J. Mater. Sci. Technol. ›› 2021, Vol. 63: 18-26.DOI: 10.1016/j.jmst.2019.12.030
• Research Article • Previous Articles Next Articles
Hui Wanga,b, Jiaqiang Liua, Chengtao Wangc, Steve Guofang Shena,d,*(), Xudong Wanga,*(
), Kaili Lina,*(
)
Received:
2019-10-29
Revised:
2019-12-16
Accepted:
2019-12-26
Published:
2021-02-10
Online:
2021-02-15
Contact:
Steve Guofang Shen,Xudong Wang,Kaili Lin
About author:
lklecnu@aliyun.com (K. Lin).1These two authors contributed equally to this work.
Hui Wang, Jiaqiang Liu, Chengtao Wang, Steve Guofang Shen, Xudong Wang, Kaili Lin. The synergistic effect of 3D-printed microscale roughness surface and nanoscale feature on enhancing osteogenic differentiation and rapid osseointegration[J]. J. Mater. Sci. Technol., 2021, 63: 18-26.
Gene | Primer sequences (F = forward; R = reverse) |
---|---|
ALP | F: 5′-TATGTCTGGAACCGCACTGAAC-3' R: 5′-CACTAGCAAGAAGAAGCCTTTGG-3' |
OCN | F: 5′-GCCCTGACTGCATTCTGCCTCT-3' R: 5′-TCACCACCTTACTGCCCTCCTG-3' |
COL-I | F: 5′-GCCTCCCAGAACATCACCTA-3' R: 5′-GCAGGGACTTCTTGAGGTTG-3' |
OPN | F: 5′-CCAAGCGTGGAAACACACAGCC-3' R: 5′-GGCTTTGGAACTCGCCTGACTG-3' |
β-actin | F: 5′-GTAAAGACCTCTATGCCAACA-3' R: 5′-GGACTCATCGTACTCCTGCT-3' |
Table 1 Primer sequences used for RT-PCR.
Gene | Primer sequences (F = forward; R = reverse) |
---|---|
ALP | F: 5′-TATGTCTGGAACCGCACTGAAC-3' R: 5′-CACTAGCAAGAAGAAGCCTTTGG-3' |
OCN | F: 5′-GCCCTGACTGCATTCTGCCTCT-3' R: 5′-TCACCACCTTACTGCCCTCCTG-3' |
COL-I | F: 5′-GCCTCCCAGAACATCACCTA-3' R: 5′-GCAGGGACTTCTTGAGGTTG-3' |
OPN | F: 5′-CCAAGCGTGGAAACACACAGCC-3' R: 5′-GGCTTTGGAACTCGCCTGACTG-3' |
β-actin | F: 5′-GTAAAGACCTCTATGCCAACA-3' R: 5′-GGACTCATCGTACTCCTGCT-3' |
Fig. 1. SEM images of control (A, E), nano-control (B, F), micro-3D (C, G) and micro/nano-3D (D, H) groups at low (A, B, C, D) and high (E, F, G, H) magnifications.
Fig. 2. The 3D morphology (A-D) and quantitative analysis of the roughness (E, F, G) of groups control (A), nano-control (B), micro-3D (C) and micro/nano-3D (D). *p < 0.05 compared with control group, ap < 0.05 compared with micro/nano-3D group.
Fig. 4. Water contact angle of the control, nano-control, micro-3D and micro/nano-3D groups. *p < 0.05 compared with control group, ap < 0.05 compared with micro/nano-3D group.
Fig. 5. SEM images of control (A, E), nano-control (B, F), micro-3D (C, G), micro/nano-3D (D, H) groups at low (E, F, G, H) and high (A, B, C, D) magnifications; XRD patterns of the samples after soaking in SBF for 3 days (I).
Fig. 7. Quantitative analysis of ALP activity of the BMSCs cultured on control, nano-control, micro-3D and micro/nano-3D groups for 4 and 7 days. *p < 0.05 compared with control group, ap < 0.05 compared with micro/nano-3D group.
Fig. 8. RT-PCR analysis of osteogenesis-related gene expressions of BMSCs cultured on the control, nano-control, micro-3D and micro/nano-3D group surfaces for 7 days. *p < 0.05 compared with control group, ap < 0.05 compared with micro/nano-3D group.
