J. Mater. Sci. Technol. ›› 2021, Vol. 63: 124-132.DOI: 10.1016/j.jmst.2020.02.045
• Research Article • Previous Articles Next Articles
Jing Li, Zhenqiang Feng, Ning Gu*(), Fang Yang*(
)
Received:
2019-12-15
Revised:
2020-02-02
Accepted:
2020-02-17
Published:
2021-02-10
Online:
2021-02-15
Contact:
Ning Gu,Fang Yang
About author:
yangfang2080@seu.edu.cn (F. Yang).Jing Li, Zhenqiang Feng, Ning Gu, Fang Yang. Superparamagnetic iron oxide nanoparticles assembled magnetic nanobubbles and their application for neural stem cells labeling[J]. J. Mater. Sci. Technol., 2021, 63: 124-132.
Fig. 1. Schematics of SPIONs assembled magnetic nanobubbles and their application for neural stem cell labeling with different methods. SPIONs: Superparagmagnetic iron oxide nanoparticles.
Fig. 2. Assembled parameters and characterization of assembled magnetic nanobubbles. (a) Effect of compression speed (a1-1) for size distribution; (a1-2) for count rate of bubbles and peak ratio of free SPIONs), compression cycles (a2-1) for size distribution; (a2-2) for count rate of bubbles and peak ratio of free SPIONs) and the concentration of SPIONs (a3-1) for size distribution; (a3-2) for peak ratio of free SPIONs) on assembled nanobubbles; (b) size distribution (b1) and zeta potential (b2) of nanobubbles, nanoparticles and assembled nanobubbles by NanoSizer. All bars represent mean ± SD, and three independent experiments (n = 3) were performed; (c) The stability of assembled magnetic nanobubbles at room temperature (25 °C).
Fig. 3. Morphologies of assembled magnetic nanobubbles. (a) TEM images of SPIONs; (b) TEM images of assembled nanobubbles, and the top left corner shows the magnification of one sample; (c) SEM images of assembled nanobubbles, and the top left corner shows the magnification of one sample; (d) analysis of atomic percentage and mass percentage in assembled nanobubbles by EDS module.
Fig. 4. Mechanism of assembled process for assembled nanobubbles. (a) SPIONs in water solution before compression; (b) a gas layer deposited on the surface of the nanoparticles during repeat compressions; (c) attractions between nanoparticles and nanobubbles; (d) the assembled nanobubbles structures.
Fig. 5. MR and ultrasound imaging of assembled nanobubbles. (a) Fe concentration-dependent T2-weighted magnetic resonance images in a 7.0 T MR scanner, and the average mean gray value of T2 signal (b); (c) ultrasound imaging of assembled nanobubbles, and mean contrast enhanced grayscale of ultrasound imaging (d). All bars represent mean ± SD, and three independent experiments (n = 3) were performed; and the statistical significance is indicated by ***p < 0.001 and ****p < 0.0001.
Fig. 6. Neural stem cell (NSCs) labeling in vitro. (a) Cell viability under different ultrasound acoustic pressure (2.50, 4.40, 6.00, 7.65 kPa); stability of assembled nanobubbles under ultrasound exposure (b), and in cell incubator at different time points (0, 6, 14, 24, 48 h) (c); (d) Prussian blue staining of no treatment of control cells and cells treated by nanoparticles loaded nanobubbles under the 4.40 kpa ultrasound exposure for 40 s; (e) iron concentration in one cell treated with different concentrations of iron in assembled nanobubbles or with different labeling method, and measured by ICP-OES; (f) TEM images of NSCs with and without nanoparticles loaded nanobubbles treatment. A higher-magnification image of the indicated portion is shown in the right panel. All bars represent mean ± SD, and three independent experiments (n = 3) were performed; and the statistical significance is indicated by **p < 0.01 and *p < 0.05. NSCs: Neural stem cells; SPIONs: Superparamagnetic iron oxide nanoparticles.
[1] |
A. Upadhyay, S.V. Dalvi, G. Gupta, N. Khanna, Mater. Sci. Eng. C 71 (2017) 425-430.
DOI URL |
[2] |
N. Tabatadze, C. Tomas, R. McGonigal, B. Lin, A. Schook, A. Routtenberg, Hippocampus 22 (2012) 1228-1241.
DOI URL |
[3] |
R.M. Lang, S.B. Feinstein, S.M. Powsner, C.E. McCoy, E.D. Frederickson, A. Neumann, L.I. Goldberg, K.M. Borow, Circulation 75 (1987) 229-234.
