J. Mater. Sci. Technol. ›› 2021, Vol. 63: 9-17.DOI: 10.1016/j.jmst.2020.05.003
• Research Article • Previous Articles Next Articles
Tzu-Cheng Sunga, Chao-Wen Heishb, Henry Hsin-Chung Leec,d, Jhe-Yu Hsub, Chun-Ko Wangb, Jia-Hua Wangb, Yu-Ru Zhub, Shih-Hsi Jene, Shih-Tien Hsuf, Abdurahman H. Hiradg, Abdullah A. Alarfajg, Akon Higuchia,h,i,*()
Received:
2019-11-23
Revised:
2020-01-21
Accepted:
2020-02-12
Published:
2021-02-10
Online:
2021-02-15
Contact:
Akon Higuchi
About author:
*School of Ophthalmology and Optometry, Eye Hospital,Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang, 325027,China.E-mail addresses: higuchi@ncu.edu.tw, higuchi@wmu.ac.cn (A. Higuchi).1These authors contributed equally to this work.
Tzu-Cheng Sung, Chao-Wen Heish, Henry Hsin-Chung Lee, Jhe-Yu Hsu, Chun-Ko Wang, Jia-Hua Wang, Yu-Ru Zhu, Shih-Hsi Jen, Shih-Tien Hsu, Abdurahman H. Hirad, Abdullah A. Alarfaj, Akon Higuchi. 3D culturing of human adipose-derived stem cells enhances their pluripotency and differentiation abilities[J]. J. Mater. Sci. Technol., 2021, 63: 9-17.
Fig. 1. Human ASCs cultivated in 2D or grown in sequential cultivation by using 2D and 3D culturing processes. (A) Procedure used for hASCs cultivated in 2D culturing conditions (upper case) or 2D and 3D sequential culturing conditions (lower case). (B) Morphologies and live/dead staining of hASCs in 2D culturing conditions. The scale bars indicate 100 μm. (C) Morphologies and live/dead staining of hASCs in 2D and 3D sequential culturing conditions. The scale bars indicate 100 μm.
Fig. 2. Flow cytometry analysis of hASCs cultivated in 2D culturing conditions or 2D and 3D sequential culturing conditions. (A) CD34, CD44, CD90 and CD105 expression of hASCs cultivated in 2D culturing conditions at passage 4. (B) CD34, CD44, CD90 and CD105 expression of hASCs cultivated in sequential 2D and 3D culturing conditions at passage 4. (C) The levels of CD markers analyzed by flow cytometry on hASCs grown in 2D and 3D sequential culturing conditions at passage 4. *p < 0.05.
Fig. 3. Pluripotency protein expression of hASCs in 2D culturing conditions or sequential 2D and 3D culturing conditions. (A) Sox2 (a, red), Oct3/4 (d, red) and SSEA4 (e, green) expression of hASCs cultivated in 2D culturing conditions at passage 5. The cells were evaluated by dual immunostaining with Hoechst 33342 (b, f) to stain nuclei (blue). The merged fluorescence image (c) of Sox2 (a) and Hoechst (b) staining and the merged fluorescence image (g) of Oct3/4 (d), SSEA4 (e) and Hoechst (f) staining are also shown. (B) Sox2 (a, red), Oct3/4 (d, red) and SSEA4 (e, green) expression of hASCs cultivated in sequential 2D and 3D culturing conditions at passage 6. The cells were evaluated by dual immunostaining with Hoechst 33342 (b, f) to stain nuclei (blue). The merged fluorescence image (c) of Sox2 (a) and Hoechst (b) staining and the merged fluorescence image (g) of Oct3/4 (d), SSEA4 (e) and Hoechst (f) staining are also shown. (C) Relative gene expression levels of Oct3/4 (black closed circle), Sox2 (red closed square), and Nanog (green closed square) on hASCs cultivated in 2D culturing conditions (a) and in sequential 2D and 3D culturing conditions (b), as analyzed by qRT-PCR. *p < 0.05. