J. Mater. Sci. Technol. ›› 2021, Vol. 63: 172-181.DOI: 10.1016/j.jmst.2020.02.030
• Research Article • Previous Articles Next Articles
Keke Wanga,b, Weinan Chengc, Zhaozhao Dingb, Gang Xud, Xin Zhengd, Meirong Lie, Guozhong Lub, Qiang Lub,*()
Received:
2019-11-25
Revised:
2019-12-20
Accepted:
2020-01-08
Published:
2021-02-10
Online:
2021-02-15
Contact:
Qiang Lu
About author:
*E-mail address: lvqiang78@suda.edu.cn (Q. Lu).1The author has same contribution with the first author.
Keke Wang, Weinan Cheng, Zhaozhao Ding, Gang Xu, Xin Zheng, Meirong Li, Guozhong Lu, Qiang Lu. Injectable silk/hydroxyapatite nanocomposite hydrogels with vascularization capacity for bone regeneration[J]. J. Mater. Sci. Technol., 2021, 63: 172-181.
Fig. 1. Morphology and crystal structure of different hydrogels: (A) SEM images and (B) XRD curves of the hydrogels. (a, a') SFH, pure silk nanofiber hydrogel; (b, b') SFH-DFO, DFO-loaded silk nanofiber hydrogel; (c, c') SFH-HA, silk nanofiber-hydroxyapatite nanocomposite hydrogel; and (d, d') DFO-loaded silk nanofiber-hydroxyapatite nanocomposite hydrogel.
Fig. 2. Characterization of different hydrogels: (A) Flow curves of the hydrogels; (B) Injectability of the different hydrogels through a syringe without a needle (a, b, c, and d) and with a 25 G needle (a', b', c', and d'): (a and a') SFH, (b and b') SFH-DFO, (c and c') SFH-HA, and (d and d') SFH-HA-DFO; (C) Inversion test of the hydrogels at different time points. The samples are as follows: a, SFH, b, SFH-DFO, c, SFH-HA, d, SFH-HA-DFO; (D) Frequency sweep of the hydrogels; (E) Complex modulus (G*) vs temperature of the hydrogels and (F) The release behavior of DFO from the SFH-DFO and SFH-HA-DFO hydrogels in PBS.
Fig. 3. In vitro angiogenesis and osteogenesis of the BMSCs cultured on different hydrogels: (A) Representative confocal images of HUVEC network when BMSCs were cultured on different hydrogels for 12 and 24 h; (B) The total tube length of the networks when BMSCs were cultured on different hydrogels for 12 and 24 h; (C-F) The expression of RUNX2, ALP, OCN and OPN when BMSCs were cultured on the different hydrogels for 7, 14 and 21 days; (G) Immunofluorescence staining of ALP when BMBCs were cultured on different hydrogels for 7 days; (H, I) Immunofluorescence staining of OCN and OPN when BMBCs were cultured on different hydrogels for 21 days. The scale bars were 200 μm. *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001.
Fig. 4. Neovascularization and bone regeneration of the defects treated with different hydrogels: (A) the neovascularization in the defects after hydrogel implantation for 2 and 4 weeks. CD31 was stained with red while α-smooth muscle actin positive cells were stained with green. The scale bars were 100 μm; (B) Micro CT images of the defects when treated with different hydrogels for 4, 8 and 12 weeks; (C-F) Bone volume, bone volume/total volume ratio (BV/TV), trabucular number (Tb. N) and trabecular thickness (Tb. Th) analyses of the defects when treated with different hydrogels for 4, 8 and 12 weeks. *p ≤ 0.05;**p ≤ 0.01; ***p ≤ 0.001.
Fig. 5. HE staining (A) and Masson staining (B) of the regenerated bone tissues at 12 weeks post-implantation. HB indicates host bone while NB means now bone. The black arrows points to the new formed blood vessels. The blue stained areas are the formed mature bones.
[1] |
X.F. Shen, Y.X. Zhang, Y. Gu, Y. Xu, Y. Liu, B. Li, L. Chen, Biomaterials 106 (2016) 205-216.
DOI URL PMID |
[2] |
Q. Wang, Y.X. Zhang, B. Li, L. Chen, J. Mater. Chem. B 5 (2017) 6963-6972.
DOI URL PMID |
[3] |
A.K. Miri, N. Muja, N.O. Kamranpour, W.C. Lepry, A.R. Boccaccini, S.A. Clarke, S.N. Nazhat, Biomaterials 85 (2016) 128-141.
DOI URL PMID |
[4] |
A. Sivashanmugam, P. Charoenlarp Charoenlarp, S. Deepthi, A. Rajendran, S.V. Nair, S. Iseki, R. Jayakumar, ACS Appl. Mater. Interfaces 9 (2017) 42639-42652.
