J. Mater. Sci. Technol. ›› 2021, Vol. 88: 1-10.DOI: 10.1016/j.jmst.2021.02.010
Jinxue Ding, Xiaokang Ma, Xiaomeng Fan*(
), Jimei Xue, Fang Ye, Laifei Cheng
Received:2020-12-12
Revised:2021-01-30
Accepted:2021-02-02
Published:2021-03-19
Online:2021-03-19
Contact:
Xiaomeng Fan
About author:* E-mail address: fanxiaomeng@nwpu.edu.cn (X. Fan).1J. Ding and X. Ma are co-first authors; they contributed equally to the work.
Jinxue Ding, Xiaokang Ma, Xiaomeng Fan, Jimei Xue, Fang Ye, Laifei Cheng. Failure behavior of interfacial domain in SiC-matrix based composites[J]. J. Mater. Sci. Technol., 2021, 88: 1-10.
| Constituent | Fibers per tow | Young's modulus/GPa | Poisson’s ratio | CTE/×10-6 K-1 |
|---|---|---|---|---|
| SiC fiber | 800 | 200 | 0.20 | 4.0 |
| carbon fiber | 1000 | 230 | 0.30 | //0, ⊥8 |
| SiC matrix | - | 450 | 0.21 | 4.6 |
Table 1 Main characteristics of SiC fiber, carbon fiber and SiC matrix [26,30,[33], [34], [35]].
| Constituent | Fibers per tow | Young's modulus/GPa | Poisson’s ratio | CTE/×10-6 K-1 |
|---|---|---|---|---|
| SiC fiber | 800 | 200 | 0.20 | 4.0 |
| carbon fiber | 1000 | 230 | 0.30 | //0, ⊥8 |
| SiC matrix | - | 450 | 0.21 | 4.6 |
| Composite | Fiber volume fraction/ vol.% | Density/g cm-3 | Porosity/% |
|---|---|---|---|
| SiCf/BN/SiC | 40 | 2.49 | 6.0 |
| Cf/PyC/SiC | 40 | 2.08 | 11.7 |
Table 2 Details of SiCf/BN/SiC and Cf/PyC/SiC composites.
| Composite | Fiber volume fraction/ vol.% | Density/g cm-3 | Porosity/% |
|---|---|---|---|
| SiCf/BN/SiC | 40 | 2.49 | 6.0 |
| Cf/PyC/SiC | 40 | 2.08 | 11.7 |
Fig. 3. TEM images of SiCf/BN/SiC composite, (a) the interfacial domain, (b) EDS mapping; HRTEM images of (c) deposited BN layer, (d) SiO2 layer, (e) carbon layer, (f) SiC fiber, (g) ZrO2 crystal and (h) SiC matrix.
Fig. 4. TEM images of Cf/PyC/SiC composite, (a,b) the interfacial domain, (c) EDS mapping; HRTEM images of (d) PyC layer, (e) carbon layer and (f) SiC matrix.
Fig. 6. Morphology and topography of the tested fibers, (a) representative SEM image, (b) the topography and (c) the corresponding result of the tested SiC fiber; (d) representative SEM image, (e) the topography and (f) the corresponding result of the tested carbon fiber.
Fig. 7. SEM images of the tested fiber in SiCf/BN/SiC composite after the push-in test, (a) the whole fiber, (b) the debonding area and (c) the fracture area.
Fig. 8. TEM images of the interfacial domain in Cf/PyC/SiC composite after the fiber push-in test, (a) TEM sample, (b) the tested fiber and its surroundings, (c) the interfacial domain of the sample surface, (d) interphase slipping zone, (e) PyC in Area 1 and (f) PyC in Area 2.
Fig. 10. (a) Representative load-displacement curves of SiCf/BN/SiC and Cf/PyC/SiC composites after the fiber push-in test; illustration of determining the critical debonding load from the loading curve of (b) SiCf/BN/SiC and (c) Cf/PyC/SiC composites; relationship between the initial stiffness and the fiber radius in (d) SiCf/BN/SiC and (e) Cf/PyC/SiC composites.
| Interfacial properties | SiCf/BN/SiC | Cf/PyC/SiC |
|---|---|---|
| initial stiffness S0 (N/mm) | 494 ± 59 | 213 ± 19 |
| critical load Pc (mN) | 194 ± 21 | 38 ± 4.8 |
| Interfacial bonding strength σd (MPa) | 1511 ± 160 | 1093 ± 98 |
| IFSS (MPa) | 92.4 ± 9.6 | 48.1 ± 2.7 |
| Interface debonding energy Gi (J/m2) | 9.19 ± 1.84 | 2.18 ± 0.41 |
Table 3 Corresponding results of the fiber push-in test of SiCf/BN/SiC and Cf/PyC/SiC composites.