Fig. 9. The Alizarin red staining and quantification of extracellular matrix mineralization of BMSCs on the control (A), nano-control (B), micro-3D (C) and micro/nano-3D (D) surfaces after culturing for 21 days. *p < 0.05 compared with control group, ap < 0.05 compared with micro/nano-3D group.
Fig. 10. Histological section images of the osseointegration performance in vivo of the control (A), nano-control (B), micro-3D (C) and micro/nano-3D (D) groups at week 4, scale bar = 200 μm, and the histomorphometry analysis of BIC percentage of the four implants at week 4 (E). *p < 0.05 compared with control group, ap < 0.05 compared with micro/nano-3D group.
[1] |
M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, Prog. Mater. Sci. 54 (2009) 397-425.
DOI URL |
[2] |
X. Liu, P.K. Chu, C. Ding, Mater. Sci. Eng. R. 47 (2004) 49-121.
DOI URL |
[3] |
B.R. Chrcanovic, T. Albrektsson, A. Wennerberg, J. Oral Rehabil. 41 (2014) 443-476.
DOI URL |
[4] |
A.Y. Saber, V.D.S. Johan, C.Y. Chin, W. Ruben, T.B. Zeinab, H. Pamela, M. Michiel, S. Jan, W. Harrie, Z. Amir Abbas, Biomaterials 35 (2014) 6172-6181.
DOI URL |
[5] |
G. Granström, J. Oral. Maxil. Surg. 63 (2005) 579-585.
DOI URL |
[6] |
J.E. Davies, J. Dent. Educ. 67 (2003) 932-949.
URL PMID |
[7] |
Z. Chen, A. Bachhuka, S. Han, F. Wei, S. Lu, R.M. Visalakshan, K. Vasilev, Y. Xiao, ACS Nano 11 (2017) 4494-4506.
DOI URL PMID |
[8] |
R. Smeets, B. Stadlinger, F. Schwarz, B. Beck-Broichsitter, O. Jung, C. Precht, F. Kloss, A. Grobe, M. Heiland, T. Ebker, Biomed Res. Int. 2016 (2016), 6285620.
DOI URL PMID |
[9] |
L. Cao, I. Ullah, N. Li, S. Niu, R. Sun, D. Xia, R. Yang, X. Zhang, J. Mater. Sci. Technol. 35 (2019) 719-726.
DOI URL |
[10] | Z.Y. Shi, Q. Li, S.C. Tang, J. Qian, Y.K. Pan, J. Wei, J. Inorg. Mater. 33 (2018) 68-74. |
[11] |
J. Wang, S. Zhang, Z. Sun, H. Wang, L. Ren, K. Yang, J. Mater. Sci. Technol. 35 (2019) 2336-2344.
DOI URL |
[12] |
H.F. Li, F.L. Nie, Y.F. Zheng, Y. Cheng, S.C. Wei, R.Z. Valiev, J. Mater. Sci. Technol. 35 (2019) 2156-2162.
DOI URL |
[13] |
D. Buser, R.K. Schenk, S. Steinemann, J.P. Fiorellini, C.H. Fox, H. Stich, J. Biomed. Mater. Res. A 25 (2010) 889-902.
DOI URL |
[14] |
D.L. Cochran, D. Buser, C.M. ten Bruggenkate, D. Weingart, T.M. Taylor, J.P. Bernard, F. Peters, J.P. Simpson, Clin. Oral. Implan. Res. 13 (2010) 144-153.
DOI URL |
[15] |
J.Y. Park, C.H. Gemmell, J.E. Davies, Biomaterials 22 (2001) 2671-2682.
DOI URL |
[16] |
S. Zvi, N. Erez, B.D. Boyan, Alpha Omegan 98 (2005) 9-19.
URL PMID |
[17] |
S.M. Bang, H.J. Moon, Y.D. Kwon, J.Y. Yoo, A. Pae, I.K. Kwon, Clin. Oral. Implan. Res. 25 (2014) 831-837.
DOI URL |
[18] |
L.H. Li, Y.M. Kong, H.W. Kim, Y.W. Kim, H.E. Kim, S.J. Heo, J.Y. Koak, Biomaterials 25 (2004) 2867-2875.