DOI URL PMID |
[4] |
S.B. Feinstein, R.M. Lang, C. Dick, A. Neumann, J. Al-Sadir, K.G. Chua, J. Carroll, T. Feldman, K.M. Borow, J. Am. Coll. Cardiol. 11 (1988) 59-65.
DOI URL PMID |
[5] |
T. Temesgen, T.T. Bui, M. Han, T.I. Kim, H. Park, Adv. Colloid Interface Sci. 246 (2017) 40-51.
DOI URL PMID |
[6] |
J. Jin, Z.Q. Feng, F. Yang, N. Gu, Langmuir 35 (2019) 4238-4245.
DOI URL PMID |
[7] |
S.H. Oh, J.M. Kim, Langmuir 33 (2017) 3818-3823.
DOI URL PMID |
[8] |
J.R. Seddon, D. Lohse, W.A. Ducker, V.S. Craig, ChemPhysChem 13 (2012) 2179-2187.
DOI URL |
[9] |
A.S. Julie, E.C. Donald, C.C. Charles, S. Bhavdeep, H. Thomas, B. Howard, J. Control. Release 108 (2005) 21-32.
DOI URL PMID |
[10] |
C.L. Tang, K.J. Fang, Y.L. Guo, R. L, X.Z. Fan, P. Chen, Z.H. Chen, Q.W. Liu, Y. Zou, J. Ultrasound Med. 36 (2017) 531-538.
DOI URL PMID |
[11] |
A. Torres, S.K. Koskinen, H. Gjertsen, B. Fischler, Acta Radiol. 58 (2017) 1395-1399.
DOI URL PMID |
[12] |
R.Y. Song, C. Peng, X.N. Xu, J.W. Wang, M. Yu, Y.M. Hou, R.H. Zou, S.H. Yao, ACS Appl. Mater. Interfaces 10 (2018) 14312-14320.
DOI URL PMID |
[13] |
K. Kooiman, M.R. Bohmer, M. Emmer, H.J. Vos, C. Chlon, W.T. Shi, C.S. Hall, S. H. de Winter, K. Schroen, M. Versluis, N. de Jong, A. van Wamel, J. Control, Release 133 (2009) 109-118.
DOI URL |
[14] |
S.H. Bloch, M. Wan, P.A. Dayton, K.W. Ferrara, Appl. Phys. Lett. 84 (2004) 631-633.
DOI URL |
[15] |
M. Gauthier, Q. Yin, J.J. Cheng, W.D. O’Brien. J. Ultrasound Med. 34 (2015) 1363-1372.
DOI URL PMID |
[16] |
W. He, F. Yang, Y.H. Wu, S. Wen, P. Chen, Y. Zhang, N. Gu, Mater. Lett. 68 (2012) 64-67.
DOI URL |
[17] |
T.A. Rovers, G. Sala, E. van der Linden, M.B. Meinders, ACS Appl. Mater. Interfaces 8 (2016) 333-340.
DOI URL PMID |
[18] |
D. Vlaskou, O. Mykhaylyk, F. Krötz, N. Hellwig, R. Renner, U. Schillinger, B. Gleich, A. Heidsieck, G. Schmitz, K. Hensel, C. Plank, Adv. Funct. Mater. 20 (2010) 3881-3894.
DOI URL |
[19] |
O. Mykhaylyk, Y. Sanchez-Antequera, D. Vlaskou, M.B. Cerda, M. Bokharaei, E. Hammerschmid, M. Anton, C. Plank, Methods Mol. Biol. 1218 (2015) 53-106.
DOI URL PMID |
[20] | H. Chen, J. Li, W.Z. Zhou, E.G. Pelan, S.D. Stoyanov, L.N. Arnaudov, H. A. Stone, Langmuir 30 (2014) 4262-4266. |
[21] |
T.B. Brismar, D. Grishenkov, B. Gustafsson, J. Harmark, A. Barrefelt, S.V. Kothapalli, S. Margheritelli, L. Oddo, K. Caidahl, H. Hebert, G. Paradossi, Biomacromolecules 13 (2012) 1390-1399.
DOI URL |
[22] |
G.M. Whitesides, Nature 442 (2006) 368-373.
DOI URL PMID |
[23] |
H. Kanaka, T. Esra, L.L. Marjorie, A.D. Paul, P.L. Abraham, Lab Chip 7 (2007) 463-468.
DOI URL PMID |
[24] |
J. Owen, C. Crake, J.Y. Lee, D. Carugo, E. Beguin, A.A. Khrapitchev, R.J. Browning, N. Sibson, E.A. Stride, Drug Deliv. Transl. Res. 8 (2018) 342-356.
