J. Mater. Sci. Technol. ›› 2021, Vol. 88: 11-20.DOI: 10.1016/j.jmst.2021.01.080
Previous Articles Next Articles
Kaibin Lia,b, Ming Lia,**(), Chang Xua,b, Zengyan Dua,b, Jiawang Chena,b, Fengxia Zoua,b, Chongwen Zouc,**(
), Sichao Xua, Guanghai Lia,b,*(
)
Received:
2021-01-16
Revised:
2021-01-28
Accepted:
2021-01-28
Published:
2021-03-19
Online:
2021-03-19
Contact:
Ming Li,Chongwen Zou,Guanghai Li
About author:
czou@ustc.edu.cn (C. Zou).Kaibin Li, Ming Li, Chang Xu, Zengyan Du, Jiawang Chen, Fengxia Zou, Chongwen Zou, Sichao Xu, Guanghai Li. A TiO2 nanotubes film with excellent antireflective and near-perfect self-cleaning performances[J]. J. Mater. Sci. Technol., 2021, 88: 11-20.
Fig. 1. (a) Low- and (b) high-resolution TEM images of as-prepared sodium titanate nanotubes. (c)-(e) are the size statistical results of inner diameter, outer diameter and length of sodium titanate nanotubes.
Fig. 2. (a) Tyndall phenomena, (b) FT-IR spectra, (c) Raman spectra and (d) high-resolution N 1s XPS spectra of the samples with different treatments. (e) N atomic ratio with different treatments according to the peak areas in (d).
Fig. 3. (a) Schematic preparation process of TiO2 nanotubes film by hydrothermal synthesis, ultrasound assisted pickling method, spin coating and annealing treatment. (b) XRD patterns of the samples with different treatments. (c) High-resolution TEM image of TiO2 nanotubes after pickling and annealing treatment. SEM images of (d) front and (e) cross section of TiO2 nanotubes film. The inset in (d) is magnified SEM image of TiO2 nanotubes film front section.
Fig. 4. (a) Transmittance and (b) reflectance spectra of glass substrate without coating and with different kinds of coatings. (c) Photograph of glass substrate without coating, with double-side TiO2 sol-gel film and TiO2 nanotubes film. (d) Wavelength dependence of refractive index of TiO2 sol-gel film, TiO2 nanotubes film, glass substrate and ideal antireflective coating.
Wavelength 400-800 nm | Transmittance (%) | Reflectance (%) | Refractive index at 550 nm | ||
---|---|---|---|---|---|
Max. | average | Min. | Average | ||
glass substrate | 91.3 | 90.5 | 7.3 | 7.6 | 1.5 |
single-side TSF | 85.8 | 77.4 | 12.0 | 19.0 | 2.1 |
double-side TSF | 83.8 | 69.9 | 14.3 | 26.3 | |
single-side TNF | 95.3 | 94.1 | 4.3 | 4.6 | 1.31 |
double-side TNF | 99.2 | 97.4 | 0.8 | 1.5 |
Table 1 Optical parameters of glass substrate without coating and with different kinds of coatings.
Wavelength 400-800 nm | Transmittance (%) | Reflectance (%) | Refractive index at 550 nm | ||
---|---|---|---|---|---|
Max. | average | Min. | Average | ||
glass substrate | 91.3 | 90.5 | 7.3 | 7.6 | 1.5 |
single-side TSF | 85.8 | 77.4 | 12.0 | 19.0 | 2.1 |
double-side TSF | 83.8 | 69.9 | 14.3 | 26.3 | |
single-side TNF | 95.3 | 94.1 | 4.3 | 4.6 | 1.31 |
double-side TNF | 99.2 | 97.4 | 0.8 | 1.5 |
Fig. 5. (a) Simulated absorptivity spectra of an ideal single-side SiO2/TiO2 porous antireflective coating with different values of νtitania at 200-400?nm according to Eq. S9 in the Supporting Information. The black line represents the absorptivity of an ideal single-side SiO2/TiO2 porous antireflective coating at 254?nm according to Eq. S10 in the Supporting Information. Time evolution of IR absorption spectrum of the glass substrate (b) without coating, (c) with single-side TSF and (d) with single-side TiO2 nanotubes film attached by a layer of SA. (e) Integrated areas of IR absorption peaks of blank glass substrate, TiO2 sol-gel film and TiO2 nanotubes film over the range 2700-3000?cm-1. The inset in (e) is an enlarged integrated area for glass substrate with single-side TiO2 nanotubes film. Transmittance, reflectance and absorptivity spectra of quartz substrate (f) with single-side TiO2 sol-gel film and (g) with single-side TiO2 nanotubes film at 200-400?nm.
