J. Mater. Sci. Technol. ›› 2018, Vol. 34 ›› Issue (1): 73-91.DOI: 10.1016/j.jmst.2017.11.041
Special Issue: High Strength Alloys-2018; FSW-and-FSP-articles 2018
• Orginal Article • Previous Articles Next Articles
Guoqing Wanga*(), Yanhua Zhaob, Yunfei Haob
Received:
2017-05-23
Revised:
2017-10-18
Accepted:
2017-10-21
Online:
2018-01-20
Published:
2018-02-09
Contact:
Wang Guoqing
Guoqing Wang, Yanhua Zhao, Yunfei Hao. Friction stir welding of high-strength aerospace aluminum alloy and application in rocket tank manufacturing[J]. J. Mater. Sci. Technol., 2018, 34(1): 73-91.
Fig. 4. The third generation of FSW tool with convex cone/convex sphere shoulder plus Archimedean spiral pin: (a) isometric side view, (b) sectional view, (c) a tool picture.
Geometry of tool | Tilt angle (°) | Tensile strength (MPa) | Elongation (%) |
---|---|---|---|
Concave shoulder | 2.5 | 330-345 | 5.5-7.0 |
Convex sphere shoulder | 0 | 320-335 | 4.5-8.5 |
Convex sphere shoulder | 1 | 325-345 | 4.5-8.0 |
Table 1 Tensile strength of FSW AA2219 joints with various welding tools.
Geometry of tool | Tilt angle (°) | Tensile strength (MPa) | Elongation (%) |
---|---|---|---|
Concave shoulder | 2.5 | 330-345 | 5.5-7.0 |
Convex sphere shoulder | 0 | 320-335 | 4.5-8.5 |
Convex sphere shoulder | 1 | 325-345 | 4.5-8.0 |
Thickness (mm) | Tensile strength (MPa) | Elongation (%) |
---|---|---|
3.0 | 340 | 5.0 |
4.0 | 345 | 5.5 |
5.5 | 345 | 6.0 |
6.0 | 345 | 6.0 |
8.0 | 335 | 4.5 |
Table 2 Mechanical properties of FSW AA2219 joints with different thicknesses.
Thickness (mm) | Tensile strength (MPa) | Elongation (%) |
---|---|---|
3.0 | 340 | 5.0 |
4.0 | 345 | 5.5 |
5.5 | 345 | 6.0 |
6.0 | 345 | 6.0 |
8.0 | 335 | 4.5 |
Defect type | Repair method |
---|---|
Void, surface furrow, LOP | repetitive FSW |
Small size of defect, without high request for joint performance | Manual fusion welding |
Keyhole type | Fusion filling/solid-state filling plus FSW |
Table 3 Repair welding schemes for different defects of tank welds.
Defect type | Repair method |
---|---|
Void, surface furrow, LOP | repetitive FSW |
Small size of defect, without high request for joint performance | Manual fusion welding |
Keyhole type | Fusion filling/solid-state filling plus FSW |
Mechanical properties of re-welded joint | Repetitive times | |||
---|---|---|---|---|
0 | 1 | 2 | 3 | |
Tensile strength (MPa) | 340 | 343.3 | 341.7 | 338.3 |
Elongation (%) | 6.0 | 5.67 | 6.33 | 7.0 |
Table 4 Impact of welding times on mechanical properties of 6 mm thick FSW AA2219 joint.
Mechanical properties of re-welded joint | Repetitive times | |||
---|---|---|---|---|
0 | 1 | 2 | 3 | |
Tensile strength (MPa) | 340 | 343.3 | 341.7 | 338.3 |
Elongation (%) | 6.0 | 5.67 | 6.33 | 7.0 |
Tool type | Structural parameter of shoulder | Structural parameter of pin | |||
---|---|---|---|---|---|
Configuration | Diameter (mm) | Configuration | Root diameter (mm) | Length (mm) | |
Regular tool | Inside recess with 7° of slope | 18 | Tapered tread at 22° | 6.0 | 5.8 |
Repair tool | Inside recess with 10° of slope; +2 concentric circles | 20 | Tapered thread at 20°; +3 slopes | 7.0 | 5.7 |
Table 5 Structural design of different FSW tools for regular welding and repairing application.