DOI URL PMID |
[5] |
M. Kazemzadeh-Narbat, J. Rouwkema, N. Annabi, H. Cheng, M. Ghaderi, B.H. Cha, M. Aparnathi, A. Khalilpour, B. Byambaa, E. Jabbari, A. Tamayol, A. Khademhosseini, Adv. Healthc. Mater. 6 (2017), 1601122.
DOI URL |
[6] |
C.C. Yang, B. Han, C.L. Cao, D. Yang, X.Z. Qu, X.Y. Wang, J. Mater. Chem. B 6 (2018) 7811-7821.
DOI URL PMID |
[7] |
J.J. Wu, K. Zheng, X.T. Huang, J.Y. Liu, H.M. Liu, A.R. Boccaccini, Y. Wan, X.D. Guo, Z.W. Shao, Acta Biomater. 91 (2019) 60-71.
DOI URL PMID |
[8] |
J.B. Xu, Q. Feng, S. Lin, W.H. Yuan, R. Li, J.M. Li, K.C. Wei, X.Y. Chen, K.Y. Zhang, Y.H. Yang, T.Y. Wu, B. Wang, M.L. Zhu, R. Guo, G. Li, L.M. Bian, Biomaterials 210 (2019) 51-61.
DOI URL PMID |
[9] |
J. Radhakrishnan, A. Manigandan, P. Chinnaswamy, A. Subramanian, S. Sethuraman, Biomaterials 162 (2018) 82-98.
DOI URL PMID |
[10] |
J.L. Tan, M. Zhang, Z.J. Hai, C.F. Wu, J. Lin, W. Kuang, H. Tang, Y.L. Huang, X.D. Chen, G.L. Liang, ACS Nano 13 (2019) 5616-5622.
DOI URL PMID |
[11] |
S. Almubarak, H. Nethercott, M. Freeberg, C. Beaudon, A. Jha, W. Jackson, R. Marcucio, T. Miclau, K. Healy, C. Bahney, Bone 83 (2016) 197-209.
DOI URL PMID |
[12] |
J. Yin, G. Gong, C. Sun, Z.Y. Yin, C. Zhu, B. Wang, Q. Hu, Y.R. Zhu, X.H. Liu, Biomed. Pharmacother. 105 (2018) 932-939.
DOI URL PMID |
[13] |
K.Y. Zhang, Z.F. Jia, B.G. Yang, Q. Feng, X. Xu, W.H. Yuan, X.F. Li, X.Y. Chen, L. Duan, D.P. Wang, L.M. Bian, Adv. Sci. 5 (2018), 1800875.
DOI URL |
[14] |
Q.Q. Zhang, M. Qin, X.J. Zhou, W. Nie, W.Z. Wang, L. Li, C.L. He, J. Mater. Chem. B 6 (2018) 6731-6743.
DOI URL PMID |
[15] |
U. Saran, S.G. Gemini Piperni, S. Chatterjee, Arch. Biochem. Biophys. 561 (2014) 109-117.
DOI URL |
[16] | L.E. Murr, J. Mater. Sci. Technol. 35 (2019) 231-241. |
[17] |
G.L. Li, J.D. An, X.W. Han, X.L. Zhang, W.J. Wang, S.K. Wang, J. Cell. Physiol. 234 (2019) 23485-23494.
DOI URL PMID |
[18] |
Q.C. Ran, Y.L. Yu, W.Z. Chen, X.K. Shen, C.Y. Mu, Z. Yuan, B.L. Tao, Y. Hu, W.H. Yang, K.Y. Cai, Mater. Sci. Eng. C 91 (2018) 44-54.
DOI URL |
[19] |
S. Saberianpour, M. Heidarzadeh, M.H. Geranmayeh, H. Hosseinkhani, R. Rahbarghazi, M. Nouri, J. Biol. Eng. 12 (2018) 36.
DOI URL PMID |
[20] |
J.R. Garcia, A.J. Garcia, Drug Deliv. Transl. Res. 6 (2016) 77-95.
DOI URL PMID |
[21] |
Q.C. Ran, Y.L. Yu, W.Z. Chen, X.K. Shen, C.Y. Mu, Z. Yuan, B.L. Tao, Y. Hu, W.H. Yang, K.Y. Cai, Mater. Sci. Eng. C 91 (2018) 44-54.
DOI URL |
[22] |
P.Y. Li, K. Sakuma, S. Tsuchiya, L.H. Sun, Y. Hayamizu, ACS Appl. Mater. Interfaces 11 (2019) 20670-20677.
DOI URL PMID |
[23] | M. Ribeiro, M.H. Fernandes, M.M. Beppu, F.J. Monteiro, M.P. Ferraz, Mater. Sci. Eng. C 89 (2018) 336-345. |
[24] |
Z.Z. Ding, H.Y. Han, Z.H. Fan, H.J. Lu, Y.H. Sang, Y.L. Yao, Q.Q. Cheng, Q. Lu, D.L. Kaplan, ACS Appl. Mater. Interfaces 9 (2017) 16913-16921.