| Interfacial properties | SiCf/BN/SiC | Cf/PyC/SiC |
|---|---|---|
| initial stiffness S0 (N/mm) | 494 ± 59 | 213 ± 19 |
| critical load Pc (mN) | 194 ± 21 | 38 ± 4.8 |
| Interfacial bonding strength σd (MPa) | 1511 ± 160 | 1093 ± 98 |
| IFSS (MPa) | 92.4 ± 9.6 | 48.1 ± 2.7 |
| Interface debonding energy Gi (J/m2) | 9.19 ± 1.84 | 2.18 ± 0.41 |
| [1] | W.A. Curtin, J. Am. Soc. 45 (1991) 2837-2845. |
| [2] |
O. Gavalda Diaz, D.A. Axinte, Int. J. Mach. Tools Manuf. 118-119 (2017) 12-25.
DOI URL |
| [3] |
Y. Wang, Z. Chen, S. Yu, D.E. Awuye, B. Li, J. Liao, R. Luo, Compos. Part B Eng. 129 (2017) 180-186.
DOI URL |
| [4] |
M. Balat-Pichelin, L. Charpentier, F. Panerai, O. Chazot, B. Helber, K. Nickel, J. Eur. Ceram. Soc. 35 (2015) 487-502.
DOI URL |
| [5] |
S. Tang, C. Hu, Design, J. Mater. Sci. Technol. 33 (2017) 117-130.
DOI URL |
| [6] |
T. Koyanagi, Y. Katoh, T. Nozawa, L.L. Snead, S. Kondo, C.H. Henager, M. Ferraris, T. Hinoki, Q. Huang, J. Nucl. Mater. 511 (2018) 544-555.
DOI URL |
| [7] | J.D. Kuntz, G. Zhan, A.K. Mukherjee, Mater. Res. Soc. 29 (2004) 22-27. |
| [8] |
W. Xie, H. Qiu, M. Chen, S. Liu, Solid State Phenom. 281 (2018) 408-413.
DOI URL |
| [9] |
A.G. Evans, Mater. Sci. Eng. A. 107 (1989) 227-239.
DOI URL |
| [10] |
N. Carrère, E. Martin, J. Lamon, Compos. Part A Appl. Sci. Manuf. 31 (2000) 1179-1190.
DOI URL |
| [11] |
L. Li, Theor. Appl. Fract. Mech. 86 (2016) 171-186.
DOI URL |
| [12] | F. Rebillat, J. Lamon, R. Naslain, E. Lara-curzio, M.K. Ferber, T.M. Besmann, J. Am. Ceram. Soc. 26 (1998) 2315-2326. |
| [13] |
V.E. Prokip, A.V. Utkin, I.S. Batraev, N.I. Baklanova, Ceram. Int. 43 (2017) 4166-4174.
DOI URL |
| [14] |
T. Feng, H.J. Lin, H.J. Li, S.F. Wen, M.D. Tong, Diam. Relat. Mater. 102 (2020), 107673.
DOI URL |
| [15] | Q. Zhu, J. Feng, J. Yang, H. Hu, Y. Wang, Q. Xue, S. Shan, J. Dong, Adv. Ceram. 8 (2019) 555-563. |
| [16] | R.J. Kerans, T.A. Parthasarathy, F. Rebillat, J. Lamon, J. Am. Ceram. Soc. 87 (1998) 1881-1887. |
| [17] |
T. Ramanathan, A. Bismarck, E. Schulz, K. Subramanian, Compos. Sci. Technol. 61 (2001) 1703-1710.
DOI URL |
| [18] |
C.H. Hsueh, D.G. Brandon, N. Shafry, Mater. Sci. Eng. A. 205 (1996) 91-100.
DOI URL |
| [19] | D. Marshall, W. Oliver, J.Am. Ceram. Soc. 70 (1987) 542-548. |
| [20] |
C.M. M, J.M. Molina-Aldareguía, C. González, M.F. Melendrez, P. Flores, J. Compos. Mater. 50 (2016) 1651-1659.
DOI URL |
| [21] | C. Lewinsohn, C. Henager, R. Jones, J. Eldridge, J. Am. Ceram. Soc. 68 (2001) 866-868. |
| [22] |
B.M. Kuntz, G. Grathwohl, Adv. Eng. Mater. 3 (2001) 371-379.