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 4. Osteogenic and chondrogenic differentiation of hASCs cultivated in sequential 2D and 3D culturing conditions. (A) Micrograph images of cells analyzed by Alizarin Red S staining (a, b) and von Kossa staining (c, d) after osteogenic differentiation of hASCs for 28 days in sequential 2D and 3D culturing conditions; passage 5 (a, c) in 2D culture conditions and passage 6 (b, d) in 3D culture conditions are shown. The scale bar represents 100 μm. (B) The level of the osteogenic differentiation of cells analyzed by Alizarin Red S and von Kossa staining using ImageJ software (http://rsb.info.nih.gov/ij/) after chondrogenic differentiation for 28 days in sequential 2D and 3D culturing conditions at passage 5 (2D) and passage 6 (3D). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 5. Neural cell differentiation of hASCs cultivated in sequential 2D and 3D culturing conditions. (A) The morphologies of cells after the neural cell differentiation of hASCs for 1 day (a) and 21 days (b) in sequential 2D and 3D culturing conditions at passage 5 (2D). The scale bars indicate 100 μm. (c-f) Expression of the neuronal marker protein β the III-tubulin (c, green) and astrocyte marker protein GFAP (d, red) on cells after neural cell differentiation for 21 days in sequential 2D and 3D culturing conditions at passage 5 (2D). The cells were evaluated by dual immunostaining with Hoechst 33342 (e) to stain nuclei (blue). The merged fluorescence image (f) of βIII-tubulin (c), GFAP (d) and Hoechst 33342 (e) staining is also shown. The scale bars indicate 200 μm. (B) The morphologies of cells after the neural cell differentiation of hASCs for 1 day (a) and 21 days (b) in sequential 2D and 3D culturing conditions at passage 6 (3D). The scale bars indicate 100 μm. (c-f) Expression of the neuronal marker protein βIII-tubulin (c, green) and the astrocyte marker protein GFAP (d, red) on cells after neural cell differentiation for 21 days in sequential 2D and 3D culturing conditions at passage 6 (3D). The cells were evaluated by dual immunostaining with Hoechst 33342 (e) to stain nuclei (blue). The merged fluorescence image (f) of βIII-tubulin (c), GFAP (d) and Hoechst 33342 (e) staining is also shown. The scale bars indicate 200 μm. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
[1] |
P.A. Zuk, M. Zhu, P. Ashjian, D. A. De Ugarte, J.I. Huang, H. Mizuno, Z.C. Alfonso, J.K. Fraser, P. Benhaim, M.H. Hedrick, Mol. Biol. Cell 13 (2002) 4279-4295.
DOI URL PMID |
[2] |
P.A. Zuk, M. Zhu, H. Mizuno, J. Huang, J.W. Futrell, A.J. Katz, P. Benhaim, H.P. Lorenz, M.H. Hedrick, Tissue Eng. 7 (2001) 211-228.
DOI URL PMID |
[3] |
C.E. Mullersieburg, E. Deryugina, Stem Cells 13 (1995) 477-486.
DOI URL PMID |
[4] |
J.W. Zhang, C. Niu, L. Ye, H.Y. Huang, X. He, W.G. Tong, J. Ross, J. Haug, T. Johnson, J.Q. Feng, S. Harris, L.M. Wiedemann, Y. Mishina, L.H. Li, Nature 425 (2003) 836-841.
DOI URL PMID |
[5] | Z. Liu, X. Yin, Q. Ye, W. He, M. Ge, X. Zhou, J. Hu, S. Zou, J. Biomater, Appl. 31 (2016) 121-131. |
[6] | X. Chen, T. Zhang, J. Shi, P. Xu, Z. Gu, A. Sandham, L. Yang, Q. Ye, PLoS One 8 (2013), e69967. |
[7] |
F. J. Rodriguez-Lozano, C.Bueno, C.L. Insausti, L. Meseguer, M.C. Ramirez, M. Blanquer, N. Marin, S. Martinez, J.M. Moraleda, Int. Endod. J. 44 (2011) 800-806.
DOI URL |
[8] |
L. Pierdomenico, L. Bonsi, M. Calvitti, D. Rondelli, M. Arpinati, G. Chirumbolo, E. Becchetti, C. Marchionni, F. Alviano, V. Fossati, N. Staffolani, M. Franchina, A. Grossi, G.P. Bagnara, Transplantation 80 (2005) 836-842.
