J. Mater. Sci. Technol. ›› 2021, Vol. 83: 75-82.DOI: 10.1016/j.jmst.2020.12.054
• Research Article • Previous Articles Next Articles
Bo-Wen Chena,b,c, De-Wei Nia,b,*(), Chun-Jing Liaoa,b, You-Lin Jianga,b,c, Jun Lua,b,c, Yu-Sheng Dinga,b,d,*(
), Hong-Da Wanga,b, Shao-Ming Donga,b,e
Received:
2020-08-20
Revised:
2020-11-30
Accepted:
2020-12-14
Published:
2021-02-01
Online:
2021-02-01
Contact:
De-Wei Ni,Yu-Sheng Ding
About author:
ysding@mail.sic.ac.cn (Y.-S. Ding).Bo-Wen Chen, De-Wei Ni, Chun-Jing Liao, You-Lin Jiang, Jun Lu, Yu-Sheng Ding, Hong-Da Wang, Shao-Ming Dong. Chemical reactions and thermal stress induced microstructure evolution in 2D-Cf/ZrB2-SiC composites[J]. J. Mater. Sci. Technol., 2021, 83: 75-82.
Properties | Cf(∥) | Cf(⊥) | Matrix |
---|---|---|---|
Young’s modulus (MPa) | EX = 2.3E5 | EX = 2.0E5 | 4.5E5 |
EY = 2.0E5 | EY = 2.0E5 | ||
EZ = 2.0E5 | EZ = 2.3E5 | ||
Poissons’ ratio | NUXY = 0.026 | NUXY = 0.42 | 0.138 |
NUYZ = 0.42 | NUYZ = 0.026 | ||
NUXZ = 0.026 | NUXZ = 0.026 | ||
Shear modulus (MPa) | GXY = 9747 | GXY = 80990 | 2.21E5 |
GYZ = 80990 | GYZ = 9747 | ||
GXZ = 9747 | GXZ = 9747 | ||
Thermal expansion coefficient (10-6/K) | ALPX = 1.1 | ALPX = 1.1 | 3.98 + 2.33 × 10-3T |
ALPY = 6.8 | ALPY = 6.8 | ||
ALPZ = 6.8 | ALPZ = 6.8 | ||
Thermal conductivity (W/mK) | 10.5 | 10.5 | 54 + 12369/T |
Specific heat (J/kg K) | 45.4 | 45.4 | 68.76 + 5×10-3T-3-1.95T-2+6.79 × 10-3T-9.36 × 10-7T2-1.32 × 10-10T3 |
Density (kg/m3) | 1760 | 1760 | 5129 |
Table 1 The material property parameters used in the simulation [23,33,34].
Properties | Cf(∥) | Cf(⊥) | Matrix |
---|---|---|---|
Young’s modulus (MPa) | EX = 2.3E5 | EX = 2.0E5 | 4.5E5 |
EY = 2.0E5 | EY = 2.0E5 | ||
EZ = 2.0E5 | EZ = 2.3E5 | ||
Poissons’ ratio | NUXY = 0.026 | NUXY = 0.42 | 0.138 |
NUYZ = 0.42 | NUYZ = 0.026 | ||
NUXZ = 0.026 | NUXZ = 0.026 | ||
Shear modulus (MPa) | GXY = 9747 | GXY = 80990 | 2.21E5 |
GYZ = 80990 | GYZ = 9747 | ||
GXZ = 9747 | GXZ = 9747 | ||
Thermal expansion coefficient (10-6/K) | ALPX = 1.1 | ALPX = 1.1 | 3.98 + 2.33 × 10-3T |
ALPY = 6.8 | ALPY = 6.8 | ||
ALPZ = 6.8 | ALPZ = 6.8 | ||
Thermal conductivity (W/mK) | 10.5 | 10.5 | 54 + 12369/T |
Specific heat (J/kg K) | 45.4 | 45.4 | 68.76 + 5×10-3T-3-1.95T-2+6.79 × 10-3T-9.36 × 10-7T2-1.32 × 10-10T3 |
Density (kg/m3) | 1760 | 1760 | 5129 |
Fig. 2. Schematic diagram of laminated composite (a), macroscopic features of green tape (b) and 2D carbon fibers cloth (e), SEM images of green tape (c, d) and carbon fibers (f, g).