DOI URL |
| [23] |
M. Rodríguez, J.M. Molina-Aldareguía, C. González J. Llorca, Compos. Sci. Technol. 72 (2012) 1924-1932.
DOI URL |
| [24] | N.P. Padture, Nat. Publ. Gr. 15 (2016) 804-809. |
| [25] | R.R. Naslain, Eng. Ceram. Curr. Status Futur.Prospect. 84 (2016) 142-159. |
| [26] |
E. Buet, C. Sauder, D. Sornin, S. Poissonnet, J.N. Rouzaud, C. Vix-Guterl, J. Eur. Ceram. Soc. 34 (2014) 179-188.
DOI URL |
| [27] |
B. Yang, X. Zhou, Y. Chai, Ceram. Int. 41 (2015) 7185-7190.
DOI URL |
| [28] |
H. Yang, Z. Lu, B. Bie, Z. Fu, J. Yue, X. Huang, Ceram. Int. 45 (2019) 11395-11402.
DOI URL |
| [29] |
C. Fellah, J. Braun, C. Sauder, F. Sirotti, M.H. Berger, Compos. Part A Appl. Sci. Manuf. 133 (2020), 105867.
DOI URL |
| [30] |
X. Ma, X. Yin, X. Fan, X. Sun, L. Yang, F. Ye, J. Eur. Ceram. Soc. 38 (2018) 1069-1078.
DOI URL |
| [31] |
S. Liu, L. Zhang, X. Yin, L. Cheng, Y. Liu, Int. J. Appl. Ceram. Technol. 8 (2011) 308-316.
DOI URL |
| [32] |
H. Mei, Q. Bai, Y. Sun, H. Li, H. Wang, L. Cheng, Carbon N. Y. 57 (1970) 288-297.
DOI URL |
| [33] |
X. Ma, X. Yin, X. Fan, X. Cao, L. Yang, X. Sun, L. Cheng, J. Eur. Ceram. Soc. 39 (2019) 1766-1774.
DOI URL |
| [34] |
K. Honjo, Carbon N. Y. 41 (2003) 979-984.
DOI URL |
| [35] |
Ö. Ünal, N.P. Bansal, Ceram. Int. 28 (2002) 527-540.
DOI URL |
| [36] |
R. Naslain, Compos. Sci. Technol. 64 (2004) 155-170.
DOI URL |
| [37] |
L. Chen, X. Yin, X. Fan, M. Chen, X. Ma, L. Cheng, L. Zhang, Carbon N. Y. 95 (2015) 10-19.
DOI URL |
| [38] |
S. Cao, J. Wang, H. Wang, J. Mater. Sci. 51 (2016) 4650-4659.
DOI URL |
| [39] |
R. Naslain, O. Dugne, A. Guette, J. Sevely, C.R. Brosse, J. Rocher, J. Cotteret, J. Am. Ceram. Soc. 74 (1991) 2482-2488.
DOI URL |
| [40] |
R. Mo, X. Yin, M. Li, F. Ye, X. Fan, L. Cheng, J. Am. Ceram. Soc. 103 (2020) 4352-4362.
DOI URL |
| [41] |
M.A. Medkov, P.A. Storozhenko, A.M. Tsirlin, N.I. Steblevskaya, E.S. Panin, D.N. Grishchenko, G.S. Kubakhova, Inorg. Mater. 43 (2007) 162-166.
DOI URL |
| [42] |
X. Yuan, B. Zhu, X. Cai, S. Zhao, K. Qiao, M. Zhang, Polym. Compos. 39 (2018) E2036-E2045.
DOI URL |
| [43] |
P. Delhaès, M. Trinquecoste, J.F. Lines, A. Cosculluela, J.M. Goyhénèche, M. Couzi, Carbon N. Y. 43 (2005) 681-691.
DOI URL |
| [44] |
T. Wang, H. Li, S. Zhang, K. Li, W. Li, Diam. Relat. Mater. 103 (2020), 107729.
DOI URL |
| [45] |
H.L. Cox, M. A, F.R.Ae. S, A.M.I.Mech. E, Br. J. Appl. Phys. 3 (1952) 72-79.
DOI URL |
| [46] |
A. Kelly, W.R. Tyson, J. Mech. Phys. Solids 13 (1965) 329-338.
DOI URL |
| [47] |
M. Kharrat, A. Chateauminois, L. Carpentier, P. Kapsa, Compos. Part A Appl. Sci. Manuf. 28 (1997) 39-46.
DOI URL |
| [48] |
J. Llorca, Philos. Mag. 91 (2011) 1293-1307.
DOI URL |
| [49] |
M. Zidi, L. Carpentier, A. Chateauminois, F. Sidoroff, Compos. Sci. Technol. 60 (2000) 429-437.
DOI URL |
| [50] |
F. Rebillat, J. Lamon, R. Naslain, E. Lara-Curzio, M.K. Ferber, T.M. Besmann, J. Am. Ceram. Soc. 81 (2005) 965-978.
DOI URL |
| [51] |
R.W. Trice, J.W. Halloran, J. Am. Ceram. Soc. 82 (1999) 2502-2508.
DOI URL |
| No related articles found! |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