DOI URL PMID |
[25] |
J.C. Sun, Y.X. Zhang, B. Li, Y. Gu, L. Chen, J. Mater. Chem. B 5 (2017) 8770-8779.
DOI URL PMID |
[26] |
J. Fang, P.F. Li, X. Lu, L.M. Fang, X.Y. Lu, F.Z. Ren, Acta Biomater. 88 (2019) 503-513.
DOI URL PMID |
[27] |
A.C. Daly, P. Pitacco, J. Nulty, G.M. Cunniffe, D.J. Kelly, Biomaterials 162 (2018) 34-46.
DOI URL PMID |
[28] |
L.J. Kuang, X.Y. Ma, Y.F. Ma, Y. Yao, M. Tariq, Y. Yuan, C.S. Liu, ACS Appl. Mater. Interfaces 11 (2019) 17234-17246.
DOI URL PMID |
[29] |
E.J. Ryan, A.J. Ryan, A. Philippart, A. Gonzalez-Vazquez, F.E. Ciraldo, C. Hobbs, V. Nicolosi, A.R. Boccaccini, C.J. Kearney, F.J. O’Brien, Biomaterials 197 (2019) 405-416.
DOI URL PMID |
[30] |
Q.C. Ran, Y.L. Yu, W.Z. Chen, X.K. Shen, C.Y. Mu, Z. Yuan, B.L. Tao, Y. Hu, W.H. Yang, K.Y. Cai, Mater. Sci. Eng. C 91 (2018) 44-54.
DOI URL |
[31] | L.Z. Kong, Z. Wu, H.K. Zhao, H.M. Cui, J. Shen, J. Chang, H.Y. Li, Y.H. He, ACSAppl. Mater. Interfaces 10 (2018) 30103-30114. |
[32] |
Z.Z. Ding, M.L. Zhou, Z.Y. Zhou, W.J. Zhang, X.Q. Jiang, X.H. Lu, B.Q. Zuo, Q. Lu, D.L. Kaplan, ACS Biomater. Sci. Eng. 5 (2019) 4077-4088.
DOI URL PMID |
[33] |
J.L. Qi, Y.F. Yan, B.C. Cheng, L.F. Deng, Z.W. Shao, Z.L. Sun, X.M. Li, ACS Appl. Mater. Interfaces 10 (2019) 6180-6189.
URL PMID |
[34] |
Z.Z. Ding, Z.H. Fan, X.W. Huang, Q. Lu, W.A. Xu, D.L. Kaplan, ACS Appl. Mater. Interfaces 8 (2016) 24463-24470.
DOI URL PMID |
[35] |
L.Y. Xiao, S.S. Liu, D.Y. Yao, Z.Z. Ding, Z.H. Fan, Q. Lu, D.L. Kaplan, Biomacromolecules 18 (2017) 2073-2079.
DOI URL PMID |
[36] |
X.D. Dong, Q. Zhao, L.Y. Xiao, Q. Lu, D.L. Kaplan, Biomacromolecules 17 (2016) 3000-3006.
DOI URL PMID |
[37] |
X. Wang, Z.Z. Ding, C. Wang, X.D. Chen, H. Xu, Q. Lu, D.L. Kaplan, J. Mater. Chem. B 6 (2018) 2739-2746.
URL PMID |
[38] | L.L. Wang, D.W. Song, X. Zhang, Z.Z. Ding, X.D. Kong, Q. Lu, D.L. Kaplan, ACSBiomater. Sci. Eng. 5 (2018) 613-622. |
[39] |
A.D. Berendsen, B.R. Olsen, J. Intern. Med. 277 (2015) 674-680.
DOI URL PMID |
[40] | L. Feng, H. Wu, L.L. E, D.S. Wang, F.K. Feng, Y.W. Dong, H.C. Liu, L.L. Wang, PloS One 8 (2013), e82945. |
[41] |
K. Hu, B.R. Olsen, Bone 91 (2016) 30-38.
DOI URL PMID |
[44] |
Y. Fukuda, D. Aytemiz, A. Higuchi, Y. Ichida, T. Asakura, T. Kameda, Y. Nakazawa, J. Appl. Polym. Sci. 134 (2017) 45560.
DOI URL |
[45] |
B. Kundu, R. Rajkhowa, S.C. Kundu, X.G. Wang, Adv. Drug Deliv. Rev. 65 (2013) 457-470.
DOI URL PMID |
[46] |
Y.V. Shih, S. Varghese, Biomaterials 198 (2018) 107-121.
DOI URL PMID |
[47] |
S.J. Weng, D.Y. Yan, J.H. Tang, Z.J. Shen, Z.Y. Wu, Z.J. Xie, J.Y. Yang, B.L. Bai, L. Chen, V. Boodhun, L. Yang, X. Da Eric Dong, L. Yang, Biomed. Pharmacother. 109 (2019) 573-581.
DOI URL PMID |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||