DOI URL PMID |
[25] |
M. Chinol, P. Casalini, M. Maggiolo, S. Canevari, E.S. Omodeo, P. Caliceti, F.M. Veronese, M. Cremonesi, F. Chiolerio, E. Nardone, A.G. Siccardi, G. Paganelli, Br. J. Cancer 78 (1998) 189-197.
DOI URL PMID |
[26] |
F. Yang, Y.X. Li, Z.P. Chen, Y. Zhang, J.R. Wu, N. Gu, Biomaterials 30 (2009) 3882-3890.
DOI URL PMID |
[27] |
L. Duan, F. Yang, L.N. Song, K. Fang, J.L. Tian, Y.J. Liang, M.X. Li, N. Xu, Z.D. Chen, Y. Zhang, N. Gu, Soft Matter 11 (2015) 5492-5500.
DOI URL PMID |
[28] |
J.I. Park, D. Jagadeesan, R. Williams, W. Oakden, S. Chung, G.J. Stanisz, E. Kumacheva, ACS Nano 4 (2010) 6579-6586.
DOI URL PMID |
[29] |
T. Lammers, P. Koczera, S. Fokong, F. Gremse, J. Ehling, M. Vogt, A. Pich, G. Storm, M. van Zandvoort, F. Kiessling, Adv. Funct. Mater. 25 (2015) 36-43.
DOI URL PMID |
[30] |
H. Mulvana, R.J. Eckersley, M.X. Tang, Q. Pankhurst, E. Stride, Ultrasound Med. Biol. 38 (2012) 864-875.
DOI URL |
[31] |
E. Stride, C. Porter, A.G. Prieto, Q. Pankhurst, Ultrasound Med. Biol. 35 (2009) 861-868.
DOI URL |
[32] |
B.H. Luo, H.J. Zhang, X.H. Liu, R. Rao, Y. Wu, W. Liu, Biomed. Mater. Eng. 26 (Suppl. 1) (2015) S911-S916.
DOI URL PMID |
[33] |
N.T.K. Thanh, L.A.W. Green, Nano Today 5 (2010) 213-230.
DOI URL |
[34] |
W. Cai, X. Chen, Small 3 (2007) 1840-1854.
DOI URL PMID |
[35] |
C.R. Bjornson, R.L. Rietze, B.A. Reynolds, M.C. Magli, A.L. Vescovi, Science 283 (1999) 534-537.
DOI URL PMID |
[36] |
J.D. Bernstock, L. Peruzzotti-Jametti, D. Ye, F.A. Gessler, D. Maric, N. Vicario, Y.J. Lee, S. Pluchino, J.M. Hallenbeck, J. Cereb, Blood Flow Metab. 37 (2017) 2314-2319.
DOI URL |
[37] |
M. Stenudd, H. Sabelstrom, J. Frisen, JAMA Neurol. 72 (2015) 235-237.
DOI URL PMID |
[38] |
M. Yousefifard, V. Rahimi-Movaghar, F. Nasirinezhad, M. Baikpour, S. Safari, S. Saadat, A. Moghadas Jafari, H. Asady, S. M. Razavi Tousi, M. Hosseini, Neuroscience 322 (2016) 377-397.
DOI URL PMID |
[39] |
W.J. Cui, S. Tavri, M.J. Benchimol, M. Itani, E.S. Olson, H. Zhang, M. Decyk, R.G. Ramirez, C.V. Barback, Y. Kono, R.F. Mattrey, Biomaterials 34 (2013) 4926-4935.
DOI URL |
[40] |
L. Gong, C.Q. Jiang, L. Liu, S.X. Wan, W. Tan, S.S. Ma, X.J. Jia, M.W. Wang, A. Hu, Y. Shi, Y. Zhang, Y.Y. Shen, F. Wang, Y. Chen, Exp. Ther. Med. 15 (2018) 620-626.
DOI URL PMID |
[41] |
Y.Q. Wang, C.J. Xu, H. Ow, Theranostics 3 (2013) 544-560.
DOI URL PMID |
[42] |
H.L. Lei, X. Nan, Z.Y. Wang, L. Gao, L.S. Xie, C. Zou, Q. Wan, D. Pan, N. Beauchamp, X.M. Yang, T. Matula, B.S. Qiu, J. Nanosci. Nanotechnol. 15 (2015) 2605-2612.
DOI URL PMID |
[43] |
L.J. Arnold JR., A. Dagan, J. Gutheil, N.O. Kaplan, Proc. Natl. Acad. Sci. U. S. A. 76 (1979) 3246-3250.
DOI URL PMID |
[44] |
B. Chen, J.F. Sun, F.G. Fan, X.Z. Zhang, Z.G. Qin, P. Wang, Y. Li, X.Q. Zhang, F. Liu, Y.L. Liu, M. Ji, N. Gu, Nanoscale 10 (2018) 7369-7376.