Sample types | TSF | TNF | Common SiO2/TiO2 ARC [ |
---|---|---|---|
Rate of initial SA disappearance (× 1013 molecules cm-2 s-1) | 0.7 | 5.0 | / |
Incident light intensity (mW cm-2) | 4.5 | 4.5 | / |
Absorptivity (%) | 84 | 80 | << 80 % |
Rate of light absorption (× 1015 photons cm-2 s-1) | 4.9 | 4.6 | / |
FQE(SA) (× 10-3) | 1.4 | 10.9 | < 10.9 |
FA (× 10-3) | 1.2 | 8.7 | << 8.7 |
Table 2 Calculated FQE(SA) and FA under irradiation at 254?nma.
Sample types | TSF | TNF | Common SiO2/TiO2 ARC [ |
---|---|---|---|
Rate of initial SA disappearance (× 1013 molecules cm-2 s-1) | 0.7 | 5.0 | / |
Incident light intensity (mW cm-2) | 4.5 | 4.5 | / |
Absorptivity (%) | 84 | 80 | << 80 % |
Rate of light absorption (× 1015 photons cm-2 s-1) | 4.9 | 4.6 | / |
FQE(SA) (× 10-3) | 1.4 | 10.9 | < 10.9 |
FA (× 10-3) | 1.2 | 8.7 | << 8.7 |
Fig. 6. (a) Time evolution of water contact angle of glass substrate without and with different freshly prepared coatings. (b) Photographs of water droplet on glass substrate without and with different freshly prepared coatings at 500?ms. (c) Corresponding photograph of samples on the top of beakers containing hot water. (d) Time evolution of water contact angle of glass substrate without and with different coatings stored in the darkness for 2 months. (e) Photographs of water droplet on glass substrate without and with different coatings stored in the darkness for 2 months at 500?ms. (f) Corresponding photograph of samples on the top of beakers containing hot water. (g)-(h) AFM images of TiO2 sol-gel film and TiO2 nanotubes film, respectively, at the scanning area of 2?μm?×?2?μm.
[1] |
X.-X. Zhang, S. Cai, D. You, L.-H. Yan, H.-B. Lv, X.-D. Yuan, B. Jiang, Adv. Funct. Mater. 23 (2013) 4361-4365.
DOI URL |
[2] |
K. Deng, L. Li, Small Methods 4 (2020), 1900150.
DOI URL |
[3] |
L. Yao, J. He, Prog. Mater. Sci. 61 (2014) 94-143.
DOI URL |
[4] |
Y. Du, L.E. Luna, W.S. Tan, M.F. Rubner, R.E. Cohen, ACS Nano 4 (2010) 4308-4316.
DOI URL |
[5] |
S. Walheim, Science 283 (1999) 520-522.
PMID |
[6] |
X. Li, J. Gao, L. Xue, Y. Han, Adv. Funct. Mater. 20 (2010) 259-265.
DOI URL |
[7] |
J.Q. Xi, M.F. Schubert, J.K. Kim, E.F. Schubert, M. Chen, S.Y. Lin, W. Liu, J.A. Smart, Nat. Photonics 1 (2007) 176-179.
DOI URL |
[8] | Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Z. Sun, L. Zhang, Y. Li, H. Li, W. Xu, B. Yang, Adv. Mater. 21 (2009) 4731-4734. |
[9] |
J. Moghal, J. Kobler, J. Sauer, J. Best, M. Gardener, A.A. Watt, G. Wakefield, ACS Appl. Mater. Interfaces 4 (2012) 854-859.