DOI URL PMID |
[9] |
I. Kerkis, A.I. Caplan, Tissue Eng. Part B-Rev. 18 (2012) 129-138.
DOI URL PMID |
[10] |
A. Erices, P. Conget, J.J. Minguell, Br. J. Haematol. 109 (2000) 235-242.
DOI URL PMID |
[11] |
D.T. Covas, J.L. Siufi, A.R. Silva, M.D. Orellana, Braz. J. Med. Biol. Res. 36 (2003) 1179-1183.
DOI URL PMID |
[12] |
D. Legzdina, A. Romanauska, S. Nikulshin, T. Kozlovska, U. Berzins, Int. J. Stem Cells 9 (2016) 124-136.
DOI URL PMID |
[13] |
H.R. Lin, C.W. Heish, C.H. Liu, S. Muduli, H.F. Li, A. Higuchi, S.S. Kumar, A.A. Alarfaj, M.A. Munusamy, S.T. Hsu, D.C. Chen, G. Benelli, K. Murugan, N.C. Cheng, H.C. Wang, G.J. Wu, Sci. Rep. 7 (2017) 40069.
URL PMID |
[14] |
W. Wang, K. Itaka, S. Ohba, N. Nishiyama, U.I. Chung, Y. Yamasaki, K. Kataoka, Biomaterials 30 (2009) 2705-2715.
DOI URL |
[15] |
S. Zhang, P. Liu, L. Chen, Y. Wang, Z. Wang, B. Zhang, Biomaterials 41 (2015) 15-25.
DOI URL PMID |
[16] | L. Guo, Y. Zhou, S. Wang, Y. Wu, J. Cell, Mol. Med. 18 (2014) 2009-2019. |
[17] |
N.C. Cheng, S. Wang, T.H. Young, Biomaterials 33 (2012) 1748-1758.
DOI URL |
[18] |
V. Miceli, M. Pampalone, S. Vella, A.P. Carreca, G. Amico, P.G. Conaldi, Stem Cells Int. 2019 (2019), 7486279.
DOI URL PMID |
[19] |
S.I. Lee, Y. Ko, J.B. Park, Exp. Ther. Med. 14 (2017) 2434-2438.
DOI URL PMID |
[20] |
S.C. Hess, W.J. Stark, D. Mohn, N. Cohrs, S. Marsmann, M. Calcagni, P. Cinelli, J. Buschmann, Eur. Cell. Mater. 34 (2017) 232-248.
DOI URL PMID |
[21] |
L. Stevanato, J.D. Sinden, Stem Cell Res. Ther. 5 (2014) 49.
DOI URL PMID |
[22] |
C. Merceron, S. Portron, M. Masson, J. Lesoeur, B.H. Fellah, O. Gauthier, O. Geffroy, P. Weiss, J. Guicheux, C. Vinatier, Cell Transplant. 20 (2011) 1575-1588.
DOI URL |
[23] |
J. He, D.C. Genetos, C.E. Yellowley, J.K. Leach, J. Cell. Biochem. 110 (2010) 87-96.
DOI URL PMID |
[24] |
F. Faghihi, E. Mirzaei, J. Ai, A. Lotfi, F.A. Sayahpour, S. Ebrahimi-Barough, M.T. Joghataei, Mol. Neurobiol. 53 (2016), 1873-1873.
DOI URL PMID |
[25] | J. Juhasova, S. Juhas, J. Klima, J. Strnadel, M. Holubova, J. Motlik, Physiol. Res. 60 (2011) 559-571. |
[26] | D. Mandatori, L. Penolazzi, C. Pipino, P. Di Tomo, S. Di Silvestre, N. Di Pietro, S. Trevisani, M. Angelozzi, M. Ucci, R. Piva, A. Pandolfi, J. Tissue Eng, Regen. Med. 12 (2018) 447-459. |
[27] |
P.N. Almeida, D.D.N. Barboza, E.B. Luna, M.C. M.Correia, R.B. Dias, A.C. Siquara de Sousa, M.E. L. Duarte, M.I. D. Rossi, K.S. Cunha, Orphanet J. Rare Dis. 13 (2018) 98.