DOI URL |
[19] |
G. Li, H. Cao, W. Zhang, X. Ding, G. Yang, Y. Qiao, X. Liu, X. Jiang, ACS Appl. Mater. Interfaces 8 (2016) 3840-3852.
DOI URL PMID |
[20] |
X.Y. Zhang, G. Fang, J. Zhou, Materials (Basel) 10 (2017) 50.
DOI URL |
[21] |
A. Rifai, N. Tran, P. Reineck, A. Elbourne, E. Mayes, A. Sarker, C. Dekiwadia, E.P. Ivanova, R.J. Crawford, T. Ohshima, B.C. Gibson, A.D. Greentree, E. Pirogova, K. Fox, ACS Appl. Mater. Interfaces 11 (2019) 24588-24597.
DOI URL PMID |
[22] |
L. Ma, X. Wang, N. Zhao, Y. Zhu, Z. Qiu, Q. Li, Y. Zhou, Z. Lin, X. Li, X. Zeng, H. Xia, S. Zhong, Y. Zhang, Y. Wang, C. Mao, ACS Appl. Mater. Interfaces 10 (2018) 42146-42154.
DOI URL PMID |
[23] |
H. Wang, X.R. Zhang, J.K. Zhang, J. Li, C.S. Ruan, R. Zhu, K.L. Lin, J. Biomed. Nanotechnol. 14 (2018) 707-715.
DOI URL PMID |
[24] | L.E. Murr, J. Mater. Sci. Technol. 35 (2019) 231-241. |
[25] | D. Ren, S. Li, H. Wang, W. Hou, Y. Hao, W. Jin, R. Yang, R.D.K. Misra, L.E. Murr, J. Mater. Sci. Technol. 35 (2019) 285-294. |
[26] | J. Zhang, W. Zhou, H. Wang, K. Lin, F. Chen, J. Mater. Sci. Technol. 35 (2019) 336-343. |
[27] |
R.A. Gittens, T. McLachlan, R. Olivares-Navarrete, Y. Cai, S. Berner, R. Tannenbaum, Z. Schwartz, K.H. Sandhage, B.D. Boyan, Biomaterials 32 (2011) 3395-3403.
DOI URL |
[28] |
G. Mendonca, D.B. Mendonca, F.J. Aragao, L.F. Cooper, Biomaterials 29 (2008) 3822-3835.
DOI URL |
[29] |
S. Dobbenga, L.E. Fratila-Apachitei. A.A. Zadpoor, Acta Biomater. 46 (2016) 3-14.
DOI URL PMID |
[30] |
J. Huang, X. Zhang, W. Yan, Z. Chen, X. Shuai, A. Wang, Y. Wang, Nanomedicine 13 (2017) 1913-1923.
DOI URL PMID |
[31] |
J. Wang, S. Qian, X. Liu, L. Xu, X. Miao, Z. Xu, L. Cao, H. Wang, X. Jiang, J. Mater. Chem. B 5 (2017) 3364-3376.
DOI URL PMID |
[32] | Y. Su, S. Komasa, T. Sekino, H. Nishizaki, J. Okazaki, Mater. Sci. Eng. C Mater.Biol. Appl. 59 (2016) 617-623. |
[33] |
D. Guadarrama Bello, A. Fouillen, A. Badia, A. Nanci, Acta Biomater. 60 (2017) 339-349.
DOI URL PMID |
[34] |
Y. Li, C. Liu, Nanoscale 9 (2017) 4862-4874.
DOI URL PMID |
[35] |
L. Xia, K. Lin, X. Jiang, Y. Xu, M. Zhang, J. Chang, Z. Zhang, J. Mater. Chem. B 1 (2013) 5403.
DOI URL PMID |
[36] |
L. Zhao, S. Mei, P.K. Chu, Y. Zhang, Z. Wu, Biomaterials 31 (2010) 5072-5082.
DOI URL PMID |
[37] |
K. Lin, L. Xia, J. Gan, Z. Zhang, H. Chen, X. Jiang, J. Chang, ACS Appl. Mater. Interfaces 5 (2013) 8008-8017.
URL PMID |
[38] | L. Gao, B. Feng, J. Wang, X. Lu, D. Liu, S. Qu, J. Weng, J. Biomed. Mater. Res. B89B (2010) 335-341. |
[39] |
W.A. Camargo, S. Takemoto, J.W. Hoekstra, S.C.G. Leeuwenburgh, , J. A. Jansen, J.van den Beucken, H.S. Alghamdi, Acta Biomater. 57 (2017) 511-523.