DOI URL |
[10] |
X. Du, J. He, Chem. Eur. J. 17 (2011) 8165-8174.
DOI URL |
[11] |
J. Sun, Q. Zhang, R. Ding, H. Lv, H. Yan, X. Yuan, Y. Xu, Phys. Chem. Chem. Phys. 16 (2014) 16684-16693.
DOI URL |
[12] |
B. Jin, J. He, L. Yao, Y. Zhang, J. Li, ACS Appl. Mater. Interfaces 9 (2017) 17466-17475.
DOI URL |
[13] |
X. Li, J. He, ACS Appl. Mater. Interfaces 5 (2013) 5282-5290.
DOI URL |
[14] |
S. Guldin, P. Kohn, M. Stefik, J. Song, G. Divitini, F. Ecarla, C. Ducati, U. Wiesner, U. Steiner, Nano Lett. 13 (2013) 5329-5335.
DOI URL |
[15] |
D. Lee, M.F. Rubner, R.E. Cohen, Nano Lett. 6 (2006) 2305.
DOI URL |
[16] |
L. Yao, J. He, Z. Geng, T. Ren, Nanoscale 7 (2015) 13125-13134.
DOI URL |
[17] |
A. Mills, N. Elliott, G. Hill, D. Fallis, J.R. Durrant, R.L. Willis, Photochem. Photobiol. Sci. 2 (2003) 591-596.
DOI URL |
[18] |
R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T. Watanabe, Nature 388 (1997) 431-432.
DOI URL |
[19] |
R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, T. Watanabe, Adv. Mater. 10 (2010) 135-138.
DOI URL |
[20] |
V.A. Ganesh, H.K. Raut, A.S. Nair, S. Ramakrishna, J. Mater. Chem. 21 (2011) 16304.
DOI URL |
[21] |
D. Wu, F. Xu, B. Sun, R. Fu, H. He, K. Matyjaszewski, Chem. Rev. 112 (2012) 3959-4015.
DOI URL |
[22] |
J.H. Pan, X.S. Zhao, W.I. Lee, Chem. Eng. J. 170 (2011) 363-380.
DOI URL |
[23] |
K. Lee, A. Mazare, P. Schmuki, Chem. Rev. 114 (2014) 9385-9454.
DOI URL |
[24] |
X. Xu, J. Chen, S. Cai, Z. Long, Y. Zhang, L. Su, S. He, C. Tang, P. Liu, H. Peng, Adv. Mater. 30 (2018), 1803165.
DOI URL |
[25] |
Y. Wei, B. Han, Z. Dong, W. Feng, J. Mater. Sci. Technol. 35 (2019) 1951-1958.
DOI URL |
[26] |
X. Zhang, D. Yue, L. Zhang, S. Lin, J. Mater. Sci. Technol. 56 (2020) 162-169.
DOI URL |
[27] |
W. Wang, O.K. Varghese, M. Paulose, C.A. Grimes, Q. Wang, E.C. Dickey, J. Mater. Res. 19 (2004) 417-422.
DOI URL |
[28] |
N. Liu, X. Chen, J. Zhang, J.W. Schwank, Catal. Today 225 (2014) 34-51.
DOI URL |
[29] |
D.V. Bavykin, J.M. Friedrich, F.C. Walsh, Adv. Mater. 18 (2006) 2807-2824.
DOI URL |
[30] |
D.V. Bavykin, V.N. Parmon, A.A. Lapkin, F.C. Walsh, J. Mater. Chem. 14 (2004) 3370-3377.
DOI URL |
[31] |
Z. Aspanut, T. Yamada, L.W. Lim, T. Takeuchi, Anal. Bioanal. Chem. 391 (2008) 353-359.
DOI PMID |
[32] | M. Ramazani, M. Farahmandjou, T. Firoozabadi, Int. J. Nanosci. Nanotechnol. 11 (2015) 115-122. |
[33] |
H. Wang, X. Hu, Y. Ma, D. Zhu, T. Li, J. Wang, Chin. J. Catal. 41 (2020) 95-102.
DOI URL |
[34] |
M.R. Waterland, D. Stockwell, A.M. Kelley, J. Chem. Phys. 114 (2001) 6249-6258.