DOI URL PMID |
[28] |
R. Crespo-Diaz, A. Behfar, G.W. Butler, D.J. Padley, M.G. Sarr, J. Bartunek, A.B. Dietz, A. Terzic, Cell Transplant. 20 (2011) 797-812.
DOI URL |
[29] |
G. Eke, N. Mangir, N. Hasirci, S. MacNeil, V. Hasirci, Biomaterials 129 (2017) 188-198.
DOI URL PMID |
[30] |
R. Yang, Y. Zheng, M. Burrows, S. Liu, Z. Wei, A. Nace, W. Guo, S. Kumar, G. Cotsarelis, X. Xu, Nat. Commun. 5 (2014), 3071-3071.
DOI URL PMID |
[31] |
S. Rodin, L. Antonsson, C. Niaudet, O.E. Simonson, E. Salmela, E.M. Hansson, A. Domogatskaya, Z. Xiao, P. Damdimopoulou, M. Sheikhi, J. Inzunza, A.S. Nilsson, D. Baker, R. Kuiper, Y. Sun, E. Blennow, M. Nordenskjöld, K.H. Grinnemo, J. Kere, C. Betsholtz, O. Hovatta, K. Tryggvason, Nat. Commun. 5 (2014) 3195.
DOI URL PMID |
[32] |
A. Higuchi, P.Y. Shen, J.K. Zhao, C.W. Chen, Q.D. Ling, H. Chen, H.C. Wang, J.T. Bing, S.T. Hsu, Tissue Eng. Part A 17 (2011) 2593-2602.
DOI URL PMID |
[33] |
A. Higuchi, C.W. Chuang, Q.D. Ling, S.C. Huang, L.M. Wang, H. Chen, Y. Chang, H.C. Wang, J.T. Bing, Y. Chang, S.T. Hsu, J. Membr. Sci. 366 (2011) 286-294.
DOI URL |
[34] |
R. Ravichandran, J.R. Venugopal, S. Sundarrajan, S. Mukherjee, S. Ramakrishna, Biomaterials 33 (2012) 846-855.
DOI URL |
[35] |
P.J. Kingham, D.F. Kalbermatten, D. Mahay, S.J. Armstrong, M. Wiberg, G. Terenghi, Exp. Neurol. 207 (2007) 267-274.
DOI URL PMID |
[36] |
L.E. Kokai, J.P. Rubin, K.G. Marra, Plast. Reconstr. Surg. 116 (2005) 1453-1460.
DOI URL PMID |
[37] |
D. Lo Furno, R. Pellitteri, A.C.E. Graziano, R. Giuffrida, C. Vancheri, E. Gili, V. Cardile, J. Cell. Physiol. 228 (2013) 2109-2118.
DOI URL |
[38] |
E.D. Petersen, J.R. Zenchak, O.V. Lossia, U. Hochgeschwender, Stem Cells Dev. 27 (2018) 637-647.
DOI URL PMID |
[39] |
W. Wagner, P. Horn, M. Castoldi, A. Diehlmann, S. Bork, R. Saffrich, V. Benes, J. Blake, S. Pfister, V. Eckstein, A.D. Ho, PLoS One 3 (2008) e2213.
DOI URL PMID |
[40] |
J. Savickiene, G. Treigyte, S. Baronaite, G. Valiuliene, A. Kaupinis, M. Valius, A. Arlauskiene, R. Navakauskiene, Stem Cells Int. 2015 (2015) 319238.
DOI URL PMID |
[41] |
Z. Cesarz, K. Tamama, Stem Cells Int. 2016 (2016) 9176357.
DOI URL PMID |
[42] |
A. Higuchi, Q.D. Ling, Y. Chang, S.T. Hsu, A. Umezawa, Chem. Rev. 113 (2013) 3297-3328.
DOI URL PMID |
[43] |
A. Higuchi, Q.D. Ling, S.S. Kumar, Y. Chang, A.A. Alarfaj, M.A. Munusamy, K. Murugan, S.T. Hsu, A. Umezawa, J. Mater. Chem. B 3 (2015) 8032-8058.
