI URL PMID |
[31] | X. Zhang, W. Zhang, M. Yang, Curr. Stem Cell Res. T 7 (2018) 497-516. |
[32] | T. Sato, G. Chen, T. Ushida, T. Ishii, N. Ochiai, T. Tateishi, J. Tanaka, Mater. Sci. Eng. C 3 (2004) 365-372. |
[1] | Gopinathan Janarthanan, Insup Noh. Recent trends in metal ion based hydrogel biomaterials for tissue engineering and other biomedical applications [J]. J. Mater. Sci. Technol., 2021, 63(0): 35-53. |
[2] | Yuling Liu, Cong Zhang, Changfa Du, Yong Du, Zhoushun Zheng, Shuhong Liu, Lei Huang, Shiyi Wen, Youliang Jin, Huaqing Zhang, Fan Zhang, George Kaptay. CALTPP: A general program to calculate thermophysical properties [J]. J. Mater. Sci. Technol., 2020, 42(0): 229-240. |
[3] | Jian-kun Ren, Yun Chen, Yan-fei Cao, Ming-yue Sun, Bin Xu, Dian-zhong Li. Modeling motion and growth of multiple dendrites during solidification based on vector-valued phase field and two-phase flow models [J]. J. Mater. Sci. Technol., 2020, 58(0): 171-187. |
[4] | Kummara Madhusudana Rao, Anuj Kumar, Sung Soo Han. Polysaccharide-based magnetically responsive polyelectrolyte hydrogels for tissue engineering applications [J]. J. Mater. Sci. Technol., 2018, 34(8): 1371-1377. |
[5] | Hao Lijing,Li Tianjie,Zhao Naru,Cui Fuzhai,Du Chang,Wang Yingjun. Mediating Mesenchymal Stem Cells Responses and Osteopontin Adsorption via Oligo(ethylene glycol)-amino Mixed Self-assembled Monolayers [J]. J. Mater. Sci. Technol., 2016, 32(9): 966-970. |
[6] | Guangcai Ma, Zhengwang Zhu, Zheng Wang, Haifeng Zhang. Deformation Behavior of the Zr53.5Cu26.5Ni5Al12Ag3 Bulk Metallic Glass Over a Wide Range of Strain Rate and Temperatures [J]. J. Mater. Sci. Technol., 2015, 31(9): 941-945. |
[7] | Guobo Lan, Mei Li, Ying Tan, Lihua Li, Xiaoming Yang, Limin Ma, Qingshui Yin, Hong Xia, Yu Zhang, Guoxin Tan, Chengyun Ning. Promoting Bone Mesenchymal Stem Cells and Inhibiting Bacterial Adhesion of Acid-Etched Nanostructured Titanium by Ultraviolet Functionalization [J]. J. Mater. Sci. Technol., 2015, 31(2): 182-190. |
[8] | Changqing Fang, Linna Jiao, Jingbo Hu, Qian Yu, Dagang Guo, Xing Zhou, Ruien Yu. Viscoelasticity of Asphalt Modified With Packaging Waste Expended Polystyrene [J]. J. Mater. Sci. Technol., 2014, 30(9): 939-943. |
[9] | Neeraj, Pankaj Kumar, K.K. Raina. Analysis of Dielectric and Electro-optic Responses of Nanomaterials Doped Ferroelectric Liquid Crystal Mixture [J]. J Mater Sci Technol, 2011, 27(12): 1094-1098. |
[10] | Wen LIU, Shuming XING, Peiwei BAO, Milan ZHANG, Liming XIAO. Energy Dissipation and Apparent Viscosity of Semi-solid Metal during Rheological Processes Part II: Apparent Viscosity [J]. J Mater Sci Technol, 2007, 23(06): 801-805. |
[11] | Fengyun YAN, Liping SUN, Yi GONG, Yuan HAO. Steady State Rheological Characteristic of Semisolid Magnesium Alloy [J]. J Mater Sci Technol, 2007, 23(05): 637-640. |
[12] | Wen LIU, Shuming XING, Peiwei BAO, Milan ZHANG, Liming XIAO. Energy Dissipation and Apparent Viscosity of Semi-solid Metal during Rheological Processes Part I: Energy Dissipation [J]. J Mater Sci Technol, 2007, 23(03): 342-346. |
[13] | Hongwu ZHANG, Zhao ZHANG. Numerical Modeling of Friction Stir Welding Process by Using Rate-dependent Constitutive Model [J]. J Mater Sci Technol, 2007, 23(01): 73-80. |
[14] | Daming XU, Qingmei YU, Xin LI, Geying AN. Mold Filling Behavior of Melts with Different Viscosity under Centrifugal Force Field [J]. J Mater Sci Technol, 2002, 18(02): 149-151. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||