Fig. 3. SEM image (a) and Raman spectra (b) of the matrix after de-binding, XRD patterns of ZrB2 and SiC raw powders (c), XRD patterns of the ZrB2-SiC matrix before and after hot pressing (d).
Fig. 6. SEM images of the carbon fibers after hot pressing (a, b), (c)-(f) EDS analysis of the spots marked in (a), (b), TEM image of carbon fiber and chemical damage (g), the HRTEM of carbon fiber and chemical damage (h), inset: the corresponding SAED pattern of ZrC.
Samples | Volume fraction (%) | Open porosity (vol%) | |||
---|---|---|---|---|---|
ZrB2 | SiC | WC | Cf | ||
~35 μm | 35.41 | 8.85 | 2.33 | 48.69 | 4.72 |
~90 μm | 56.74 | 14.19 | 3.73 | 19.83 | 5.51 |
Table 2 The content of the Cf/ZrB2-SiC composites.
Samples | Volume fraction (%) | Open porosity (vol%) | |||
---|---|---|---|---|---|
ZrB2 | SiC | WC | Cf | ||
~35 μm | 35.41 | 8.85 | 2.33 | 48.69 | 4.72 |
~90 μm | 56.74 | 14.19 | 3.73 | 19.83 | 5.51 |
Fig. 8. SEM images of the cross-section along the YZ plane (a, b) and XZ plane (c, d) for the Cf/ZrB2-SiC composites with different matrix layer thickness.
[1] |
H. Zhong, Z. Wang, H. Zhou, D. Ni, Y. Kan, Y. Ding, S. Dong, Ceram. Int. 43 (10)(2017) 7387-7392.
DOI URL |
[2] |
L. Li, H. Qiao, Q. Li, J. Zhang, S. Dong, Ceram. Int. 43 (7) (2017) 5607-5615.
DOI URL |
[3] |
B.-W. Chen, D.-W. Ni, J.-X. Wang, Y.-L. Jiang, Q. Ding, L. Gao, X.-Y. Zhang, Y.-S. Ding, S.-M. Dong, J. Eur. Ceram. Soc. 39 (15) (2019) 4617-4624.
DOI URL |
[4] |
H. Zhou, D. Ni, P. He, J. Yang, J. Hu, S. Dong, Ceram. Int. 44 (5) (2018) 4777-4782.
DOI URL |
[5] |
D.-W. Ni, J.-X. Wang, S.-M. Dong, X.-W. Chen, Y.-M. Kan, H.-J. Zhou, L. Gao, X.-Y. Zhang, J. Am. Ceram. Soc. 101 (8) (2018) 3253-3258.
DOI URL |
[6] |
X. Chen, Q. Feng, H. Zhou, S. Dong, J. Wang, Y. Cao, Y. Kan, D. Ni, Corros. Sci. 134 (2018) 49-56.
DOI URL |
[7] |
X. Chen, Q. Feng, L. Gao, X. Zhang, S. Dong, J. Wang, Q. Zhong, Y. Kan, D. Ni, J. Am. Ceram. Soc. 100 (10) (2017) 4816-4826.
DOI URL |
[8] |
X. Chen, S. Dong, Y. Kan, H. Zhou, J. Hu, D. Wang, J. Eur. Ceram. Soc. 36 (15) (2016) 3607-3613.
DOI URL |
[9] |
Y. Jiang, D. Ni, Q. Ding, B. Chen, X. Chen, Y. Kan, S. Dong, RSC Adv. 8 (69) (2018) 39284-39290.
DOI URL |
[10] |
W.Y. Wang, Q.G. Fu, B.Y. Tan, J. Alloys. Compd. 726 (2017) 866-874.
DOI URL |
[11] |
D. Zhang, P. Hu, S. Dong, X. Liu, C. Wang, Z. Zhang, X. Zhang, Corros. Sci. 161 (2019), 108181.
DOI URL |
[12] |
J. Xie, K. Li, G. Sun, H. Li, X. Su, Y. Han, T. Li, Ceram. Int. 45 (9) (2019) 11912-11919.
DOI URL |
[13] | H. Li, Q. He, C. Wang, J. Lu, Vacumm 164 (2019) 265-277. |
[14] | J. Binner, M. Porter, B. Baker, J. Zou, V. Venkatachalam, V.R. Diaz, A. D’Angio, P. Ramanujam, T. Zhang, T.S.R.C. Murthy, Int. Mater. Rev. (2019) 1-56. |