Tool type | Structural parameter of shoulder | Structural parameter of pin | |||
---|---|---|---|---|---|
Configuration | Diameter (mm) | Configuration | Root diameter (mm) | Length (mm) | |
Regular tool | Inside recess with 7° of slope | 18 | Tapered tread at 22° | 6.0 | 5.8 |
Repair tool | Inside recess with 10° of slope; +2 concentric circles | 20 | Tapered thread at 20°; +3 slopes | 7.0 | 5.7 |
Sample type | No. | Tensile strength (MPa) | Elongation (%) | Average | Strength factor |
---|---|---|---|---|---|
One-time defect-less sample | 1 | 340 | 7.0 | 343.3/7.7 | 78.0 |
2 | 345 | 8.0 | |||
3 | 345 | 8.0 | |||
Second-time welding repair sample | 1 | 335 | 8.0 | 341.7/8.3 | 77.7 |
2 | 340 | 8.5 | |||
3 | 345 | 8.5 | |||
Keyhole repair sample | 1 | 345 | 9.0 | 338.3/9.0 | 76.89 |
2 | 345 | 9.0 | |||
3 | 340 | 9.0 |
Table 6 Tensile properties of repaired AA2219 joint at different positions.
Sample type | No. | Tensile strength (MPa) | Elongation (%) | Average | Strength factor |
---|---|---|---|---|---|
One-time defect-less sample | 1 | 340 | 7.0 | 343.3/7.7 | 78.0 |
2 | 345 | 8.0 | |||
3 | 345 | 8.0 | |||
Second-time welding repair sample | 1 | 335 | 8.0 | 341.7/8.3 | 77.7 |
2 | 340 | 8.5 | |||
3 | 345 | 8.5 | |||
Keyhole repair sample | 1 | 345 | 9.0 | 338.3/9.0 | 76.89 |
2 | 345 | 9.0 | |||
3 | 340 | 9.0 |
Fig. 23. Correlation between tool plunge depth and welding force and tensile strength with various thicknesses of AA2219 plates: (a) 4 mm, (b) 5 mm, (c) 6 mm.
No. | Threshold value of force adjustment | Joint appearance |
---|---|---|
1 | 2% | Frequent adjustment, repetitive vibration of tool, rough appearance of joint |
2 | 3% | Slightly frequent adjustment, better appearance of joint |
3 | 4% | Good effect of adjustment, smooth appearance |
4 | 5% | Slightly hysteretic adjustment, slow adjustment of tool |
5 | 6% | Hysteretic adjustment, slow adjustment of tool, weak effect of constant force |
Table 7 Correlation between force fluctuation and joint appearance.
No. | Threshold value of force adjustment | Joint appearance |
---|---|---|
1 | 2% | Frequent adjustment, repetitive vibration of tool, rough appearance of joint |
2 | 3% | Slightly frequent adjustment, better appearance of joint |
3 | 4% | Good effect of adjustment, smooth appearance |
4 | 5% | Slightly hysteretic adjustment, slow adjustment of tool |
5 | 6% | Hysteretic adjustment, slow adjustment of tool, weak effect of constant force |
Gore No. | Max. tensile strength (MPa) | Min. tensile strength (MPa) | Average tensile strength (MPa) |
---|---|---|---|
1 | 365 | 350 | 360 |
2 | 365 | 335 | 340 |
3 | 365 | 345 | 355 |
4 | 360 | 340 | 350 |
5 | 360 | 335 | 350 |
Table 8 Mechanical properties of variable-curvature FSW AA2219 joints of tank dome.
Gore No. | Max. tensile strength (MPa) | Min. tensile strength (MPa) | Average tensile strength (MPa) |
---|---|---|---|
1 | 365 | 350 | 360 |
2 | 365 | 335 | 340 |
3 | 365 | 345 | 355 |
4 | 360 | 340 | 350 |
5 | 360 | 335 | 350 |
Fig. 28. Transverse cross-section of retractable FSW AA2219 joint at different retraction positions: (a) retraction starting, (b) retraction to 25% of pin, (c) retraction to 50% of pin, (d) retraction to 75% of pin, (e) retraction ending.
Fig. 33. Macroscopic profiles of FSW AA2219 lock joints with different pin lengths and AS locations as well as bending and deformation of lap joint [24]. (pin length was respectively 6.0 mm, 6.5 mm and 7.0 mm; the lock joint was that when short section and Y ring were respectively located on AS).