DOI URL |
[35] |
A. Yoshida, W. Shen, T. Eda, R. Watanabe, T. Ito, S. Naito, Catal. Today 184 (2012) 78-82.
DOI URL |
[36] |
Z. Wu, J. Walish, A. Nolte, L. Zhai, R.E. Cohen, M.F. Rubner, Adv. Mater. 18 (2006) 2699-2702.
DOI URL |
[37] |
A. Mills, S.-K. Lee, A.Lepre, I.P. Parkin, S.A. O’Neill, Photochem. Photobiol. Sci. 1 (2002) 865-868.
DOI URL |
[38] | A. Mills, A. Lepre, N. Elliott, S. Bhopal, S.A. O’Neill, J.Photochem. Photobiol. A: Chem. 160 (2003) 213-224. |
[39] |
A. Mills, J. Wang, J. Photochem. Photobiol. A: Chem. 182 (2006) 181-186.
DOI URL |
[40] |
Y. Paz, A. Heller, J. Mater. Res. 12 (2011) 2759-2766.
DOI URL |
[41] |
H. Jeon, C.S. Lee, R. Patel, J.H. Kim, ACS Appl. Mater. Interfaces 7 (2015) 7767-7775.
DOI URL |
[42] |
J. Yu, H. Yu, B. Cheng, C. Trapalis, J. Mol. Catal. A Chem. 249 (2006) 135-142.
DOI URL |
[43] |
A. Turki, H. Kochkar, C. Guillard, G. Berhault, A. Ghorbel, Appl. Catal.B 138-139 (2013) 401-415.
DOI URL |
[44] |
R.N. Wenzel, Ind. Eng. Chem. 28 (1936) 988-994.
DOI URL |
[45] |
J. Bico, C. Marzolin, D. Quéré, Europhys. Lett. 47 (1999) 220-226.
DOI URL |
[1] | E. Vazirinasab, G. Momen, R. Jafari. A non-fluorinated mechanochemically robust volumetric superhydrophobic nanocomposite [J]. J. Mater. Sci. Technol., 2021, 66(0): 213-225. |
[2] | Binbin Zhang, Weichen Xu, Qingjun Zhu, Baorong Hou. Scalable, fluorine free and hot water repelling superhydrophobic and superoleophobic coating based on functionalized Al2O3 nanoparticles [J]. J. Mater. Sci. Technol., 2021, 66(0): 74-81. |
[3] | Xiayu Lu, Li Liu, Xuan Xie, Yu Cui, Emeka E. Oguzie, Fuhui Wang. Synergetic effect of graphene and Co(OH)2 as cocatalysts of TiO2 nanotubes for enhanced photogenerated cathodic protection [J]. J. Mater. Sci. Technol., 2020, 37(0): 55-63. |
[4] | Jiajun Luo, Maryam Tamaddon, Changyou Yan, Shuanhong Ma, Xiaolong Wang, Feng Zhou, Chaozong Liu. Improving the fretting biocorrosion of Ti6Al4V alloy bone screw by decorating structure optimised TiO2 nanotubes layer [J]. J. Mater. Sci. Technol., 2020, 49(0): 47-55. |
[5] | Lian Guo, Wei Wu, Yongfeng Zhou, Fen Zhang, Rongchang Zeng, Jianmin Zeng. Layered double hydroxide coatings on magnesium alloys: A review [J]. J. Mater. Sci. Technol., 2018, 34(9): 1455-1466. |
[6] | Chen Yingzhi, Li Aoxiang, Jin Ming, Lu-NingWang, Zheng-HongHuang. Inorganic Nanotube/Organic Nanoparticle Hybrids for [J]. J. Mater. Sci. Technol., 2017, 33(7): 728-733. |
[7] | Ziping Wu Qianfeng Xu Jiannong Wang Jie Ma. Preparation of Large Area Double-walled Carbon Nanotube Macro-films with Self-cleaning Properties [J]. J Mater Sci Technol, 2010, 26(1): 20-26. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||