[15] |
H. Zhou, J. Yang, G. Le, D. Ni, H. Wang, S. Dong, Int. J. Appl. Ceram. Technol. 16 (4) (2019) 1321-1328.
DOI URL |
[16] |
D. Zhang, P. Hu, S. Dong, C. Fang, J. Feng, X. Zhang, J. Alloys. Compd. 789 (2019) 755-761.
DOI URL |
[17] |
S. Tang, C. Hu, J. Mater. Sci. Technol. 33 (2) (2017) 117-130.
DOI URL |
[18] |
M. Patel, K. Saurabh, V.V.B. Prasad, J. Subrahmanyam, Bull. Mater. Sci. 35 (1)(2012) 63-73.
DOI URL |
[19] |
R. Kannan, L. Rangaraj, J. Eur. Ceram. Soc. 39 (7) (2019) 2257-2265.
DOI URL |
[20] |
A.P. Garshin, V.I. Kulik, A.S. Nilov, Refract. Ind. Ceram. 60 (4) (2019) 376-384.
DOI URL |
[21] |
Q. Ding, D. Ni, Z. Wang, Y. Kan, P. He, X. Zhang, Y. Ding, S. Dong, J. Am. Ceram. Soc. 102 (6) (2018) 3630-3640.
DOI URL |
[22] |
K. Dong, X. Peng, J. Zhang, B. Gu, B. Sun, Compos. Struct. 176 (2017) 329-341.
DOI URL |
[23] |
L. Wang, Z. Wang, S.M. Dong, W. Zhang, Y. Wang, Compos. Part B Eng. 51 (2013) 204-214.
DOI URL |
[24] |
Z. Li, H. Li, S. Zhang, J. Wang, W. Li, F. Sun, Corros. Sci. 58 (2012) 12-19.
DOI URL |
[25] |
P. Hu, Y. Cheng, D. Zhang, L. Xun, M. Liu, C. Zhang, X. Zhang, S. Du, Compos. Part B Eng. 174 (2019), 107023.
DOI URL |
[26] | L. Longbiao, J. Australas. Ceram. Soc. 55 (2) (2018) 443-468. |
[27] |
D. Sciti, A. Natali Murri, V. Medri, L. Zoli, Mater. Des. 85 (2015) 127-134.
DOI URL |
[28] |
H.-B. Ma, J. Zou, P. Lu, J.-T. Zhu, Z.-Q. Fu, F.-F. Xu, G.-J. Zhang, Scripta Mater. 127 (2017) 160-164.
DOI URL |
[29] |
J. Zou, S.-K. Sun, G.-J. Zhang, Y.-M. Kan, P.-L. Wang, T. Ohji, J. Am. Ceram. Soc. 94 (5) (2011) 1575-1583.
DOI URL |
[30] |
D.-W. Ni, J.-X. Liu, G.-J. Zhang, J. Eur. Ceram. Soc. 32 (13) (2012) 3627-3635.
DOI URL |
[31] |
W.G. Fahrenholtz, G.E. Hilmas, S.C. Zhang, S. Zhu, J. Am. Ceram. Soc. 91 (5) (2008) 1398-1404.