DOI URL PMID |
[1] | Run Huang, Lei Liu, Bo Li, Liang Qin, Lei Huang, Kelvin W.K. Yeung, Yong Han. Nanograins on Ti-25Nb-3Mo-2Sn-3Zr alloy facilitate fabricating biological surface through dual-ion implantation to concurrently modulate the osteogenic functions of mesenchymal stem cells and kill bacteria [J]. J. Mater. Sci. Technol., 2021, 73(0): 31-44. |
[2] | Kyubae Lee, Yazhou Chen, Xiaomeng Li, Naoki Kawazoe, Yingnan Yang, Guoping Chen. Influence of viscosity on chondrogenic differentiation of mesenchymal stem cells during 3D culture in viscous gelatin solution-embedded hydrogels [J]. J. Mater. Sci. Technol., 2021, 63(0): 1-8. |
[3] | Jing Li, Zhenqiang Feng, Ning Gu, Fang Yang. Superparamagnetic iron oxide nanoparticles assembled magnetic nanobubbles and their application for neural stem cells labeling [J]. J. Mater. Sci. Technol., 2021, 63(0): 124-132. |
[4] | Yongjin Sun, Juntao Zhang, Bi Chen, Yunlong Yang, Haiyan Li, Xin Niu, Qing Li, Weidong Wu, Zongping Xie, Yunfeng Chen, Fuyue Wu, Yang Wang. Small extracellular vesicles secreted by urine-derived stem cells enhanced wound healing in aged mice by ameliorating cellular senescence [J]. J. Mater. Sci. Technol., 2021, 63(0): 216-227. |
[5] | Kaur Tejinder, Thirugnanam Arunachalam. Effect of Porous Activated Charcoal Reinforcement on Mechanical and In-Vitro Biological Properties of Polyvinyl Alcohol Composite Scaffolds [J]. J. Mater. Sci. Technol., 2017, 33(7): 734-743. |
[6] | Xu Shao,Zhou Zhiyu,Gao Manman,Zou Changye,Che Yinglin,Cody Bünger,Zou Xuenong,Zhou Lei. Bioadaptive Nanorod Topography of Titanium Surface to Control Cell Behaviors and Osteogenic Differentiation of Preosteoblast Cells [J]. J. Mater. Sci. Technol., 2016, 32(9): 944-949. |
[7] | Hao Lijing,Li Tianjie,Zhao Naru,Cui Fuzhai,Du Chang,Wang Yingjun. Mediating Mesenchymal Stem Cells Responses and Osteopontin Adsorption via Oligo(ethylene glycol)-amino Mixed Self-assembled Monolayers [J]. J. Mater. Sci. Technol., 2016, 32(9): 966-970. |
[8] | Guobo Lan, Mei Li, Ying Tan, Lihua Li, Xiaoming Yang, Limin Ma, Qingshui Yin, Hong Xia, Yu Zhang, Guoxin Tan, Chengyun Ning. Promoting Bone Mesenchymal Stem Cells and Inhibiting Bacterial Adhesion of Acid-Etched Nanostructured Titanium by Ultraviolet Functionalization [J]. J. Mater. Sci. Technol., 2015, 31(2): 182-190. |
[9] | Xiaojuan Wei, Tingfei Xi, Yufeng Zheng, Changqing Zhang, Wenhai Huan. In Vitro Comparative Effect of Three Novel Borate Bioglasses on the Behaviors of Osteoblastic MC3T3-E1 Cells [J]. J. Mater. Sci. Technol., 2014, 30(10): 979-983. |
[10] | Tianchi Ma, Peng Wan, Yuyan Cui, Guirong Zhang, Jiqiang Li, Jihui Liu, Yibin, Ke Yang, Li Lu. Cytocompatibility of High Nitrogen Nickel-Free Stainless Steel for Orthopedic Implants [J]. J Mater Sci Technol, 2012, 28(7): 647-653. |
[11] | Quanming Wang, Hongjie Hu, Yuqing Qiao, Zhengxiang Zhang, Junying Sun. Enhanced Performance of Osteoblasts by Silicon Incorporated Porous TiO2 Coating [J]. J Mater Sci Technol, 2012, 28(2): 109-117. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||