DOI URL PMID |
[40] |
A.J. Engler, S. Shamik, S.H. Lee, D.E. Discher, Cell 126 (2006) 677-689.
DOI URL PMID |
[41] |
Y. Zhang, S.E. Chen, J. Shao, J. van den Beucken, ACS Appl. Mater. Interfaces 10 (2018) 36652-36663.
DOI URL PMID |
[42] |
A. Leal-Egaña, A. Díaz-Cuenca, A.R. Boccaccini, Adv. Mater. 25 (2013) 4049-4057.
DOI URL PMID |
[43] |
J.I. Rosales-Leal, M.A. Rodríguez-Valverde, G. Mazzaglia, P.J. Ramón-Torregrosa, L. Díaz-Rodríguez, O. García-Martínez, M. Vallecillo-Capilla, C. Ruiz, M.A. Cabrerizo-Vílchez, Colloid. Surf. A 365 (2010) 222-229.
DOI URL |
[44] |
Y. Arima, H. Iwata, Biomaterials 28 (2007) 3074-3082.
DOI URL |
[45] |
B.H. Lee, Y.D. Kim, H.J. Shin, K.H. Lee, J. Biomed. Mater. Res. 61 (2002) 466-473.
DOI URL PMID |
[46] |
K. Anselme, Biomaterials 21 (2000) 667-681.
DOI URL PMID |
[47] |
F. Gattazzo, A. Urciuolo, P. Bonaldo, Biochim. Biophys. Acta 1840 (2014) 2506-2519.
DOI URL PMID |
[48] |
J. Yang, L.E. McNamara, N. Gadegaard, E.V. Alakpa, K.V. Burgess, R.M.D. Meek, M.J. Dalby, ACS Nano 8 (2014) 9941-9953.
DOI URL PMID |
[49] |
T. Wang, Y. Wan, Z. Liu, J. Mater. Sci. -Mater. Med. 27 (2016) 133.
DOI URL PMID |
[50] |
T.J. Webster, R.W. Siegel, R. Bizios, Biomaterials 20 (1999) 1221-1227.
DOI URL PMID |
[51] | M. Cheng, Y. Qiao, W. Qi, G. Jin, Q. Hui, Y. Zhao, X. Peng, X. Zhang, X. Liu, ACSAppl. Mater. Interface 7 (2015) 13053-13061. |
[52] |
C.Y. Wang, Y.R. Duan, B. Markovic, J. Barbara, C.R. Howlett, X.D. Zhang, H. Zreiqat, Biomaterials 25 (2004) 2949-2956.
DOI URL |
[53] |
T. Kokubo, F. Miyaji, H.M. Kim, T. Nakamura, J. Am. Ceram. Soc. 79 (1996) 1127-1129.
DOI URL |
[1] | Baoxian Su, Liangshun Luo, Binbin Wang, Yanqing Su, Liang Wang, Robert O. Ritchie, Enyu Guo, Ting Li, Huimin Yang, Haiguang Huang, Jingjie Guo, Hengzhi Fu. Annealed microstructure dependent corrosion behavior of Ti-6Al-3Nb-2Zr-1Mo alloy [J]. J. Mater. Sci. Technol., 2021, 62(0): 234-248. |
[2] | Yanxin Qiao, Daokui Xu, Shuo Wang, Yingjie Ma, Jian Chen, Yuxin Wang, Huiling Zhou. Effect of hydrogen charging on microstructural evolution and corrosion behavior of Ti-4Al-2V-1Mo-1Fe alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 168-176. |
[3] | Jin-Yu Zhang, Fu-Zhi Dai, Zhi-Peng Sun, Wen-Zheng Zhang. Structures and energetics of semicoherent interfaces of precipitates in hcp/bcc systems: A molecular dynamics study [J]. J. Mater. Sci. Technol., 2021, 67(0): 50-60. |
[4] | Yi Yang, Di Xu, Sheng Cao, Songquan Wu, Zhengwang Zhu, Hao Wang, Lei Li, Shewei Xin, Lei Qu, Aijun Huang. Effect of strain rate and temperature on the deformation behavior in a Ti-23.1Nb-2.0Zr-1.0O titanium alloy [J]. J. Mater. Sci. Technol., 2021, 73(0): 52-60. |
[5] | Baoxian Su, Binbin Wang, Liangshun Luo, Liang Wang, Yanqing Su, Fuxin Wang, Yanjin Xu, Baoshuai Han, Haiguang Huang, Jingjie Guo, Hengzhi Fu. The corrosion behavior of Ti-6Al-3Nb-2Zr-1Mo alloy: Effects of HCl concentration and temperature [J]. J. Mater. Sci. Technol., 2021, 74(0): 143-154. |