Fig. 34. Effect of FSW pin length and AS location on tensile strength of FSW AA2219 lock joint [23]: (a) tensile strength at 20 °C, (b) tensile strength at -196 °C.
|
[1] | Tian-Yu Wang, Jia-Lin Meng, Qing-Xuan Li, Lin Chen, Hao Zhu, Qing-Qing Sun, Shi-Jin Ding, David Wei Zhang. Forming-free flexible memristor with multilevel storage for neuromorphic computing by full PVD technique [J]. J. Mater. Sci. Technol., 2021, 60(0): 21-26. |
[2] | Xin Wu, Fengwen Mu, Haiyan Zhao. Recent progress in the synthesis of graphene/CNT composites and the energy-related applications [J]. J. Mater. Sci. Technol., 2020, 55(0): 16-34. |
[3] | C. Yang, J.F. Zhang, G.N. Ma, L.H. Wu, X.M. Zhang, G.Z. He, P. Xue, D.R. Ni, B.L. Xiao, K.S. Wang, Z.Y. Ma. Microstructure and mechanical properties of double-side friction stir welded 6082Al ultra-thick plates [J]. J. Mater. Sci. Technol., 2020, 41(0): 105-116. |
[4] | Mariana X. Milagre, Uyime Donatus, Naga V. Mogili, Rejane Maria P. Silva, Bárbara Victória G. de Viveiros, Victor F. Pereira, Renato A. Antunes, Caruline S.C. Machado, João Victor S. Araujo, Isolda Costa. Galvanic and asymmetry effects on the local electrochemical behavior of the 2098-T351 alloy welded by friction stir welding [J]. J. Mater. Sci. Technol., 2020, 45(0): 162-175. |
[5] | Xianrui Xie, Yujie Chen, Xiaoyu Wang, Xiaoqing Xu, Yihong Shen, Atta ur Rehman Khan, Ali Aldalbahi, Allison E. Fetz, Gary L. Bowlin, Mohamed El-Newehy, Xiumei Mo. Electrospinning nanofiber scaffolds for soft and hard tissue regeneration [J]. J. Mater. Sci. Technol., 2020, 59(0): 243-261. |
[6] | Wei Hu, Zhongwei Ma, Shude Ji, Qi Song, Mingfei Chen, Wenhui Jiang. Improving the mechanical property of dissimilar Al/Mg hybrid friction stir welding joint by PIO-ANN [J]. J. Mater. Sci. Technol., 2020, 53(0): 41-52. |
[7] | Weijie Ren, Dejia Liu, Qing Liu, Renlong Xin. Influence of texture distribution in magnesium welds on their non-uniform mechanical behavior: A CPFEM study [J]. J. Mater. Sci. Technol., 2020, 46(0): 168-176. |
[8] | H.F. Li, Z.Z. Shi, L.N. Wang. Opportunities and challenges of biodegradable Zn-based alloys [J]. J. Mater. Sci. Technol., 2020, 46(0): 136-138. |
[9] | Zhiqiang Zhang, Changshu He, Ying Li, Lei Yu, Su Zhao, Xiang Zhao. Effects of ultrasonic assisted friction stir welding on flow behavior, microstructure and mechanical properties of 7N01-T4 aluminum alloy joints [J]. J. Mater. Sci. Technol., 2020, 43(0): 1-13. |
[10] | S.C. Han, L.H. Wu, C.Y. Jiang, N. Li, C.L. Jia, P. Xue, H. Zhang, H.B. Zhao, D.R. Ni, B.L. Xiao, Z.Y. Ma. Achieving a strong polypropylene/aluminum alloy friction spot joint via a surface laser processing pretreatment [J]. J. Mater. Sci. Technol., 2020, 50(0): 103-114. |
[11] | Yongxian Huang, Yuming Xie, Xiangchen Meng, Junchen Li, Li Zhou. Joint formation mechanism of high depth-to-width ratio friction stir welding [J]. J. Mater. Sci. Technol., 2019, 35(7): 1261-1269. |
[12] | H. Zhang, P. Xue, D. Wang, L.H. Wu, D.R. Ni, B.L. Xiao, Z.Y. Ma. Effect of heat-input on pitting corrosion behavior of friction stir welded high nitrogen stainless steel [J]. J. Mater. Sci. Technol., 2019, 35(7): 1278-1283. |
[13] | X.C. Liu, Y.F. Sun, T. Nagira, K. Ushioda, H. Fujii. Evaluation of dynamic development of grain structure during friction stir welding of pure copper using a quasi in situ method [J]. J. Mater. Sci. Technol., 2019, 35(7): 1412-1421. |
[14] | X.H. Zeng, P. Xue, L.H. Wu, D.R. Ni, B.L. Xiao, K.S. Wang, Z.Y. Ma. Microstructural evolution of aluminum alloy during friction stir welding under different tool rotation rates and cooling conditions [J]. J. Mater. Sci. Technol., 2019, 35(6): 972-981. |
[15] | Q. Chu, W.Y. Li, H.L. Hou, X.W. Yang, A. Vairis, C. Wang, W.B. Wang. On the double-side probeless friction stir spot welding of AA2198 Al-Li alloy [J]. J. Mater. Sci. Technol., 2019, 35(5): 784-789. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||