DOI URL PMID |
[45] |
G.L. Zhang, L.K. Chen, W.H. Chen, B.Q. Li, Y.B. Yu, F. Lin, X.Y. Guo, H. Wang, G.J. Wu, B. Gu, W. Miao, J. Kong, X.X. Jin, G.Q. Yi, Y. You, X.H. Su, N. Gu, J. Biomed. Nanotechnol. 14 (2018) 1178-1188.
DOI URL PMID |
[46] |
F. Yang, M.X. Li, H.T. Cui, T.T. Wang, Z.W. Chen, L.N. Song, Z.X. Gu, Y. Zhang, N. Gu, Sci. China Mater. 58 (2015) 467-480.
DOI URL |
[47] |
C.A. Ward, E. Levart, J. Appl. Phys. 56 (1984) 491-500.
DOI URL |
[48] | D.M. Avishay, K.M. Tenny, Henry’s Law, StatPearls Publishing books in 2019, 2019. |
[49] |
K.H. Støverud, H.P. Langtangen, V. Haughton, K.A. Mardal, Neuroradiol. J. 26 (2013) 218-226.
DOI URL PMID |
[1] | Tao Liu, Caizhen Zhu, Wei Wu, Kai-Ning Liao, Xianjing Gong, Qijun Sun, Robert K.Y. Li. Facilely prepared layer-by-layer graphene membrane-based pressure sensor with high sensitivity and stability for smart wearable devices [J]. J. Mater. Sci. Technol., 2020, 45(0): 241-247. |
[2] | Youzuo Hu, Hongyuan Zhao, Ming Tan, Jintao Liu, Xiaohui Shu, Meiling Zhang, Shanshan Liu, Qiwen Ran, Hao Li, Xingquan Liu. Synthesis of α-LiFeO2/Graphene nanocomposite via layer by layer self-assembly strategy for lithium-ion batteries with excellent electrochemical performance [J]. J. Mater. Sci. Technol., 2020, 55(0): 173-181. |
[3] | Kunsik An, Jaehoon Kim, Mohammad Afsar Uddin, Seunghyun Rhee, Hyeok Kim, Kyung-Tae Kang, Han Young Woo, Changhee Lee. Germinant ZnO nanorods as a charge-selective layer in organic solar cells [J]. J. Mater. Sci. Technol., 2020, 55(0): 89-94. |
[4] | Mingli Lin, Huanhuan Liu, Jingjing Deng, Ran An, Minjuan Shen, Yanqiu Li, Xu Zhang. Carboxymethyl chitosan as a polyampholyte mediating intrafibrillar mineralization of collagen via collagen/ACP self-assembly [J]. J. Mater. Sci. Technol., 2019, 35(9): 1894-1905. |
[5] | Luo Kun,Xiang Yongdong,Wang Haiming,Xiang Li,Luo Zhihong. Multiple-Sized Amphiphilic Janus Gold Nanoparticles by Ligand Exchange at Toluene/Water Interface [J]. J. Mater. Sci. Technol., 2016, 32(8): 733-737. |
[6] | Kun Luo, Tao Huang, Yujia Luo, Haiming Wang, Chao Sang, Xiaogang Li. Thin Film Assembly of Gold Nanoparticles for Vapor Sensing via Droplet Interfacial Reaction [J]. J. Mater. Sci. Technol., 2013, 29(5): 401-405. |
[7] | Xifeng Lu, Lei Zhang, Hui Zhao, Kai Yan, Yan Cao, Lumin Meng. Synthesis, Characterization and Gas Sensing Properties of In(OH)3 and In2O3 Nanorods through Carbon Spheres Template Method [J]. J Mater Sci Technol, 2012, 28(5): 396-400. |
[8] | A.B.Djuri, i, A.M.C.Ng, Kai-Yin CHEUNG, Man-Kin FUNG, Wai-Kin CHAN. Small Molecule Organic Nanostructures—Fabrication and Properties [J]. J Mater Sci Technol, 2008, 24(04): 563-568. |
[9] | Haihu YU, Honghui LI, Desheng JIANG, Xiaoyao CHEN, Enyu YANG. Fabrication of Au/SiO2 Nanocomposite Films by Self-Assembly Multilayer Method [J]. J Mater Sci Technol, 2004, 20(06): 674-677. |
[10] | Weichang HAO, Feng PAN, Tianmin WANG, Shukai ZHENG. Responding Depth of Photocatalytic Activity of TiO2 Self-assembled Films [J]. J Mater Sci Technol, 2004, 20(04): 472-474. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||