DOI URL |
[32] |
P. Hu, Y. Cheng, M. Xie, Y. Yang, C. Liu, Q. Qu, X. Zhang, S. Du, Ceram. Int. 44 (15) (2018) 19038-19043.
DOI URL |
[33] |
H. Wu, W. Zhang, J. Eur. Ceram. Soc. 30 (4) (2010) 1035-1042.
DOI URL |
[34] | Z. Ji, Chin. Acad. Sci. (2011) 143-151. |
[35] |
J. Zou, G.-J. Zhang, Y.-M. Kan, J. Mater. Res. 24 (07) (2011) 2428-2434.
DOI URL |
[36] |
J. Zou, G.-J. Zhang, Z.-J. Shen, J. Binner, J. Eur. Ceram. Soc. 36 (15) (2016) 3637-3645.
DOI URL |
[1] | Li Sun, Xiaobo Ren, Jianying He, Zhiliang Zhang. Numerical investigation of a novel pattern for reducing residual stress in metal additive manufacturing [J]. J. Mater. Sci. Technol., 2021, 67(0): 11-22. |
[2] | Weiwei Xiao, Na Ni, Xiaohui Fan, Xiaofeng Zhao, Yingzheng Liu, Ping Xiao. Ambient flash sintering of reduced graphene oxide/zirconia composites: Role of reduced graphene oxide [J]. J. Mater. Sci. Technol., 2021, 60(0): 70-76. |
[3] | C.C. Zhang, H.L. Wei, T.T. Liu, L.Y. Jiang, T. Yang, W.H. Liao. Influences of residual stress and micro-deformation on microstructures and mechanical properties for Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy produced by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2021, 75(0): 174-183. |
[4] | Liang Chen, Zhi Li, Gangyong Li, Minjie Zhou, Binhong He, Jie Ouyang, Wenyuan Xu, Wei Wang, Zhaohui Hou. A facile self-catalyzed CVD method to synthesize Fe3C/N-doped carbon nanofibers as lithium storage anode with improved rate capability and cyclability [J]. J. Mater. Sci. Technol., 2020, 44(0): 229-236. |
[5] | Fang Miao, Qianqian Wang, Siyi Di, Lu Yun, Jing Zhou, Baolong Shen. Enhanced dye degradation capability and reusability of Fe-based amorphous ribbons by surface activation [J]. J. Mater. Sci. Technol., 2020, 53(0): 163-173. |
[6] | Guoxiang Pan, Feng Cao, Yujian Zhang, Xinhui Xia. N-doped carbon nanofibers arrays as advanced electrodes for supercapacitors [J]. J. Mater. Sci. Technol., 2020, 55(0): 144-151. |
[7] | K.S. Chin, S. Idapalapati, D.T. Ardi. Thermal stress relaxation in shot peened and laser peened nickel-based superalloy [J]. J. Mater. Sci. Technol., 2020, 59(0): 100-106. |
[8] | Adnan Tahir, Guang-Rong Li, Mei-Jun Liu, Guan-Jun Yang, Cheng-Xin Li, Yu-Yue Wang, Chang-Jiu Li. Improving WC-Co coating adhesive strength on rough substrate: Finite element modeling and experiment [J]. J. Mater. Sci. Technol., 2020, 37(0): 1-8. |
[9] | Guanglong Li, Yingdong Qu, Yaohua Yang, Qiwen Zhou, Xishi Liu, Rongde Li. Improved multi-orientation dispersion of short carbon fibers in aluminum matrix composites prepared with square crucible by mechanical stirring [J]. J. Mater. Sci. Technol., 2020, 40(0): 81-87. |
[10] | Xingchen Xu, Daoxin Liu, Xiaohua Zhang, Chengsong Liu, Dan Liu. Mechanical and corrosion fatigue behaviors of gradient structured 7B50-T7751 aluminum alloy processed via ultrasonic surface rolling [J]. J. Mater. Sci. Technol., 2020, 40(0): 88-98. |
[11] | Tran Thang Q., Yoong Lee Jeremy Kong, Amutha Chinnappan, Loc Nguyen Huu, Tran T. Long, Dongxiao Ji, W.A.D.M. Jayathilaka, Kumar Vishnu Vijay, Seeram Ramakrishna. High-performance carbon fiber/gold/copper composite wires for lightweight electrical cables [J]. J. Mater. Sci. Technol., 2020, 42(0): 46-53. |
[12] | Chengsong Liu, Daoxin Liu, Xiaohua Zhang, Dan Liu, Amin Ma, Ni Ao, Xingchen Xu. Improving fatigue performance of Ti-6Al-4V alloy via ultrasonic surface rolling process [J]. J. Mater. Sci. Technol., 2019, 35(8): 1555-1562. |
[13] | Jie Huang, Kai-Ming Zhang, Yun-Fei Jia, Cheng-Cheng Zhang, Xian-Cheng Zhang, Xian-Feng Ma, Shan-Tung Tu. Effect of thermal annealing on the microstructure, mechanical properties and residual stress relaxation of pure titanium after deep rolling treatment [J]. J. Mater. Sci. Technol., 2019, 35(3): 409-417. |
[14] | Su Cheng, Xing Zhao, Guang Yang, Yiguang Wang. Salt-fog corrosion behavior of C/SiC and its effect on ablation resistance [J]. J. Mater. Sci. Technol., 2019, 35(12): 2772-2777. |
[15] | Wei Zhou, Lan Long, Yang Li. Mechanical and electromagnetic wave absorption properties of Cf-Si3N4 ceramics with PyC/SiC interphases [J]. J. Mater. Sci. Technol., 2019, 35(12): 2809-2813. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||