[6] | Zhixin Zhang, Jiangkun Fan, Ruifeng Li, Hongchao Kou, Zhiyong Chen, Qingjiang Wang, Hailong Zhang, Jian Wang, Qi Gao, Jinshan Li. Orientation dependent behavior of tensile-creep deformation of hot rolled Ti65 titanium alloy sheet [J]. J. Mater. Sci. Technol., 2021, 75(0): 265-275. |
[7] | Xinkai Ma, Zhuo Chen, Dongling Zhong, S.N. Luo, Lei Xiao, Wenjie Lu, Shanglin Zhang. Effect of rotationally accelerated shot peening on the microstructure and mechanical behavior of a metastable β titanium alloy [J]. J. Mater. Sci. Technol., 2021, 75(0): 27-38. |
[8] | Zhong Li, Jie Wang, Yizhe Dong, Dake Xu, Xianhui Zhang, Jianhua Wu, Tingyue Gu, Fuhui Wang. Synergistic effect of chloride ion and Shewanella algae accelerates the corrosion of Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2021, 71(0): 177-185. |
[9] | Baoguo Yuan, Xing Liu, Jiangfei Du, Qiang Chen, Yuanyuan Wan, Yunliang Xiang, Yan Tang, Xiaoxue Zhang, Zhongyue Huang. Effects of hydrogenation temperature on room-temperature compressive properties of CMHT-treated Ti6Al4V alloy [J]. J. Mater. Sci. Technol., 2021, 72(0): 132-143. |
[10] | Yinling Zhang, Zhuo Chen, Shoujiang Qu, Aihan Feng, Guangbao Mi, Jun Shen, Xu Huang, Daolun Chen. Multiple α sub-variants and anisotropic mechanical properties of an additively-manufactured Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2021, 70(0): 113-124. |
[11] | Zhihong Wu, Hongchao Kou, Nana Chen, Zhixin Zhang, Fengming Qiang, Jiangkun Fan, Bin Tang, Jinshan Li. Microstructural influences on the high cycle fatigue life dispersion and damage mechanism in a metastable β titanium alloy [J]. J. Mater. Sci. Technol., 2021, 70(0): 12-23. |
[12] | X. Luo, L.H. Liu, C. Yang, H.Z. Lu, H.W. Ma, Z. Wang, D.D. Li, L.C. Zhang, Y.Y. Li. Overcoming the strength-ductility trade-off by tailoring grain-boundary metastable Si-containing phase in β-type titanium alloy [J]. J. Mater. Sci. Technol., 2021, 68(0): 112-123. |
[13] | Yu Fu, Wenlong Xiao, Junshuai Wang, Lei Ren, Xinqing Zhao, Chaoli Ma. A novel strategy for developing α + β dual-phase titanium alloys with low Young’s modulus and high yield strength [J]. J. Mater. Sci. Technol., 2021, 76(0): 122-128. |
[14] | Jing Xu, Zhouping Wang, Yongfa Zhu. Highly efficient visible photocatalytic disinfection and degradation performances of microtubular nanoporous g-C3N4 via hierarchical construction and defects engineering [J]. J. Mater. Sci. Technol., 2020, 49(0): 133-143. |
[15] | Zhixin Zhang, Jiangkun Fan, Bin Tang, Hongchao Kou, Jian Wang, Xin Wang, Shiying Wang, Qingjiang Wang, Zhiyong Chen, Jinshan Li. Microstructural evolution and FCC twinning behavior during hot deformation of high temperature titanium alloy Ti65 [J]. J. Mater. Sci. Technol., 2020, 49(0): 56-69. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||